熔盐法的原理与应用解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从上我们可以得知:在熔盐法中,粉体颗粒通过其在液 相中的传质过程而形成和长大,因此可以通过调节合成 温度以及盐的含量和种类来控制粉体颗粒的形状和尺寸。
Cahn根据自己的研究,提出颗粒的形状是由其生长机制 决定的,由扩散机制控制的生长过程,颗粒容易发育成 球形,而由界面反应控制的生长过程,颗粒则按一定的 取向生长,表现出各向异性。
表面能和界面能有关,由于表面能和界面能有减小的趋 势,最终导致熔盐法合成的粉体具有特定的形貌。控制 熔盐法所合成的粉体形状的因素包括所用的盐的种类和 含量,反应温度和时间,起始氧化物的粉末特征等。通 过改变这些条件,可以制得特定的具有形状各向异性的 粉体,进而通过流延等工艺制备晶粒取向陶瓷。
熔盐法合成粉体的优点
➢ (3)低的蒸气压。熔盐具有较低的蒸气压,特别是混合熔盐,蒸气 压更低。
➢ (4)对物质有较高的溶解能力. ➢ (5)较大的热容量和热传导值。 ➢ (6)较低的粘度和较大的质量传递速度。 ➢ (7)具有化学稳定性。
熔盐的选择
熔盐法中盐的种类对所制备粉体的形貌和性质非常关键,通常选择 所用盐的种类时要遵循以下两条主要原则: (1)对晶体材料应具有足够大的溶解度,一般应为10~50wt%。 在生长温度范围内,还应有适度的溶解度的温度系数,该系数 太大时生长速率不易被控制,温度稍有变化则会引起大量的结 晶物质析出,这样不但会造成生长速率的较大变化,还常常会 引起大量的自发成核,这些都不利于晶体的生长;该系数太小 时,则生长速率很小,这也不是我们所希望的。 (2)在尽可能宽的温度范围内,不会形成稳定的其它化合物,所 要的晶体是唯一的稳定相。但经验表明,只有二者的组分之间 形成某种化合物,溶液才具有较高的溶解度。
➢ (1)是离子熔体,这是熔盐体系的最大特征.熔赫体系由阳离子和 阴离子组成,碱金属卤化物形成简单的离子熔体,而二价或三价的 阳离子或复杂阴离子如硝酸根,硫酸根和碳酸根等则容易形成复杂 的络合离子。由于是离子熔体,因此熔盐具有良好导电性,其电导 率一般比电解质溶液高一个数量级.
➢ (2)具有广泛的使用温度范围。通常的熔盐使用温度在300~1000ºC 之间,且具有相对的热稳定性.
另外,熔盐法的反应过程以及随后的清洗 过程中,也会有利于杂质的消除,形成高 纯的反应产物。
因此,有人认为熔盐法是合成高纯的符合 化学计量比的多组分氧化物粉体最简单的 方法。
几种无机材料合成方法比较
固相法
成本
低-中
操作
简单
成分控制 差
形貌控制 差
粉末活性 差
纯度(%) <99
煅烧
需要
Sol-gel 高 复杂 优 一般 好
熔盐法反应过程示意图
Stage 1 Mixing of Oxides and Salt
Stage 2 Melting and wetting of salt, Rearrangment and Diffusion of oxides
Stage 3 Nucleation and growth of perovskite phase
>99.9 需要
化学沉淀法 水热法
中
高Baidu Nhomakorabea
复杂
复杂
好
好
一般
好
好
好
>99.5 需要
>99.5 不需要
熔盐法 中 简单 优 好 好 >99.5
不需要
熔盐法的基本原理
熔盐法合成粉体可以分为两个过程:粉体 颗粒的形成过程和生长过程。
颗粒的形成过程依赖于参与反应的氧化物 在盐中的溶解速率的差异。因此粉体的形 态最初由形成过程所控制,随后由生长过 程所控制。
熔盐法合成粉体的优点
可以明显地降低合成温度和缩短反应时间。
这可以归结为由于盐的熔体的形成,使反应成 分在液相中的流动性增强,扩散速率显著提高。 同时由于熔盐贯穿在生成的粉体颗粒之间,阻 止颗粒之间的相互连结,因此熔盐法制得的粉 体无团聚,或仅有弱团聚。
熔盐法合成粉体的优点
通过熔盐法可以更容易地控制粉体颗粒的 形状和尺寸。这种性质同反应物与盐的熔体之间的
熔盐的类型
熔盐主要有两种类型:
一类是金属或合金熔液(通常为Ga、In和Sn 等),主要用于半导体单晶的生长;
另一类是化合物类,包括氧化物和盐类(如 PbO、NaCI和K2SO4等)
熔盐的主要特征
最常见的熔盐是由碱金属或碱土金属的卤化物、硫酸盐、硝酸盐等 组成。熔盐作为一种高温熔剂,是一种优良的化学反应介质.它的 主要特征表现在以下几个方面:
熔盐法合成多组分物质的两种机理
1、组分氧化物在熔盐中都有一定的溶解度,由于 其迁移率在熔盐中(1×10-5~1×10-8cm2sec-1)比在固相 中(1×10-18cm2sec-1)高,故能在较短的时间内扩散到 一起进行反应。当反应生成的化合物超过其溶解度, 达到过饱和时即沉淀出来。
2、某组分氧化物在熔盐中的溶解度大于其它组分 氧化物的溶解度,这样前者扩散到后者的表面,在 其表面生成产物。
Vark等人曾用熔盐法合成了铁酸锶,随着合成温度从 900ºC升高至1200ºC,粉体的形状越来越接近球形,另外, 在1200ºC时,随着液相的增加,粉体颗粒的尺寸减小。 这表明在低温下(900ºC),铁酸锶粉体颗粒的生长受界面 反应机制控制,在高温时(1200ºC)粉体颗粒的生长由扩散 机制控制。
熔盐法
Molten Salt Method
原理与应用
尤朋
主要内容
一、熔盐法简介
➢ 熔盐法的基本原理和特征 ➢ 熔盐法的应用
二、实例:利用熔盐法制备Bi4Ti3O12粉体
熔盐法的定义
所谓熔盐法,即将盐与反应物按照一定的比例 配制反应混合物,混合均匀后,加热使盐熔化, 反应物在盐的熔体中进行反应,生成产物,冷 却至室温后,以去离子水清洗数次以除去其中 的盐得到产物粉体。
熔盐法是一种在较低的反应温度下和较短的反 应时间内制备特定组分的各向异性粉体的简便 方法。
熔盐法合成粉体过程
选择原料和熔盐 混匀
熔融、保温 溶解盐类 过滤、洗涤、烘干
粉体
熔盐法的历史和进展
1973年R.H.Arendt利用熔盐法合成了 BaFe12O19和SrFel2O19
之后,各国研究工作者先后用这种方法制 备了各种电子陶瓷粉体,包括SrBi4Ta4O15、 SrBi2Ta2O9、 Bi4Ti3O12、 Na0.5Bi4.5Ti4O15 等