一元一次方程应用题专题复习
一元一次方程应用题解法归纳汇总
![一元一次方程应用题解法归纳汇总](https://img.taocdn.com/s3/m/0f59c019657d27284b73f242336c1eb91b373355.png)
例3、为了把2013年沈阳全运会举办成一届绿色全运会,实验中学和潞河中学的同学积极参加绿化工程的劳动。两校共绿化了4415平方米的土地,潞河中学绿化的面积比实验中学绿化面积的2倍少13平方米,这两所中学分别绿化了多少面积?
例4、出租汽车4千米起价10元,行驶4千米以后,每千米收费1.2元(不足1千米按1千米计算)。张天和张智要到离学校15千米的博物馆为同学们联系参观事宜。为了尽快到达博物馆,他们想坐出租车,如果他们只有22元,则,他们乘出租车能直接到达博物馆吗?
解:设该市每户每月用水标准量为x立方米。 ∵1.2×9=10.8(元) 10.8<16.2 ∴张大爷家的用水量超出了标准用水量,即x<9 根据题意得 1.2x+(9-x)×3=16.2 解这个方程,得 x=6 答:该市每户每月的标准用水量是6立方米。
例2 :小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?
例3 5年定期储蓄的年利率为2.88%,若存入5年定期的本金是1000元,请计算存款到期时,应得的本利和是多少?
例4、王利到银行存入5年定期的储蓄若干元,到期后一共缴了72元的利息税,若这种储蓄的年利率为2.4%,求王利当初存入银行多少元?
一元一次方程应用题知识点
![一元一次方程应用题知识点](https://img.taocdn.com/s3/m/b1aa693776232f60ddccda38376baf1ffd4fe37b.png)
一元一次方程应用题知识点一、知识概述《一元一次方程应用题知识点》①基本定义:一元一次方程应用题就是在实际生活场景里,有着各种各样关系的事情,我们可以用含有一个未知数(还这个未知数的次数是1呢)的方程来表示,然后求出这个未知数来解决问题。
就像是我们去猜一个神秘数字,但这个数字跟别的一些数字有着特定关系,我们把这些关系用方程写出来,就能找到这个神秘数字啦。
②重要程度:在数学学科里,这可谓相当重要哦。
把实际问题变成数学方程来解,是我们把数学运用到生活中的关键一步。
能帮我们搞定很多现实生活里跟计算有关的事儿,像计算买卖东西的价钱、工程多久完成等等。
③前置知识:要掌握它首先基本的四则运算得很熟练,加、减、乘、除不能出错。
然后得很清楚一元一次方程本身的概念,比如方程的一般形式这些。
④应用价值:在生活中应用超广泛。
就比如说算自己买东西怎么组合花的钱最少。
商家也可以用来算成本、利润等。
工程队用它计算工程进度、需要的人力啥的。
二、知识体系①知识图谱:在数学的方程这部分内容里可是基础中的基础啊。
是从单纯的方程知识迈向解决实际问题的第一步,和很多后续知识像二元一次方程应用题都有联系。
②关联知识:跟代数部分其他知识关系紧密,像整式的运算,你要是整式运算都搞不定,方程里那些式子的变形就难搞。
还有跟函数也有点沾边,一些函数问题也能转化成一元一次方程的应用题形式。
③重难点分析:- 掌握难度:有时候把实际遇到的场景转化成数学语言列方程对不少人来说挺难的。
比如说像水流问题,水速船速搞在一起很容易迷糊。
- 关键点:找准等量关系是关键。
就好像一个拼图,等量关系就是那块能嵌入中心,让整个图完整起来的关键碎片。
④考点分析:在考试里很受出题人的青睐呢。
出题方式很多样,可以直接让你根据某个场景列方程求解,或者给一个方程让你根据情境解释方程的意义。
三、详细讲解(属于方法技能类)①基本步骤:- 先读题好好理解这个情景。
我以前就老想跳着读题,结果经常没搞清楚事情全貌就开始做,最后错得一塌糊涂。
一元一次方程应用题集(含答案)
![一元一次方程应用题集(含答案)](https://img.taocdn.com/s3/m/2bcc12266ad97f192279168884868762cbaebb52.png)
一元一次方程应用题集(含答案)一元一次方程应用题集(含答案)1. 碰碰车票价问题A市游乐园内的碰碰车是最受欢迎的项目之一。
假设每张碰碰车票价为15元,一天内售出了250张票,总票款为多少元?解答:设总票款为x元,则根据题意可得一元一次方程:15 × 250 = x。
解这个方程可得x = 3750。
所以,游乐园一天内的碰碰车票款为3750元。
2. 足球比赛门票销售问题一场足球比赛在体育馆举行,门票分为成人票和学生票,成人票的售价为50元,学生票的售价为30元。
某次比赛一共售出了210张门票,总票款为6900元。
问成人票和学生票各售出多少张?解答:设成人票的售出数量为x张,学生票的售出数量为y张。
根据题意可得两个方程:50x + 30y = 6900 (总票款为6900元)x + y = 210 (门票总数量为210张)首先,我们可以通过第二个方程解得x = 210 - y,然后代入第一个方程中,得到50(210 - y) + 30y = 6900。
化简后可得到50y - 50(210) + 30y = 6900,继续化简得到80y = 6900 - 50(210)。
继续计算可得到80y = 6900 - 10500,即80y = -3600。
解这个方程可得y = -3600 / 80,即y = -45。
然后将y的值代回第二个方程,可得x = 210 -(-45),即x = 210 + 45。
所以,成人票售出了255张,学生票售出了45张。
3. 汽车行驶问题小明开车从A市到B市,全程共500公里。
他以每小时80公里的速度行驶,途中共用了多长时间?解答:设小明使用的时间为t小时,则根据题意可得一元一次方程:80t = 500。
解这个方程可得t = 500 / 80,即t = 6.25。
所以,小明行驶这段距离共用了6.25小时。
4. 苹果购买问题小华去水果市场购买苹果,市场上卖家A每斤售价为4元,卖家B 每斤售价为3元。
一元一次方程应用题归类汇集(含答案)
![一元一次方程应用题归类汇集(含答案)](https://img.taocdn.com/s3/m/601ad7fa185f312b3169a45177232f60ddcce763.png)
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
人教版一元一次方程复习题
![人教版一元一次方程复习题](https://img.taocdn.com/s3/m/92a2b2e382d049649b6648d7c1c708a1294a0a48.png)
2.解方程: 278(x-4)-463(8-2x)-888(7x-28)=0。 解:原方程可化为 278(x-4)+463×2(x-4)-888×7(x-4)=0, (x-4)(278+463×2-888×7)=0, x-4=0,x=4.
大家有疑问的,可以询问和交流
可 以 互 相 讨 论下, 但要小 声点
根据题意,得:(x-10)+(x+10)+(x÷2)+(x×2)=270,解 得 x=60.
故甲实际做的零件个数为 x-10=50 个,乙实际做的零件 个数为 x+10=70 个,丙实际做的零件个数为 x÷2=30 个,丁 实际做的零件个数为 x×2=120 个.
答:略.
谢谢
8
专题二 数形结合思想的应用
例2:A、B两站间的距离为448km,一列慢车从A站出发, 每小时行驶60km,一列快车从B站出发,每小时行驶80km。
问:(1)两车同时出发,相向而行,出发后多少小时相遇? (2)两车相向而行,慢车先开28min,快车开出多少小时后 两车相遇?
(3)如果两车都从A站开向B站,要使两车同时到达,慢车 应先出发多少小时?
【规律总结】在分析应用题时,借助画示意图,或列表格 的方法能清晰地分析出题中各量之间的关系,及题中所隐含的 等量关系式。
拓展训练
3.A、B 两地间的距离为 360 km,甲车从 A 地出发开往 B 地,每小时行驶 72 km,乙车比甲车晚出发152小时,每小时行驶 48 km,两车相向而行,相遇后,各自仍按原速度、原方向继续 行驶,那么相遇以后两车相距 100 km 时,甲车从出发开始行驶 了多少小时?
解:设第一个矩形的长为 5x cm,它的宽为 4x cm,则第二 个矩形的长为 3x cm,宽为 2x cm,所以
专题05 一元一次方程应用题(老师版)
![专题05 一元一次方程应用题(老师版)](https://img.taocdn.com/s3/m/392771fe81eb6294dd88d0d233d4b14e85243e33.png)
专题05高分必刷题:一元一次方程的应用题重难点题型分类专题简介:本份资料包含一元一次方程这一章的常考应用题的全部题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:配套问题、古典应用题、利润问题、费用与方案选择问题、分层计费问题、工程问题、路程问题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一配套问题1.(青竹湖)甲一天能加工A种零件50个或加工B种零件20个,1个A种零件与2个B种零件配成一套,那么甲30天时间安排多少天做零件A,多少天做零件B,才能使得所有零件都刚好配套?【解答】解:设x天制作A种零件,可得方程:2×50x=20(30﹣x),解得:x=5,30﹣5=25,答:甲30天时间安排5天做A种零件,25天做B种零件,才能使得所有零件都刚好配套.2.(浏阳)用白铁皮做罐头盒,每张铁皮可制作16个盒身或68个盒底,一个盒身和两个盒底配成一套罐头盒,现有100张铁皮,用多少张做盒身,多少张做盒底,使得做出来的盒身和盒底恰好配套,又不浪费铁皮?【解答】解:设用x张做盒身,则做盒底为(100﹣x)张,由题意得:2×16x=68(100﹣x),解得:x=68.100﹣x=100﹣68=32.答:用68张做盒身,32张做盒底.3.(2021秋•雨花区校级月考)某工厂车间有28个工人,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.设该工厂有x 名工人生产A零件:(1)求车间每天生产A零件和B零件各多少个?(用含x的式子表示)(2)求该工厂有多少工人生产A零件?【解答】解:(1)根据题意知,车间每天生产A零件的数量:18x件;车间每天生产B零件的数量:12(28﹣x)件;(2)设该工厂有x名工人生产A零件,根据题意,得2×18x=12(28﹣x),解得x=7,答:该工厂有7名工人生产A零件.题型二古典应用题4.(西雅)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层逐层翻倍增加).根据此诗,可以得出塔的顶层有()A.3盏灯B.4盏灯C.5盏灯D.6盏灯【解答】解:设顶层x盏灯,可得方程:x+2x+4x+8x+16x+32x+64x=381,得:x=3,故选:A.5.(雅礼)程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法,对书中某一问题政编如下:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得()个馒头.A.25B.72C.75D.90【解答】解:设有x个大和尚,则有(100﹣x)个小和尚,依题意,得:3x+(100﹣x)=100,解得:x=25,∴3x=75.故选:C.6.(雅礼)我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x尺,则求解井深的方程正确的是()A.3(x+4)=4(x+1)B.3x+4=4x+1C.x+4=x+1D.x﹣4=x﹣1【解答】解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多一尺,则绳长为:4(x+1),故3(x+4)=4(x+1).故选:A.7.(2021秋•长沙期末)为营造学党史、迎冬奥的浓厚氛围,某学校举行了主题为“扛红旗、当先锋、学党史、迎奥运”的知识竞赛,一共有30道题,每一题答对得4分,答错或不答扣2分.(1)小明参加了竞赛,得90分,则他一共答对了多少道题?(2)小刚也参加了竞赛,考完后自信满满,说:“这次竞赛我会得100分!”你认为可能吗?并说明理由.【解答】解:(1)设小明在竞赛中答对了x道题,根据题意得,4x﹣2(30﹣x)=90,解得,x=25.答:小明在竞赛中答对了25道题;(2)不可能,理由如下:如果小刚的得分是100分,设他答对了y道题,根据题意得,4y﹣2(30﹣y)=100,解得y=.因为y不能是分数,所以小刚没有可能拿到100分.8.(1)购买6根跳绳需付款元,购买12根跳绳需付款元.(2)若小红比小明多买2根,付款时小红反而比小明少5元,请求出小红购买跳绳的根数.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.故答案为150;240.题型三利润问题9.(雅实)某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.王老师买了一件商品,比标价少付了50元,那么他购买这件商品花了_________元.【解答】解:设商品的标价是x元,根据题意得x﹣80%x=50,解得x=250,250×80%=200.他购买这件商品花了200元.故答案是:200.10.(雅礼)一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出,每件卖180元,则这件风衣的成本价是元。
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题
![2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题](https://img.taocdn.com/s3/m/0fa575a89f3143323968011ca300a6c30d22f162.png)
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
一元一次方程应用题及复习知识点
![一元一次方程应用题及复习知识点](https://img.taocdn.com/s3/m/14f95907f11dc281e53a580216fc700abb685227.png)
(2)若该用户九月份的平均电费为0.36元,则九月份共 用电多少千瓦? 应交电费是多少元?
解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元.
解:设这种三色冰淇淋中咖啡色配料为2x克, 那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色 配料分别是10克,15克和25克.
某地区居民生活用电基本价格为每千瓦时0.40元,若 每月用电量超过a千瓦时,则超过部分按基本电价的70%收 费.
百位上的数为3,十位上的数为6,个位上的数为5
7/5/2024
7
4.市场经济问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率= 商品利润 商品成本价
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售, 如商品打8折出售,即按原标价的80%出售.
根据题意,得16×5x+24×4(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零件.
9、比例分配问题
这类问题的一般思路为: 设其中一份为x ,利用已知的比, 写出相应的代数式。 常用等量关系:各部分之和=总量。
7/5/2024
一元一次方程应用题汇总精选全文完整版
![一元一次方程应用题汇总精选全文完整版](https://img.taocdn.com/s3/m/bb92fc5f17fc700abb68a98271fe910ef02dae57.png)
可编辑修改精选全文完整版一元一次方程应用题归类聚集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,那么列方程为________________。
2.甲、乙两人在相距18千米的两地同时动身,相向而行,1小时48分相遇,若是甲比乙早动身40分钟,那么在乙动身1小时30分时两人相遇,求甲、乙两人的速度。
3. 某人从家里骑自行车到学校。
假设每小时行15千米,可比预定的时刻早到15分钟;假设每小时行9千米,可比预定的时刻晚到15分钟;求从家里到学校的路程有多少千米?800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相碰到两车尾相离通过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。
若是一列火车从他们背后开来,它通过行人的时刻是22秒,通过骑自行车人的时刻是26秒。
(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。
7.休息日我和妈妈从家里动身一同去外婆家,咱们走了1小时后,爸爸发觉带给外婆的礼物忘在家里,便立刻带上礼物以每小时6千米的速度去追,若是我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上咱们吗?8.一次远足活动中,一部份人步行,另一部份乘一辆汽车,两部份人同地动身。
汽车速度60千米/小时,咱们的速度是5千米/小时,步行者比汽车提早1小时动身,这辆汽车抵达目的地后,再转头接步行这部份人。
动身地到目的地的距离是60千米。
问:步行者在动身后经多少时刻与转头接他们的汽车相遇(汽车掉头的时刻忽略不计)?时钟问题:10.在6点和7点间,时钟分针和时针重合?行船问题:12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
小学一元一次方程应用题100例附答案(完整版)
![小学一元一次方程应用题100例附答案(完整版)](https://img.taocdn.com/s3/m/45cf9c81cf2f0066f5335a8102d276a201296077.png)
小学一元一次方程应用题100例附答案(完整版)1. 小明买了5 个练习本,每个练习本x 元,一共花了10 元,求每个练习本多少钱?-方程:5x = 10-答案:x = 2 (元)2. 学校图书馆有科技书和故事书共80 本,科技书的数量是故事书的3 倍,设故事书有x 本,求故事书的数量。
-方程:x + 3x = 80-答案:x = 20 (本)3. 一辆汽车以每小时60 千米的速度行驶,行驶了x 小时,一共行驶了300 千米,求行驶的时间。
-方程:60x = 300-答案:x = 5 (小时)4. 果园里苹果树比梨树多20 棵,梨树有x 棵,苹果树有50 棵,求梨树的数量。
-方程:50 - x = 20-答案:x = 30 (棵)5. 小明有一些零花钱,买文具用去10 元,还剩下x 元,原来一共有30 元,求剩下的钱。
-方程:x + 10 = 30-答案:x = 20 (元)6. 一个长方形的长是宽的2 倍,宽是x 厘米,周长是30 厘米,求宽的长度。
-方程:2(x + 2x) = 30-答案:x = 5 (厘米)7. 老师给学生分糖果,如果每人分5 颗,还剩下10 颗;如果每人分7 颗,正好分完。
设学生有x 人,求学生人数。
-方程:5x + 10 = 7x-答案:x = 5 (人)8. 一本书有200 页,小明已经看了x 页,还剩下80 页没看,求小明已经看的页数。
-方程:x + 80 = 200-答案:x = 120 (页)9. 甲乙两地相距400 千米,一辆汽车从甲地开往乙地,速度是每小时x 千米,行驶了5 小时后到达乙地,求汽车的速度。
-方程:5x = 400-答案:x = 80 (千米/小时)10. 学校买了一批篮球,每个篮球80 元,一共花了x 元,买了5 个篮球,求一共花的钱。
-答案:x = 400 (元)11. 仓库里有一批货物,运走了x 吨,还剩下30 吨,这批货物原来有50 吨,求运走的货物重量。
七上一元一次方程应用题专题
![七上一元一次方程应用题专题](https://img.taocdn.com/s3/m/4a8d0e8d9fc3d5bbfd0a79563c1ec5da50e2d685.png)
七上一元一次方程应用题专题
1. 一个数的三倍加上5等于20,这个数是多少?
2. 现在小华的年龄是小明的两倍,5年后小华的年龄将是小明的1.5倍,求他们现在各自的年龄。
3. 甲组人数是乙组人数的2/5,如果甲组再增加10人,乙组人数减少10人,两组人数相等,求原来各组的人数。
4. 一块矩形花坛的长是宽的2倍,如果宽增加5米,长增加10米,长和宽分别是多少米?
5. 一条长方形围墙的长是宽的3倍,如果长增加5米,宽减少2米,围墙的长度和宽度分别是多少?
6. 小杨和小张合伙做苹果生意,小杨出资800元,小张出资600元,小杨得到的利润是小张的2倍,求他们两人分别得到的利润是多少?
7. 小明身上有某数的1/4和另外某数的1/3,共39元,求这两个数分别是多少?
8. 两个数相加得13,其中一个数是另一个数的3倍,求这两个数分别是多少?
9. 两个差为3的数的倒数的和是7/12,求这两个数。
10. 小李一共有40元,他用部分钱购买了一本书,剩下的钱还剩下购买书的三倍,求书的价格是多少?。
专题13一元一次方程的应用(12大题型)专项讲练(原卷版)
![专题13一元一次方程的应用(12大题型)专项讲练(原卷版)](https://img.taocdn.com/s3/m/79b940e4fc0a79563c1ec5da50e2524de518d08b.png)
专题13 一元一次方程的应用(12大题型)专项讲练一元一次方程的应用题属于必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、方案优化选择、行程问题、工程问题、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题等共十二大题型进行方法总结与经典题型进行分类。
1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 注意:(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系; (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长 2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。
初中数学一元一次方程常考的13种应用题,掌握考高分二
![初中数学一元一次方程常考的13种应用题,掌握考高分二](https://img.taocdn.com/s3/m/e2d72c13ac02de80d4d8d15abe23482fb4da02b0.png)
初中数学一元一次方程常考的13种应用题,掌握考高分二四、调配问题【典型例题】例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间.五、连比条件巧设x【典型例题】例1. 一个三角形三边长之比为2:3:4,周长为36cm,求此三角形的三边长.解析:设三边长分别为2x,3x,4x,根据周长为36cm,可得出方程,解出即可.设三边长分别为2x,3x,4x,由题意得,2x+3x+4x=36,解得:x=4.故三边长为:8cm,12cm,16cm.【方法突破】比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
六、配套问题【典型例题】包装厂有42名工人,每个工人平均每小时能生产120块圆形铁皮或80块矩形铁皮。
两个圆形铁片和一个矩形铁片可以配成一个密封的桶。
怎样才能安排工人每天生产圆形和长方形的铁片来合理搭配铁片?解法1:可设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,根据两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x的方程,求解即可.设安排x人生产长方形铁片,则生产圆形铁片的人数为(42-x)人,由题意得:120(42-x)=2×80x,去括号,得5040-120x=160x,移项、合并得280x=5040,系数化为1,得x=18,42-18=24(人);答:安排24人生产圆形铁片,18人生产长方形铁片能合理地将铁片配套.解法2:若安排x人生产长方形铁片,y人生产圆形铁片,根据共有42名工人,可知x+y=42.再根据两张圆形铁片与一张长方形铁片可配套可知2×80x=120y,列出二元一次方程组求解。
一元一次方程应用题专题一:简单的倍数关系精选全文完整版
![一元一次方程应用题专题一:简单的倍数关系精选全文完整版](https://img.taocdn.com/s3/m/ffca1f1c326c1eb91a37f111f18583d048640f49.png)
可编辑修改精选全文完整版专题一:简单的和差倍分问题1、全校学生总数是x,其中女生人数占总数的48﹪,则女生人数是:________;男生人数是:____________2、产量由m千克增长10﹪,就达到_________千克3、设教室里座位的行数是m,用式子表示:(1)教室里每行的座位数比行数多6,教室里总共有多少座位?________________(2)教室里座位的行数是每行座位数的23,教室里总共有多少座位?_______________4、三个植树队,第一队植树x棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42棵,当x为下列各值时,求三个队共植树多少课?(1)X=100 (2)x=2405、(1)一个两位数的个位数字是a,十位数字是b,列式表示这个数:_____________(2)列式表示上面的两位数与10的乘积:____________________(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?6、礼堂第一排有a个座位,后面每一排都比前一排多1个座位,第2排有_______个座位;第3排有_________个座位,第n排有______________个座位;当a=20,n=19时,计算总共有________个座位。
用方程解决下列问题:7、某校女生占全校学生数的52﹪,,比男生多80人,这个学校有多少个学生?8、(1)把12的两个数字对调,得到21,一个两位数,个位上的数是a,十位上的数是b,把它们对调,得到另一个数,用式子分别表示这两个数及它们的差,这样的差能被9整除吗?为什么?(2)一个两位数,个位上是1,十位上是X,把1与x对调,新两位数比原来两位数小18,x应是哪个方程的解?你能解出x是多少吗?9、把一根长100cm的木棍锯成两段,其中一段的长比另一段的2倍少5cm,应该在木棍的哪个位置锯?10、两个村共有834人,较大的村的人数比另一个村人数的2倍少3,两村各有多少人?11、某中学一、二年级共1000名学生,二年级学生比一年级少40人,•求该中学一年级人数是多少?。
一元一次方程经典应用题
![一元一次方程经典应用题](https://img.taocdn.com/s3/m/ea4ae328c950ad02de80d4d8d15abe23492f031f.png)
1. 年龄问题爸爸今年的年龄是儿子年龄的3倍。
再过5年,爸爸的年龄将是儿子年龄的2倍。
问爸爸和儿子现在的年龄分别是多少岁?2. 距离问题一辆汽车以每小时60公里的速度行驶,另一辆汽车以每小时80公里的速度行驶。
如果两车同时从同一地点出发,向相反方向行驶,问经过多少小时后两车相距300公里?3. 工作问题A 完成某项工作需要5天,B 完成同样的工作需要10天。
两人合作完成这项工作需要多少天?4. 商品价格问题某商品原价为100元,现在打8折销售,若销售总额为1200元,则销售了多少件商品?5. 时间与速度问题一名运动员以每分钟100米的速度跑步,另一名运动员以每分钟120米的速度跑步。
如果两人同时同地出发,问经过多少分钟后第一名运动员落后于第二名运动员100米?6. 几何问题一个矩形的长是宽的2倍,其周长为24米。
求这个矩形的长和宽。
7. 投资问题张先生把一部分钱存入银行,年利率为5%,一年后他得到利息200元。
问张先生存入银行的本金是多少元?8. 混合溶液问题一瓶酒精浓度为20%的溶液与另一瓶酒精浓度为50%的溶液混合后,得到一瓶浓度为30%的溶液。
如果两瓶溶液混合后的总量为1000毫升,问每瓶溶液各有多少毫升?9. 工作效率问题甲单独完成某项工程需8天,乙单独完成同样工程需12天。
两人合作完成这项工程需要多少天?10. 行程问题一辆汽车以每小时60公里的速度从A地出发前往B地,出发后1小时,一辆摩托车以每小时90公里的速度从A地出发追赶汽车。
问摩托车多久能追上汽车?11. 销售问题某商品的成本为200元,售价为280元。
如果销售利润为1600元,问销售了多少件商品?12. 时间问题一台机器每分钟加工5个零件,另一台机器每分钟加工8个零件。
如果两台机器同时工作,加工了总共600个零件,问共工作了多少分钟?13. 水池注水问题一个水池的容量为1000升,如果一个水管每分钟可以注入20升水,问需要多少分钟才能将水池注满?14. 利润问题一项工程的成本为10000元,完工后可以获得利润为3000元。
专题02 一元一次方程的实际应用(一)压轴题六种模型全攻略(原卷版)
![专题02 一元一次方程的实际应用(一)压轴题六种模型全攻略(原卷版)](https://img.taocdn.com/s3/m/f6d2cc7bc4da50e2524de518964bcf84b9d52dbb.png)
专题02 一元一次方程的实际应用(一)压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一用一元一次方程解决行程问题】 (1)【考点二用一元一次方程解决配套问题】 (2)【考点三用一元一次方程解决工程问题】 (3)【考点四用一元一次方程解决销售盈亏问题】 (4)【考点五用一元一次方程解决比赛问题】 (7)【考点六用一元一次方程解决方案选择问题】 (7)【过关检测】 (10)【典型例题】【考点一用一元一次方程解决行程问题】例题:(2022·湖南省隆回县第二中学七年级阶段练习)已知A,B两地相距400千米,甲、乙两车从A地向B地运送货物.甲车的速度为每小时60千米,乙车的速度为每小时80千米,甲车先出发0.5小时后乙车才开始出发.(1)乙车出发几小时后,才能追上甲车?(2)追上乙车时,距离B地还有多远?【变式训练】3.(2022·黑龙江·哈尔滨市第六十九中学校七年级阶段练习)AB 、两地相距450千米,甲、乙两车分别从A B 、两地同时出发,相向而行.甲车速度120千米/时,乙车速度为105千米/时,经过_____小时两车相遇.4.(2022·四川·西昌市川兴中学七年级阶段练习)一列火车匀速通过长500m 隧道,若火车从开始进入隧道到完全开出隧道共用30秒,而整列火车完全在隧道里的时间是20秒,求这列火车的长为________.5.(2022·湖南·平江县龙门镇龙门中学七年级期中)小明和小刚从学校出发,去敬老院送水果.小明带着东西先走2.5分钟后,小刚才出发.若小明每分钟行80米,小刚每分钟行120米,(1)设小刚出发经过x 分钟后,小刚走了__________米,小明走了__________米,(用含有x 的代数式表示)(2)则小刚用几分钟可以追上小明?6.(2022·黑龙江·鸡西市第四中学七年级期中)数轴上A 在原点的左侧,A 表示的数是a ,距离原点18个单位,B 在原点右侧,B 所表示的数是b ,距离A 点24个单位.(1)=a ______,b =______.(2)P ,Q 是数轴上的两个动点,P 点从A 出发,速度2个单位每秒,同时Q 点从B 点出发,速度1个单位每秒,若两点相向而行,经过一段时间在C 点相遇,求出点C 表示数.(3)在(2)的条件下,经过几秒钟,P ,Q 两点相距6个单位长度.【考点二 用一元一次方程解决配套问题】例题:(2022·黑龙江·哈尔滨市松雷中学校七年级阶段练习)用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用______张铁皮制作盒身,正好使得这150张铁皮制作出来的盒身和盒底全部配套.【变式训练】1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x 个工人生产螺丝,恰好每天生产的螺母和螺丝按2:1配套.为求x ,可列方程( )A .12001800(28)x x =-B .212001800(28)x x ´=-C .218001200(28)x ´=-D .12001800(28)x x =-2.(2022·全国·七年级单元测试)一张方桌由一个桌面、四条桌腿组成,如果1m 3木料可以做方桌的桌面40例题:(2022·海南·儋州川绵中学七年级阶段练习)师傅和徒弟两人检修一条长300米的管道,师傅每小时检修17米,徒弟每小时检修13米,现两人同时合作,用多少时间可以完成检修?【变式训练】例题:(2022·上海市梅陇中学期中)某种商品按成本提高20%后标价,节假日期间又以标价打八折销售,结果这种商品每件亏损了64元,问这件商品成本多少元?(亏损=成本-售价)【变式训练】1.(2022·黑龙江·哈尔滨德强学校七年级阶段练习)某商品的原价为x元,降价25%后,售价是120元,则原价是__________元.2.(2022·黑龙江·哈尔滨市风华中学校七年级期中)某商品标价100元,现在打6折出售仍可获利25%,则这件商品的进价是___________元.3.(2022·四川省射洪县射洪中学外国语实验学校七年级期中)一刀书法毛边练习纸,按成本价提高40%后标价,促销活动中按标价的九折出售,每刀售12.6元,则每刀书法毛边练习纸的成本价为______元.4.(2022·全国·七年级课时练习)某超市出售一种礼品混合糖是由,A B两种糖果按一定比例配制而成,其中【考点五用一元一次方程解决比赛问题】例题:(2022·湖南·衡阳市船山英文学校七年级阶段练习)足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队平了()A.3场B.4场C.5场D.6场【变式训练】1.(2021·广东惠州·七年级期末)某次数学测试共20道选择题,答对一道得5分,答错或不答倒扣2分.小明在这次考试中得了79分,则他答对了____道题.2.(2022·黑龙江·哈尔滨市第四十九中学校七年级阶段练习)甲、乙两个足球队连续进打对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜___________场.3.(2022·全国·七年级专题练习)某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.答对一题得x分,答错一题扣2分.在此次竞赛中,有一位参赛者答对14道题,答错6道题,这位参赛者的最终得分为72分.则x=________.4.(2022·全国·七年级专题练习)一次足球赛11轮(即每队均需赛11场),胜一场记2分,平一场记1分,负一场记0分,北京国安队所胜场数是所负场数的2倍,结果共得14分,求国安队共胜了__________场.5.(2022·全国·七年级专题练习)为有效落实双减工作,切实做到减负提质,很多学校高度重视学生的体育锻炼,并不定期举行体育比赛.已知在一次足球比赛中,胜一场得3分,平一场得1分,负一场得0分,某队在已赛的11场比赛中保持连续不败,共得25分,求该队获胜的场数.【考点六用一元一次方程解决方案选择问题】例题:(2022·河北保定·七年级期末)周末,某校七年级准备组织观看电影《长津湖》,由各班班长负责买票,每班人数都多于40人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两个优惠方案可选择:方案1:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)七年级二班有48名学生,他该选择哪个方案比较省钱?请说明理由;(2)一班班长思考一会儿说:“我们班无论选择哪种方案要付的钱是一样的”.请求出一班的人数.【变式训练】4.(2022·江苏·泰州中学附属初中七年级期中)“双11”天猫商城推出各种优惠活动进行促销.今年,张阿姨在“双11”到来之前准备在两家天猫店铺中选择一家购买原价均为1000元/条的被子若干条,店铺在活动期间分别给予以下优惠:A店铺:“双11”当天购买可以享受8折优惠;B店铺:商品每满1000元可使用店铺优惠券80元.同时每满500元可使用商城双11购物津贴券50元,同时“双11”当天购买还可立减100元.(例如:购买2条被子需支付´-´-´-=元).100028025041001540(1)若张阿姨想在“双11”当天购买4条被子,她选择哪家店铺购买?请说明理由;(2)若张阿姨在“双11”当天购买a条被子,请分别用含a的代数式表示在这两家店铺购买的费用;(3)张阿姨在双11当天购买几条被子,两家店铺的费用相同?5.(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)十七中学刚完成校舍的修建,有一些相同的办公室需要粉刷墙面;一天5名一级技工去粉刷了8个办公室外还多粉刷了60平方米的展示厅墙面;同样时间内4名二级技工粉刷了7个办公室,结果有10平方米的墙面未来得及粉刷完,已知每名一级技工比二级技工一天多粉刷10平方米的墙面.(1)求每个办公室需要粉刷的墙面面积.(2)已知每天需要给每名一级技工支付费用180元,每天需要给每名二级技工支付费用160元.十七中学有40个办公室的墙面和600平方米的展览墙需要粉刷,现有5名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.十七中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,十七中学应如何选择方案,请通过计算说明.6.(2022·吉林·农安县第一中学七年级阶段练习)某乳制品厂有鲜牛奶10吨,若直接销售,每吨可获利500【过关检测】1.(2023秋·广东揭阳·七年级统考期末)一个自行车队进行训练,训练时所有队员都以38km/h的速度前进,突然,1号队员以46km/h的速度独自行进,行进21km后掉转车头,仍以46km/h的速度往回骑,直到与其他队员会合.1号队员从离队开始到与其他队员重新会合,经过了多长时间?2.(2023秋·湖北武汉·七年级统考期末)某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱的工人有多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺柱的工人有多少名?3.(2022秋·河北保定·七年级校联考阶段练习)已知,某工地施工队,其中一部分工人挑土,一部分工人抬土,共有60根扁担和80个筐(已知挑土的是一个工人挑一根扁担,挂两个筐,抬土的是两个工人抬一根扁担,中间挂一个筐).(1)施工队中挑土工人有多少人?(2)若挑土工人一天的工资为90元,抬土工人一天的工资为50元,则施工队一天该付工资多少钱?(3)由于人工成本较高,而且施工队欲提高工作效率,故将抬土工人全部转为挑土,请问后勤部门要多购进多少根扁担、多少个筐?4.(2023秋·江西宜春·七年级统考期末)为争创文明城市,某学校举行创文知识竞赛,学校打印室有A、B 两台机器可以印刷试卷,单独用A机器需要45分钟能印刷完,单独用B机器需要30分钟能印刷完,为保密起见不能过早印刷试卷,为学生按时开始竞赛,需要监考教师提前5分钟领取到试卷,学校决定在考试前由两台机器同时印刷.(1)两台机器同时印刷,共需多少分钟才能印刷完;(2)两台机器同时印刷,10分钟后,A机器发生故障暂时不能印刷,经过抢修2分钟后恢复正常印刷,此时离开始竞赛只剩下13分钟(老师领卷的时间忽略不计),试问这次竞赛能否正常开始?请说明理由.(1)则A 、B 两点的距离是______;(2)点P 是数轴上一个动点,其表示的数是x ,当3=AP BP 时,求x ;。
七年级数学一元一次方程应用题复习题及答案
![七年级数学一元一次方程应用题复习题及答案](https://img.taocdn.com/s3/m/48e373ec250c844769eae009581b6bd97f19bc97.png)
以下是十道七年级数学一元一次方程应用题复习题及试题及答案:1.小明用100元买了一些苹果,每个苹果10元,剩下的钱他用来买香蕉,每个香蕉5元,小明一共买了多少个香蕉?方程:10x+5y=100解:x表示苹果的个数,y表示香蕉的个数2.一辆计程车每公里收费2元,小明乘坐计程车行驶了20公里,一共支付了多少元?方程:2x=20解:x表示行驶的公里数3.一份图书的原价是x元,打折后打8折,售价是35元,求原价x是多少?方程:0.8x=35解:x表示原价4.一桶水共有x升,每天使用3升,经过7天后还剩下15升,求原来桶里有多少升水?方程:x-3(7)=15解:x表示原来的水量5.一支笔的原价是x元,现在打折促销,售价是8元,打折了多少折?方程:8=0.8x解:x表示原价6.小华一次性买了x只铅笔,每只铅笔3元,共花了9元,求小华一共买了多少只铅笔?方程:3x=9解:x表示铅笔的个数7.一份试卷满分为x分,小明得了80分,他的得分率是多少?方程:80/x=y%解:x表示试卷满分,y表示得分率8.一份作业共有x页,小华每天完成3页,经过5天后还剩下10页,求原来作业有多少页?方程:x-3(5)=10解:x表示原来作业的页数9.小明每天花30分钟上网,一共上了x天,总共花了180分钟,求x的值。
方程:30x=180解:x表示上网的天数10.一根木棍的长度是x厘米,从中间折断后,两段木棍的长度之比是2:3,求原来木棍的长度。
方程:x=(2/3)(x)解:x表示原来木棍的长度答案:1.小明一共买了12个香蕉。
2.小明一共支付了40元。
3.原价x是43.75元。
4.原来桶里有36升水。
5.打折了10折。
6.小华一共买了3只铅笔。
7.小明的得分率是80%。
8.原来作业有25页。
9.x的值是6天。
10.原来木棍的长度是60厘米。
七年级一元一次方程解应用题
![七年级一元一次方程解应用题](https://img.taocdn.com/s3/m/8e1c8c8f0875f46527d3240c844769eae009a3bc.png)
七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米后,甲走的路程为8x米,乙走的路程为6(x - (12)/(8))米(因为甲先走了12米,这12米所用时间为(12)/(8)秒,所以乙走的时间比甲少(12)/(8)秒)。
- 根据甲、乙两人相距285米可列方程:8x+6(x - (12)/(8))=285- 去括号得:8x + 6x-9 = 285- 移项得:8x+6x=285 + 9- 合并同类项得:14x=294- 解得:x = 21- 所以甲出发21秒与乙相遇。
2. 一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离。
- 设甲、乙两地的距离为x千米。
- 汽车原来速度v = 60千米/小时,行驶4.5小时后的路程为60×4.5 = 270千米。
- 剩下的路程为(x - 270)千米,后来的速度为60 - 20=40千米/小时。
- 按原计划所需时间为(x)/(60)小时,实际用时为4.5+(x - 270)/(40)小时。
- 因为实际比预计晚45分钟((45)/(60)=(3)/(4)小时),可列方程:4.5+(x - 270)/(40)=(x)/(60)+(3)/(4)- 去分母(两边同时乘以120)得:120×4.5 + 3(x - 270)=2x+120×(3)/(4)- 化简得:540+3x - 810 = 2x + 90- 移项得:3x-2x=90 + 810 - 540- 解得:x = 360- 所以甲、乙两地的距离为360千米。
二、工程问题。
3. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程全章专题训练 (1) 姓名:
(一)方程、一元一次方程
1.下列选项中,是方程的是( ) A.x-1≠0 B.3x-2 C.2+3=5 D.3x=6
2.关于x 的方程(m -1)x 2+(m -2)x+4=0是一元一次方程,则m
3.下列式子:⑴3x-1;⑵x=1;⑶x=2x;⑷x+y=3;⑸2x 2
+3x+1=0;⑹x+x
1
=1.其中一元一次方程有 个。
(二)方程的解 1.如果x=-2是方程
()()x a x a x -=++22
1
13的解,求代数式56a 2-a 的值。
2.小明在做解方程作业时,不小心将方程中一个常数污染了,被污染的方程是3x -,怎么办
呢?小明想了想,便翻开看了答案,方程的解是x=-3,他很快补好了这个常数,并迅速地完成了作业,请你补出这个常数。
3.关于x 的方程4
)
2(35)3(m 10--
=+-x m x x 与方程8-2x =3x -2的解相同,求m 的值。
(三)解方程
1.下列变形的依据是等式的性质的是( )
A.由2x-1=3, 得2x=4
B.由x 2=x, 得x=1
C.由x 2=9, 得x=3
D.由2x-1=3x, 得5x=1 2.下列叙述正确的是( ) A.若ac=bc , 则a=b B .若c
b
=c a ,则a=b C .若a 2=b 2, 则a=b D.若-31x =6, 则x=-2
3.方程6
7
3422--=--
x x 去分母得 4.方程2(x ﹣15)= 3﹣5(x ﹣7)去括号得
5.解方程:
⑴2
135)2(37+-=+--x x x ⑵1231214334+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x x
(四)列一元一次方程解应用题 1. 列方程解应用题的一般思路:
实际问题审
题(理解题意、弄清已知量和未知量)找未知
数(分直接设和间接设)列方程解方程检验并作答
2. 应用题常见题型及数量关系归纳
3.大显身手:列方程解决下列问题(边左边想这个问题是哪种类型的,应该注意解决)
1.当x 等于什么值时,代数式2x 3-与
53
x 24-+互为相反数。
2.造纸厂去年12月份生产纸2050吨,比前年12月份产量的2倍还多150 吨.求这个工厂前年12月份生产纸多少吨? 3.七年级三个班共植树200棵,其中二班植树棵树比一班植树的棵树的 2倍还多5棵,三班植树的棵树比一班,二班植树的和多4棵.求三个班各植树多少棵? 4.将棱长为20cm 的正方体铁块锻造成一个长为100cm ,宽为5cm 的长方体铁块,求长方体铁块的高度。
5.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 6.有28名工人生产螺栓和螺母,每人每小时平均生产螺栓12个或螺母18个,应如何 分配生产螺栓
和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)? 7.甲仓库存粮840千克,乙仓库存粮640千克,当两仓库运出同样多后,剩下的甲仓库存粮是乙仓库存粮的3倍,两仓库各运出多少千克? 8.在一只底面边长为3厘米,高为8厘米的长方体容器中倒满水,然后将水倒入一只底面直径为8厘米的圆柱形空容器里,圆柱形容器中的水有多高? 9.一个长方形的周长长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,求长方形的长。
10.将棱长为20cm 的正方体铁块没入盛水量筒中,已知量筒底面积为12cm 2 ,问量筒中水面升高了多少cm ? 11.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
13.甲、乙两人同时从相距27千米的A、B两地相向而行,3小时后相遇,如果甲比乙每小时多走1千米,求甲、乙两人的速度。
14.一环形公路周长是24千米,甲乙两人从公路上的同一地点同一时间出发,背向而行,3小时后.他们相遇.已知甲每小时比乙慢0.5千米,求甲、乙两人速度各是多少?
15.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
17.一架飞机在两个城市之间飞行,无风时飞机每小时飞行552千米,在一次往返飞行中,顺风飞行用了5.5小时,逆风飞行6小时,求这次飞行时风的速度。
18.汽车上坡时每小时行28千米,下坡时每小时行35千米,汽车从A地到B地时,下坡路比上坡路的2倍少14千米,按原路返回时,所需要的时间比去时多12分钟,求汽车从A到B时,行驶的上坡路和下坡路各是多少千米?
19.一艘轮船从甲地开往乙地,顺水而行,每小时行28千米,到乙地后又逆水而行回到甲地,逆水比顺水多行2小时,已知水速为每小时4千米,甲乙两地相距多少千米?
20.甲乙两人相距33千米,分别以5千米/小时,6千米/小时的速度同时同向而行,甲所带的狗以7.5千米/小时的速度奔向乙,狗遇到乙后即回头奔向甲,遇到甲后又奔向乙,遇到乙后又奔向甲...直到甲乙相遇,求狗所走的路程。
21.甲从A地到B地,乙从B地到A地,两人都匀速行驶,一只两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。
求A,B两地间的距离。
22.七年级同学去参观博物馆,从学校出发以5千米/小时的速度前进,小刚因事晚从学校出发了18分钟,他急忙骑车以14千米/小时的速度追击队伍,问他在离开学校多远的地方追上了队伍?
23..在3点和4点之间的哪个时刻,钟表的时针与分针:(1)重合;(2)成平角;(3)成直角。
24.一列火车匀速行驶,经过一条300米的隧道需要20秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度.
25.运动场跑道一圈长400米,甲练习骑自行车,平均每分钟骑
350米,乙练习跑步,平均每分钟跑250米,两人从同一处同时反向出发,经过多少时间首次相遇?经过多长时间第二次相遇呢?
26.运动场跑道一圈长400米,甲练习骑自行车,平均每分钟骑350米,乙练习跑步,平均每分钟跑250米,两人从同一处同时同向出发,经过多少时间首次相遇?经过多长时间第二次相遇呢?
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。