蜗轮和蜗杆设计
蜗轮蜗杆传动计算和设计流程
蜗轮蜗杆传动计算和设计流程
蜗轮蜗杆传动的计算和设计流程一般包括以下几个步骤:
1. 确定传动比:根据传动的要求,确定所需的传动比。
传动比可以通过计算Worm轮的齿数与Worm杆的螺旋线数之比来确定。
2. 确定蜗杆的参数:在确定传动比的基础上,确定蜗杆的螺旋线的角度、蜗杆的喉圆距离等参数。
这些参数可以通过蜗杆的传动比、齿数和齿距等来计算。
3. 确定蜗轮的参数:根据蜗杆的参数和传动比,确定蜗轮的齿数和齿形。
根据蜗杆和蜗轮的参数,可以使用蜗轮的设计公式来计算蜗轮的参数。
4. 验证传动性能:根据设计的参数,利用传动计算公式,
验证蜗轮蜗杆传动的传动效率、载荷分配、齿面接触应力
等性能指标,确保传动的可靠性和合理性。
5. 进行材料选择:根据传动性能和使用要求,选择合适的
材料来制造蜗轮和蜗杆,确保传动的强度和耐磨性等要求。
6. 进行结构设计:根据蜗轮和蜗杆的参数和材料,进行结
构设计,包括蜗杆的螺纹加工、蜗轮的齿形加工等。
7. 进行制造和装配:根据结构设计,进行蜗轮和蜗杆的制造,并进行装配。
在制造和装配的过程中,要注意工艺控
制和质量检验,确保传动件的质量和精度。
8. 完成传动系统的调试和测试:在装配完成后,进行传动
系统的调试和测试,检查传动的运行情况,验证设计的正
确性和合理性。
总之,蜗轮蜗杆传动的计算和设计流程就是根据传动要求确定传动比、确定蜗杆和蜗轮的参数,验证传动性能,选择材料,进行结构设计,制造和装配,最后进行调试和测试,以确保传动系统的性能和可靠性。
蜗轮蜗杆传动设计
蜗轮蜗杆传动设计
一、设计原理:
二、设计步骤:
1.确定传动参数:包括传动比、转速比、传递功率等。
传动比决定了蜗轮齿数和蜗杆的螺纹走向,转速比决定了蜗轮和蜗杆的转速。
传递功率则决定了蜗轮和蜗杆的材料和尺寸。
2.选择合适的蜗轮和蜗杆材料:蜗轮和蜗杆一般选择高强度和耐磨损的材料,如合金钢、铸铁等。
3.计算蜗轮和蜗杆的尺寸:根据传动参数和材料性能,计算蜗轮和蜗杆的齿数、模数、齿宽等。
4.计算传动效率:传动效率是指输入输出转矩之比,根据蜗轮和蜗杆的齿数、螺距、入射角等参数计算传动效率。
5.进行设计验证和优化:通过有限元分析、实验验证等方法对蜗轮蜗杆传动进行验证和优化。
三、设计注意事项:
1.蜗轮蜗杆传动的啮合精度要求高,齿轮和螺距的误差不能超过一定范围,否则会导致传动效率下降和噪音增加。
2.蜗轮和蜗杆的材料选择要根据传递功率和工作环境来确定,要保证材料的强度和耐磨损性能。
3.蜗杆的螺纹走向要和蜗轮的齿数匹配,以保证蜗轮能够完全啮合在蜗杆上。
4.设计时要考虑传动效率和传动噪音,通过选用合适的齿轮参数和优化传动结构来提高传动效率和降低噪音。
5.在设计过程中要进行强度校核,包括弯曲强度、齿面接触应力、表面损伤强度等,以保证传动的安全可靠性。
总结:蜗轮蜗杆传动是一种常用的传动方式,设计蜗轮蜗杆传动需要确定传动参数、选择材料、计算尺寸、计算效率、验证优化等步骤,同时要注意啮合精度、材料选择、螺纹走向、传动效率和强度校核等问题。
通过合理的设计和优化,可以实现高效、可靠的蜗轮蜗杆传动。
蜗轮蜗杆设计
了解蜗杆传动的特点,它的适用场合。
了解蜗杆传动的主要参数,如模数、压力角、螺旋头数、螺旋导程角、螺旋螺旋角、螺旋分度圆等。
•熟悉蜗杆、蜗轮构造,蜗杆与蜗轮常用什么材料制造,那个易被损害。
•掌握蜗杆传动效率低的机理,蜗杆传动中箱体内的润滑油温度过高有什么危害,如何降低。
第一节概述蜗杆传动是由蜗杆和蜗轮组成的(图3-52),用于传递交错轴之间的运动和动力,通常两轴交错角为90°。
在一般蜗杆传动中,都是以蜗杆为主动件。
从外形上看,蜗杆类似螺栓,蜗轮则很象斜齿圆柱齿轮。
工作时,蜗轮轮齿沿着蜗杆的螺旋面作滑动和滚动。
为了改善轮齿的接触情况,将蜗轮沿齿宽方向做成圆弧形,使之将蜗杆部分包住。
这样蜗杆蜗轮啮合时是线接触,而不是点接触。
蜗杆传动具有以下特点:1.传动比大,且准确。
通常称蜗杆的螺旋线数为螺杆的头数,若蜗杆头数为z 1,蜗轮齿数为z2,则蜗杆传动的传动比为2=n1/n2=z2/z1ω1/ωi=(3-60)通常蜗杆头数很少(z1=1~4),蜗轮齿数很多(z2=30~80),所以蜗杆传动可获得很大的传动比而使机构比较紧凑。
单级蜗杆传动的传动比i≤100~300;传递动力时常用i=5~83。
2.传动平稳、无噪声。
因蜗杆与蜗轮齿的啮合是连续的,同时啮合的齿对较多。
03.当蜗杆的螺旋升角小于啮合面的当量摩擦角时,可以实现自锁。
=0.4~0.45。
η=0.82~0.92。
具有自锁时,η=0.75~0.82;z1=3~4时,η=0.7~0.75;z1=2时,η4.传动效率比较低。
当z1=1时,效率5.因啮合处有较大的滑动速度,会产生较严重的摩擦磨损,引起发热,使润滑情况恶化,所以蜗轮一般常用青铜等贵重金属制造。
由于普通蜗杆传动效率较低,所以一般只适用于传递功率值在50~60kW以下的场合。
一些高效率的新型蜗杆传动所传递的功率可达500kW,圆周速度可达50 m/s。
第二节蜗杆传动的主要参数和几何尺寸本节只讨论普通圆柱蜗杆传动,或称阿基米德圆柱蜗杆传动(在垂直于蜗杆轴线的剖面中,齿廓线是一条阿基米德螺旋线,故称为阿基米德螺杆)。
蜗轮蜗杆设计参数选择
圆柱蜗轮、蜗杆设计参数选择蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。
蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。
在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。
蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。
若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。
计算速比(i)的公式如下:i=蜗杆转速n1蜗轮转速n2=蜗轮齿数z2蜗杆头数z11、蜗轮蜗杆主要参数与尺寸计算主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。
(1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt 为标准模数。
对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。
标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。
表A图1图2(2)蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。
但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。
为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m 有一定的匹配。
蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。
即q=蜗杆分度圆直径模数=d1m d1=mq有关标准模数m 与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A (3) 蜗杆导程角r 当蜗杆的q 和z1选定后,在蜗杆圆柱上的导程角即被确定。
为导程角、导程和分度圆直径的关系。
tan r=导程分度圆周长 = 蜗杆头数x 轴向齿距分度圆周长 =z1px d1π =z1πm πm q =z1q相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。
(4) 中心距a 蜗轮与蜗杆两轴中心距a 与模数m 、蜗杆直径系数q 以及蜗轮齿数z2间的关系式如下:a=d1+d22 =m q(q+z2)蜗杆各部尺寸如表B蜗轮各部尺寸如表C2、 蜗轮蜗杆的画法(1) 蜗杆的规定画法 参照图1图2 (2)蜗轮的规定画法 参照图1图2 (3)蜗轮蜗杆啮合画法 参照图1图2.。
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤蜗轮蜗杆设计步骤:步骤一:确定工作参数首先需要确定蜗轮蜗杆的工作参数,例如传递功率、转速、转矩、受力方向等。
这些参数将决定蜗轮蜗杆的基本设计参数。
步骤二:选择材料在确定工作参数之后,需要根据工作条件选择适合的材料。
蜗轮一般选用高强度的材料,例如硬质合金、铸钢、铸铁等。
对于蜗杆来说,一般选用高硬度、高强度的材料,例如45钢、40Cr、35CrMo等。
步骤三:计算传动比传动比 = 蜗轮齿数 ÷蜗杆螺旋线高度。
传动比决定了蜗轮和蜗杆的相对转速和转矩大小。
步骤四:选择蜗杆模数蜗杆的模数可以根据蜗轮和蜗杆的传动比和齿数来选择,一般在0.2~2之间。
步骤五:计算齿距和齿宽齿距和齿宽需要结合蜗轮和蜗杆的模数和齿数来计算,保证蜗轮蜗杆的齿轮啮合平稳。
步骤六:计算螺距角螺距角是蜗杆的重要参数。
螺距角过大会造成摩擦力过大,螺距角过小则会导致螺杆摩擦力不足。
一般螺距角为5°至30°。
步骤七:计算轴心距和啮合角轴心距和啮合角是设计蜗轮蜗杆过程中非常重要的参数,需要根据传动比、模数、齿数等因素来计算。
步骤八:校核设计参数设计蜗轮蜗杆的参数后,需要进行校核检验,确保设计参数的合理性和可靠性。
校核包括强度校核、接触应力校核等。
步骤九:设计蜗轮蜗杆装配尺寸蜗轮蜗杆装配尺寸需要考虑啮合状态下的轴向间隙、径向间隙和公差等因素。
在设计装配尺寸时需要考虑到装配的方便性和精度要求。
步骤十:绘制蜗轮蜗杆图纸蜗轮蜗杆图纸需要按照设计参数进行详细绘制,包括蜗轮和蜗杆的各项参数和装配尺寸等。
绘制时需要考虑到制造的方便性和加工精度要求。
以上是蜗轮蜗杆的设计步骤,设计时需要注意各个参数的合理性和可靠性,同时考虑到加工和制造的实际情况。
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤第一步:确定传动比蜗轮蜗杆传动是一种非常特殊的传动方式,它的传动比取决于蜗杆的头数、蜗轮的齿数、蜗杆的导程角以及蜗轮与蜗杆轴线的交角等因素。
设计蜗轮蜗杆传动时,要根据传动要求和传动动力参数来计算传动比。
第二步:选择材料在选择蜗轮和蜗杆的材料时,考虑到它们的载荷、传动功率和工作环境温度等因素。
通常,蜗轮和蜗杆都可以采用高强度的合金钢材料。
第三步:确定齿轮参数蜗轮的齿数和模数都是通过计算得到。
注意,蜗轮的轴向厚度越小,蜗杆的导程角越小,那么蜗轮和蜗杆的接触线就会越靠近齿面根部。
在选择齿轮参数时需要进行综合考虑,以保证蜗轮蜗杆传动的良好性能。
第四步:计算蜗杆的导程和展角根据蜗杆轴线与垂直轴线的夹角以及螺旋线的参数,可以计算出蜗杆的导程和展角。
展角的计算对于蜗轮蜗杆传动来说非常重要,因为它直接影响到传动效率和噪声。
一般来说,展角越大,传动效率越高,但噪声也会增加。
第五步:计算蜗轮蜗杆的几何参数根据蜗杆的导程、蜗轮的模数和齿数,可以计算出蜗轮和蜗杆的几何参数,包括齿顶直径、节圆直径、齿根直径、齿顶高度、齿根高度和重要齿廓参数。
这些参数决定了蜗轮蜗杆传动的传动效率、运行平稳性和噪声等关键性能指标。
第六步:进行蜗轮蜗杆的装配在进行蜗轮蜗杆的装配之前,需要对蜗轮齿形进行测量,以保证齿形质量。
然后,将蜗轮和蜗杆进行配合,精确控制配合间隙大小。
还要注意蜗轮和蜗杆的对中度和平行度等装配要求,以保证传动系统的稳定性和性能。
总结:1. 传动效率的优化:传动效率是蜗轮蜗杆传动系统的重要性能指标,也是设计过程中需要优化的关键因素之一。
通常情况下,使用高质量的蜗轮和蜗杆、采用适当的润滑方式、控制装配精度、优化齿轮参数以及合理设计蜗杆展角等方法,可以大大提高传动效率。
2. 噪声的控制:蜗轮蜗杆传动在工作时容易产生噪声,主要是由于蜗轮和蜗杆的接触面积较小,表面接触压力较大,同时还会在传动过程中产生震动和共振。
为了降低噪声,可以优化设计参数、采用低噪声等级的蜗轮和蜗杆材料、选用合适的蜗杆展角、进行制造精度控制以及采用降噪材料等方式。
蜗轮蜗杆设计参数
圆柱蜗轮、蜗杆设计参数选择蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。
蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。
在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。
蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。
若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。
计算速比(i)的公式如下:i=蜗杆转速n1蜗轮转速n2=蜗轮齿数z2蜗杆头数z11、蜗轮蜗杆主要参数与尺寸计算主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。
(1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt 为标准模数。
对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。
标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。
表A图1图2(2)蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。
但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。
为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m 有一定的匹配。
蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。
即q=蜗杆分度圆直径模数=d1m d1=mq有关标准模数m 与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A (3) 蜗杆导程角r 当蜗杆的q 和z1选定后,在蜗杆圆柱上的导程角即被确定。
为导程角、导程和分度圆直径的关系。
tan r=导程分度圆周长 = 蜗杆头数x 轴向齿距分度圆周长 =z1px d1π =z1πm πm q =z1q相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。
(4) 中心距a 蜗轮与蜗杆两轴中心距a 与模数m 、蜗杆直径系数q 以及蜗轮齿数z2间的关系式如下:a=d1+d22 =m q(q+z2)蜗杆各部尺寸如表B蜗轮各部尺寸如表C2、 蜗轮蜗杆的画法(1) 蜗杆的规定画法 参照图1图2 (2)蜗轮的规定画法 参照图1图2 (3)蜗轮蜗杆啮合画法 参照图1图2.。
蜗轮蜗杆设计计算
蜗轮蜗杆设计计算
蜗轮蜗杆是一种传动机构,常用于低速大扭矩传递。
其主要构成
部分是蜗轮和蜗杆,通过两者啮合,能够将主动轴的动力传递给从动轴。
在蜗轮蜗杆的设计中,需要考虑多个因素。
首先是两者的啮合角度,这会直接影响传动比和效率。
一般来讲,啮合角应该控制在20-30度之间,以保证传递稳定。
其次是蜗轮和蜗杆的材料选择。
由于传递大扭矩的特性,蜗轮和
蜗杆应该具有足够的强度和硬度,以免在工作中产生断裂或磨损。
一
般来讲,常用的材料有20CrMnTi、45#钢、40Cr等。
另外,蜗轮的齿数和蜗杆的脚距也是设计中需要考虑的因素。
齿
数越多,传递比就越大,但同时效率也会下降。
而脚距越小,传递的
扭矩就越大,但摩擦损失也会增加。
因此,需要在设计中平衡这些因素,选取最优方案。
计算过程中,需要根据实际情况制定计算公式。
常用的公式有蜗
轮模数计算公式、蜗杆螺旋角计算公式等。
这些公式能够直接反映出
蜗轮蜗杆的传动比和效率,为设计者提供必要的信息。
总体来讲,蜗轮蜗杆设计需要综合考虑多个因素,包括啮合角度、材料选择、齿数脚距、公差等,以达到最大的效率和扭矩传递能力。
同时需要根据实际情况设计计算公式,以确保传动的准确性和可靠性。
蜗轮蜗杆设计计算
蜗杆传动的效率计算
总结词
根据蜗轮蜗杆的设计参数和工况,计算出蜗杆传动的效率。
详细描述
蜗杆传动的效率计算是评估蜗杆传动性能的重要指标之一。通过分析蜗轮蜗杆的设计参 数和工况,如蜗杆的导程角、模数、转速和载荷等参数,可以计算出蜗杆传动的效率。
蜗轮齿面接触疲劳强度的计算
总结词
根据蜗轮齿面上的载荷分布和材料属性 ,计算出蜗轮齿面的接触疲劳强度。
刚度分析
进行蜗轮蜗杆的刚度分析, 以减小传动过程中的变形 和振动。
可靠性设计
为确保自动化设备的可靠 性,对蜗轮蜗杆进行可靠 性设计和寿命预测。
THANKS
感谢观看
材料应具备较好的抗疲劳性能,以承受交 变载荷的作用;
04
材料应具有良好的工艺性能,易于加工制 造。
04
蜗轮蜗杆设计计算方法
蜗轮齿面载荷分布计算
总结词
根据蜗杆传动的实际工况,通过分析蜗轮齿面上的受力情况,计算出蜗轮齿面上的载荷分布。
详细描述
在进行蜗轮齿面载荷分布计算时,需要考虑蜗杆传动的实际工况,如传动比、转速、载荷大小和方向 等因素。通过分析蜗轮齿面上的受力情况,可以确定蜗轮齿面上的载荷分布,为后续的设计计算提供 基础。
蜗轮蜗杆设计计算
• 蜗轮蜗杆简介 • 蜗轮蜗杆设计参数 • 蜗轮蜗杆材料选择 • 蜗轮蜗杆设计计算方法 • 蜗轮蜗杆设计实例分析
01
蜗轮蜗杆简介
蜗轮蜗杆的定义
01
蜗轮蜗杆是一种常用的传动装置 ,由两个交错轴线、相互咬合的 齿轮组成,其中一个是蜗杆,另 一个是蜗轮。
02
蜗轮蜗杆具有传动比大、传动效 率高、传动平稳、噪音低等优点 ,因此在各种机械传动系统中得 到广泛应用。
VS
蜗轮蜗杆旋转台结构设计
蜗轮蜗杆旋转台结构设计的主要目的是通过蜗轮蜗杆的传动方式实现旋转运动。
这种设计通常包括以下几个关键部分:
蜗轮和蜗杆:蜗轮和蜗杆是旋转台的核心部件,通过它们的相互啮合实现旋转运动。
蜗轮通常固定在旋转台上,而蜗杆则通过电机或其他驱动装置驱动。
轴承和支撑结构:为了保证旋转台的平稳运行,需要设计合适的轴承和支撑结构来支撑蜗轮和蜗杆。
这些结构需要能够承受旋转台在工作过程中产生的力和力矩。
驱动装置:驱动装置是使蜗杆旋转的动力源,可以是电机、气缸或其他类型的驱动器。
驱动装置的选择需要根据实际应用场景和性能要求来确定。
控制系统:控制系统用于控制驱动装置的运行,从而实现对旋转台速度和方向的精确控制。
控制系统可以包括电气控制元件、传感器和反馈装置等。
在设计过程中,需要考虑到旋转台的承载能力、刚度、稳定性以及使用寿命等因素。
同时,还需要根据实际应用场景进行优化设计,以满足特定的性能要求和使用环境。
请注意,以上仅为蜗轮蜗杆旋转台结构设计的一般概述,具体的设计方案需要根据实际情况进行详细的分析和计算。
如果您有具体的设计需求或问题,建议咨询专业的机械设计师或工程师。
蜗轮蜗杆的传动设计原理
蜗轮蜗杆的传动设计原理蜗轮蜗杆传动是一种常见的机械传动方式,具有传动比大、承载能力强、传动平稳等优点,常用于工业机械设备中。
其传动原理是通过蜗轮和蜗杆之间的啮合来实现转矩和转速的传递。
蜗轮蜗杆传动由蜗轮(也称为蜗杆齿轮)和蜗杆组成,蜗轮的外形为螺旋状,蜗杆的外形为带有螺旋槽的杆状。
当蜗轮和蜗杆啮合时,通过蜗轮的旋转使蜗杆产生旋转运动,从而实现传递动力。
蜗轮和蜗杆之间的啮合形成斜面传动,有效地提高了传动的效率。
蜗轮蜗杆传动的设计原理主要包括以下几个方面:一、蜗杆的螺旋角度:蜗轮的螺旋角度对传动效率和稳定性有重要影响。
螺旋角度越小,蜗杆旋转一周所实现的传动比越大,但摩擦力和损耗也会增加。
因此,在设计中需要合理选择螺旋角度,以平衡传动比和效率。
二、蜗轮和蜗杆的材质和硬度:蜗轮通常选择高强度、耐磨损的材料制造,如合金钢。
蜗杆则通常选择高硬度、耐磨损的材料制造,如硬化钢或淬火淬硬钢。
选用合适的材质和硬度能够提高蜗轮蜗杆传动的承载能力和使用寿命。
三、蜗轮蜗杆的啮合准确度:蜗轮蜗杆的啮合准确度直接影响传动的稳定性和传动效率。
要求蜗轮蜗杆的啮合面光洁平整,啮合角度准确,否则容易产生额外的摩擦和磨损,降低传动效率,甚至导致传动失效。
四、润滑和散热:蜗轮蜗杆传动需要进行充分的润滑,以减少摩擦和磨损。
常见的润滑方式包括润滑油膜润滑、浸油润滑和油浸润滑等。
同时,蜗轮蜗杆传动还需要考虑散热问题,以保证传动过程中温度的稳定性。
五、传动比的选择:蜗轮蜗杆传动的传动比通常为大于1的数值,决定了输入和输出之间的速度和转矩的比例。
传动比的选择需要根据实际应用需求和机械设备的工作特性来确定。
六、传动效率和传动精度的考虑:蜗轮蜗杆传动的效率通常较低,为60%~90%,且传动精度也会受到蜗轮蜗杆啮合面质量的影响。
因此,在设计中需要综合考虑传动效率和传动精度的要求,以满足实际应用的需要。
综上所述,蜗轮蜗杆传动的设计原理包括蜗杆的螺旋角度、蜗轮和蜗杆的材质和硬度、啮合准确度、润滑和散热、传动比的选择,以及传动效率和传动精度的考虑等方面。
(完整word版)蜗轮蜗杆设计
蜗轮蜗杆设计摘要蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。
蜗轮蜗杆包含两个部分:蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。
由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。
蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。
蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。
在机床制造业中,普通圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升设备及无轨电车等都采用蜗杆传动。
其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。
关键词:蜗轮蜗杆目录第一章蜗杆传动的类型和特点 (88)1.1 蜗杆传动的类型 (88)1。
2 蜗杆传动的特点 (89)第二章蜗轮传动的基本参数和几何尺寸计算 (90)2。
1 蜗杆传动的基本参数 (90)2。
2 蜗杆传动的几何尺寸计算 (93)第三章蜗轮传动的失效形式、设计准则、材料和结构 (95)3。
1 蜗杆传动的失效形式和设计准则 (95)3。
2 蜗杆、蜗轮的材料和结构 (96)第四章蜗轮传动的强度计算 (98)4。
1蜗杆传动的受力分析 (98)4.2 蜗轮齿面接触疲劳强度计算 (99)4。
3 蜗轮轮齿的齿根弯曲疲劳强度计算 (100)第五章蜗轮传动的效率、润滑和热平衡计算 (101)5.1蜗杆传动的效率 (101)5.2 蜗杆传动的润滑 (101)5.3 蜗杆传动的热平衡计算 (104)结论 (106)致谢 (107)参考文献 (108)第一章 蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
如图1-1所示。
通常两轴交错角为90°,蜗杆为主动件.1.1 蜗杆传动的类型如图1—2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a),环面蜗杆传动(图b ),和锥面蜗杆传动(图c)。
蜗轮蜗杆测绘 设计计算及图纸标注
测量这些轴的本身尺寸(D ' 1,D ' 2)与形位公差,以便作为修正测量结果的参考。
常用的测量方法有:
① 用高精度游标卡尺或千分尺,测出两轴外侧
间的距
离 L',如图 8-19 所示,并按下式计算中心距:
a ' L' D '1 D '2 2
② 用内径千分尺测出两轴内侧间的距离 M ' ,
8-20 所示,并按下式计算中心距。
1. 首先对要测绘的蜗轮、蜗杆进行结构和工艺分析。 2. 画出蜗轮、蜗杆的结构草图和必须的参数表,并画出所需标注尺寸的尺寸界线及尺寸线。 3. 数出蜗杆头数 z1 和蜗轮齿数 z2。 4. 测量出蜗杆齿顶圆直径 dal、蜗轮喉径 da2 和蜗轮齿顶外圆直径 dae。 5. 在箱体上测量出中心距 a。 6. 确定蜗杆轴向模数 ma (即涡轮端面模数 mt) 7. 确定蜗杆的导程角γ(蜗轮的螺旋角β),并判定γ及β的方向。 根据计算公式 tgγ= z1ma / d1,因 d1 = da1-2ma 则
Байду номын сангаас
ma
pz
以上四种方法求出的 ma,均应按标准模数系列选取与其相近的标准模数。 如果计算结果与标准的模数不相符,那么这个蜗轮可能是变位的蜗轮,需要进一步确定变位系
数 x2。 (3)压力角 a 国家标准对普通圆柱蜗杆的压力角规定为:阿基米德蜗杆轴向压力角取标准值 aa=20°,法向
直廓蜗杆、渐开线蜗杆、锥面包络蜗杆的法向压力角取标准值αn=20。 (4)蜗杆分度圆直径 d1 为使蜗轮滚刀标准化,蜗杆直径 d1 值必须标准化,测绘时应该注意这一点。具体系列请参看有
26.500
2.500
26.990
蜗轮蜗杆的设计计算
蜗轮蜗杆的设计计算1、根据GB/10085-1988推荐采用渐开线蜗杆(ZI )。
2、根据传动功率不大,速度中等,蜗杆45钢,因为希望效率高些,耐磨性好,故蜗杆螺旋 齿面要求淬火,硬度45-55HRC ,蜗轮用铸锡磷青铜ZCuSn10P1金属铸造,为节约贵重金的有色金属。
仅齿圈用青铜制造,而轮芯用灰铸铁HT100铸造。
3、按持卖你接触疲劳强度进行设计a ≥32H 2])][(σP E z z KT (1)作用在蜗轮上的转矩2T按1Z =2 ,η=0.8 2T =9.55⨯610⨯2p /2n =9.55⨯610⨯0.7⨯0.8/62=86258mm ⋅N(2)确定载荷系数K ,取A K =1.15 βK =1 v K =1.05所以得K= A K ⨯ βK ⨯v K =1.15⨯1⨯1.05=1.21(3)确定弹性影响系数E Z =16021MPa (铸锡青铜蜗轮与钢蜗杆相配)(4)确定接触系数p Z假设ad 1=0.35 从表11-18查得p Z =2.9 (5)确定接触应力[H σ]根据材料ZCuSn10P1,蜗杆螺旋齿面硬度>45HRC ,从表11-7查得蜗轮许用应力'][H σ=268MPaN=60j 2n h L =60⨯1⨯62⨯46720=1.74⨯810寿命系数HN K =8871074.110⨯=067则 [H σ] =HN K ⨯'][H σ=0.67⨯268=179.56MPa (6)计算中心距 a ≥32])56.1799.2160(8625821.1⨯⨯⨯ =88.6 取a=100.因为i-15 故从表11-15中取模数m=5 1d =50mm 这时a d 1=10050=0.5 从图11-18,可查的接触系数'Z ρ=2.6<2.9,所以计算结果可用。
4、蜗杆蜗轮的主要参数(1)蜗杆:轴向齿距Pa=15.7得直径系数q=10 齿顶园直径a1d =60,齿根圆f1d =38,分度圆导角r=11 18 36 ,蜗杆轴向齿厚Sa=5π/2=7.85mm(2)蜗轮齿数2Z =31 变位系数2x =-0.500 验算传动比i=2Z /1Z =31/2=15.5 误差为15155.15-=3.33%,在允许范围内,所以可行。
机械设计:蜗轮蜗杆
HBS ≤ 350
HRC ≥ 45
金属型 ≤ 25 200 220
砂型 ≤ 10 110 125
一、蜗杆传动的失效形式及材料选择
主要失效形式: 胶合、点蚀、磨损。
材料
蜗轮齿圈采用青铜:减摩、耐磨性、抗胶合。
蜗杆采用碳素钢与合金钢:表面光洁、硬度高。
材料牌号选择:
高速重载蜗杆:20Cr,20CrMnTi(渗碳淬火56~62HRC) 或 40Cr 42SiMn 45 (表面淬火45~55HRC)
df =1.2mq df =1.2mq
da1=m(q+2) da1=m(q+2)
df1=m(q-2.4) df2=m(q-2.4)
pa1=pt2= px=π m
c=0.2 m
a=0.5(d1 + d2) m=0.5m(q+z2)
§12-3 蜗杆传动的失效形式、材料和结构
蜗轮蜗杆轮齿旋向相同.
设计:潘存云
为了减少加工蜗轮滚刀的数量,规定d1 只能取标准值。
若 ∑ =90°
∴ γ1=β2
t
t
β2
β1
∵ γ1+β1 =90°
蜗轮右旋
蜗杆右旋
=β1+β2
β1
γ1
d1
s=e的圆柱称为蜗杆的分度圆柱。
e
s
d2
∑
表12-1 蜗杆分度圆直径与其模数的匹配标准系列 mm
m 1 1.25 1.6 2
02
03
04
05
06
01
12-2 圆柱蜗杆传动的主要参数和几何尺寸
12-1 蜗杆传动的特点和类型
12-3 蜗杆传动的失效形式、材料和结构
蜗轮蜗杆设计步骤
蜗轮蜗杆设计步骤1. 确定设计要求在进行蜗轮蜗杆的设计之前,首先需要明确设计要求。
这包括所需传动比、承载能力、材料选择等方面的要求。
根据实际应用需求和设计要求,确定蜗轮蜗杆的参数,如模数、螺旋角、轴向模数等。
2. 进行初步设计根据设计要求和参数,进行蜗轮蜗杆的初步设计。
首先,确定蜗杆的螺旋方向和螺旋角度。
然后,根据蜗轮的齿数和蜗杆的螺旋角度,计算蜗杆的螺距和螺杆轴向模数。
根据蜗杆的参数,进行初步设计并确定材料。
3. 进行传动效率计算在设计过程中,需要进行传动效率的计算,以评估设计的合理性。
传动效率的计算涉及到齿轮传动的许多因素,如齿轮的精度、润滑状态等。
通过传动效率的计算,可以确定设计的合理性。
4. 进行强度计算蜗轮蜗杆的设计还需要进行强度计算。
强度计算主要涉及到齿面强度和齿根强度的计算。
通过强度计算,可以评估蜗轮蜗杆的承载能力,并根据计算结果进行必要的优化。
5. 进行齿面修形计算在进行蜗轮蜗杆设计时,需要进行齿面修形计算。
齿面修形计算的目的是使蜗轮蜗杆传动更加平稳。
通过齿面修形计算,可以确定修形参数,并进行修形设计。
6. 进行尺寸设计在完成初步设计和计算之后,可以进行尺寸设计。
尺寸设计包括蜗轮蜗杆的几何尺寸和齿面参数的确定。
根据设计要求和计算结果,进行尺寸设计,绘制出蜗轮蜗杆的详细图纸。
7. 进行材料选择根据设计要求和计算结果,进行材料选择。
选择合适的材料可以保证蜗轮蜗杆的强度和耐磨性。
根据蜗轮蜗杆的工作条件和要求,选择适当的材料,并进行材料的热处理,以提高其性能和寿命。
8. 进行制造工艺设计在蜗轮蜗杆的设计过程中,还需要进行制造工艺设计。
制造工艺设计包括机械加工工艺、热处理工艺等方面的设计。
根据蜗轮蜗杆的材料和尺寸设计,确定适当的制造工艺,并进行制造工艺流程的设计。
9. 进行装配和测试在蜗轮蜗杆的制造完成之后,进行装配和测试。
装配过程中需要注意蜗轮蜗杆的配合度和轴向间隙等问题。
装配完成后,进行传动测试,以评估蜗轮蜗杆的传动性能和稳定性。
蜗轮蜗杆的设计
蜗轮蜗杆的设计3.3.1 蜗杆传动的特点蜗杆传动通常用于在两个轴在空间内交叉的情况下,蜗杆传动分为蜗杆、蜗轮两部分。
在工作中,通常状况下蜗杆主动转动,蜗轮由蜗杆带动,蜗杆从动,蜗杆传动一般用在减速场合。
蜗轮传动可以驱动大的传动比,结构紧凑,空间相对较小。
在蜗杆传动的工作中,蜗轮与蜗杆的齿相啮合,蜗轮与蜗杆啮合为线接触。
因此在传动中通常较稳定,噪音较低。
蜗杆传动具有自锁性,这一特性被广泛应用于起重装置中。
3.3.2 蜗杆传动的设计(1)根据叉车的使用条件及要求,计算输出转矩设计选择蜗杆传动为闭式蜗杆传动,输出转矩T 为:np T 9550= (3-6) 带入数据可得,m N ⋅=52.482T ,通过电机驱动,已知蜗轮蜗杆传动比i =65,单向运转,具有自锁功能。
由于本次设计所传递功率不是很大,且货叉的升降速度不是过高,因此选择蜗杆传动类型为ZA 型。
(2)按蜗轮齿面接触疲劳强度设计①确定蜗杆头数及蜗轮齿数本次设计中货叉升降需要求蜗杆传动具有自锁功能,由于传动比不大,因此选用单头蜗杆,所以蜗杆头数11=Z ,又因为蜗杆传动传动比34i =,所以蜗轮齿数为3412=⨯=z i Z 。
②确定传动系数载荷系数根据下式确定:05.1=⋅⋅=C B A K K K K (3-7)式中:A K ——载荷系数,取1.0;K β——载荷分布系数,取1.0;v K ——动载荷系数,取1.05。
(3)蜗杆、蜗轮相关尺寸计算查相关资料取:蜗杆分度圆直径m m 112m q d 1==,模数 6.3mm m =,蜗杆直径系数778.17m /d q 1==,蜗轮分度圆直径m m 2.2142m z d 2==。
计算中心距mm d d a 1.163)(2121=+=,对中心距进行圆整,因此中心距取208mm 。
上文中得出蜗杆头数11=Z ,蜗轮齿数为342=Z 。
蜗杆形式为ZA 型,相应的齿形角大小为20=α°。
机械设计蜗轮蜗杆
机械设计蜗轮蜗杆蜗轮蜗杆是一种常见的传动装置,常用于机械中的减速装置。
它由蜗轮和蜗杆两部分组成,通过它们之间的啮合作用来实现传动。
蜗轮蜗杆传动具有传动比大、传动平稳、紧凑结构等优点,广泛应用于机械中。
首先介绍蜗杆的设计。
蜗杆是一种旋转的锥面,并且蜗杆的螺旋线与轴线呈一定的螺距,以便与蜗轮进行啮合。
蜗杆的设计中,需要确定螺距和蜗杆的压力角。
螺距决定了蜗杆传动时的速比,一般情况下,蜗杆的螺距越小,速比越大。
压力角则是蜗杆传动的另一个重要参数,它决定了蜗轮蜗杆传动的传动效率。
一般情况下,蜗杆的压力角应该选择在20°~30°之间。
其次是蜗轮的设计。
蜗轮是一个圆柱形的齿轮,蜗轮的齿数一般比蜗杆的螺旋线的圈数少一个。
蜗轮的设计需要确定齿数、齿轮模数和齿形等参数。
齿数决定了蜗轮的啮合角,一般情况下,蜗轮的啮合角应该在15°~25°之间。
齿轮模数则是决定蜗轮齿形的重要参数,一般情况下,模数应该选择在蜗轮齿高的0.3~0.5倍之间。
在蜗轮蜗杆传动的设计中,还需要考虑到蜗轮和蜗杆的材料选择以及传动装置的润滑和冷却等问题。
一般情况下,蜗轮和蜗杆的材料应该选择强度高、硬度大的材料,以保证传动装置的使用寿命。
传动装置的润滑和冷却则可以采用润滑油和冷却水等方式进行。
在实际的机械设计中,蜗轮蜗杆传动常常用于对转速要求较低、扭矩要求较大的场合。
例如,蜗轮蜗杆传动常用于一些矿山、冶金、化工等行业的设备中,用来实现减速装置的功能。
总的来说,蜗轮蜗杆传动是一种常用的传动装置,其优点包括传动比大、传动平稳、紧凑结构等。
在设计过程中需要考虑到蜗杆和蜗轮的参数选择、润滑和冷却等问题,以保证传动装置的性能和使用寿命。
蜗轮蜗杆传动计算和设计流程
蜗轮蜗杆传动计算和设计流程1. 引言蜗轮蜗杆传动是一种常见的传动方式,其作用是将蜗杆的旋转运动转化为蜗轮的旋转运动。
在机械设计中,蜗轮蜗杆传动常用于需要减速和扭矩放大的场合,如工程机械和输送设备等。
本文将介绍蜗轮蜗杆传动的计算和设计流程,以帮助读者理解和应用该传动方式。
2. 蜗轮蜗杆传动基本原理蜗轮蜗杆传动是由蜗轮和蜗杆两个主要部分组成的。
蜗轮是一种圆柱面上的齿轮,其齿数通常为13到50个不等。
蜗杆则是一种螺旋形的轴,其表面有一条或多条螺旋齿。
蜗杆的螺旋齿与蜗轮的齿轮齿咬合,通过蜗杆的旋转运动将扭矩传递给蜗轮。
传动比是蜗轮蜗杆传动中一个重要的参数,它定义了蜗轮每转动一周所需的蜗杆转动圈数。
传动比越大,蜗轮的转速越慢,扭矩放大效果越好。
传动比的计算依赖于蜗轮和蜗杆的几何参数,如齿数、螺距等。
3. 蜗轮蜗杆传动的计算和设计流程下面将介绍蜗轮蜗杆传动的计算和设计流程,包括几何参数的选择、传动比的计算和校核等。
3.1 选择蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数选择是蜗轮蜗杆传动设计的首要步骤。
蜗轮的齿数和蜗杆的螺旋齿数直接影响传动比的计算和传动效果。
通常情况下,蜗轮的齿数要求为13到50个,而蜗杆的螺旋齿数则较少,通常为1到4个。
3.2 计算传动比传动比的计算是蜗轮蜗杆传动设计的核心步骤。
传动比的计算公式为:传动比=蜗轮齿数/蜗杆螺旋齿数。
由于蜗杆的螺旋齿数较少,所以传动比通常较大,一般在10到100之间。
3.3 蜗轮和蜗杆的啮合校核为了保证蜗轮和蜗杆能够顺利啮合并传递扭矩,需要进行蜗轮和蜗杆的啮合校核。
啮合校核主要包括齿面接触和齿面强度的计算。
齿面接触校核考虑了蜗轮和蜗杆的啮合情况,确保齿面接触压力和接触面积处于合适的范围。
齿面强度校核则考虑了蜗轮和蜗杆的齿廓变形和强度问题,确保传动过程中不会发生过大的变形和破坏。
3.4 蜗轮蜗杆传动的轴的设计蜗轮蜗杆传动中的轴承和轴的设计也是非常重要的一步。
轴承要能够承受蜗轮蜗杆传递的扭矩和径向力,并保证传动的正常运转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有退刀槽,螺旋部分可用车制,也可用铣制加工,但该结构的刚度 较前一种差。
11.4 蜗杆传动的材料和结构
2.蜗轮的结构 为了减摩的需要,蜗轮通常要用青铜制作。为了节省铜材,当蜗轮直径较大时,采用组合式蜗
轮结构,齿圈用青铜,轮芯用铸铁或碳素钢。常用蜗轮的结构形式如下:
11.4 蜗杆传动的材料和结构 11.4.1 蜗杆传动的材料
为了减摩,通常蜗杆用钢材,蜗轮用有色金属(铜合金、铝合金)。 高速重载的蜗杆常用15Cr、20Cr渗碳淬火,或45钢、40Cr淬火。 低速中轻载的蜗杆可用45钢调质。 蜗轮常用材料有:铸造锡青铜、铸造铝青铜、灰铸铁等。
11.4 蜗杆传动的材料和结构 11.4.2 蜗杆、蜗轮的结构 1.蜗杆的结构 蜗杆螺旋部分的直径不大,所以常和轴做成一个整体。当蜗杆螺旋 部分的直径较大时,可以将轴与蜗杆分开制作。
环面蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时 啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高;
锥蜗杆传动
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高; 可节约有色金属。
11.1 蜗杆传动的类型和特点 11.1.2 蜗轮传动的特点 蜗杆传动的最大特点是结构紧凑、传动比大。 传动平稳、噪声小。 可制成具有自锁性的蜗杆。 蜗杆传动的主要缺点是效率较低。 蜗轮的造价较高。
名称 分度圆直径
齿顶高 齿根高 齿顶圆直径 齿根圆直径 蜗杆导程角
蜗轮螺旋角 径向间隙
标准中心距
符号
蜗杆
计算公式
蜗轮
d
d1 mq
d2 mz
ha
ha m
hf
hf 1.2m
d a da1(q2)m da2(Z22)m
d f df1 (q2.4)m df2(Z22.4)m
l l arctg Z1
q
b
b l
c
c0.2m
a
a 0 .5 ( d 1 d 2 ) 0 .5 m ( q z 2 )
11.3 蜗杆传动的失效形式和计算准则 11.3.1 蜗杆传动的失效形式 1.齿面见相对滑动速度v;
vs
v12v22
v1
cols
2.齿轮的失效形式; 蜗杆传动的主要问题是摩擦磨损严重,这是设计中要解决的主要问题。 蜗轮磨损、系统过热、蜗杆刚度不足是主要的失效形式。
q d1 m
当模数m一定时,q值增大则蜗杆直径d1增大,蜗杆的刚度提高。因此,对于小模数蜗杆,规定 了较大的q值,以保证蜗杆有足够的刚度。
11.2 蜗杆传动的主要参数和几何尺寸计算
5.中心距
a1 2(d1d2)1 2(qz2)m
11.2 蜗杆传动的主要参数和几何尺寸计算
11.2.2 蜗杆传动的几何尺寸计算
11.2 蜗杆传动的主要参数和几何尺寸计算
垂直于蜗轮轴线且通过蜗杆轴线的平面,称为中间平面。在中间平面内蜗杆与蜗轮的啮合就 相当于渐开线齿条与齿轮的啮合。在蜗杆传动的设计计算中,均以中间平面上的基本参数和几 何尺寸为基准 。
11.2 蜗杆传动的主要参数和几何尺寸计算
11.2.1 蜗杆传动的主要参数及其选择
Ft1
2T1 d1
Fa2
Fa1Ft 2
Ft 2
2T2 d2
Fr1Fr2
Fr2Ft2taa n
蜗杆传动受力方向判断
11.5 蜗杆传动的强度计算 11.5.2 蜗轮齿面接触疲劳强度计算 蜗轮齿面接触疲劳强度的校核公式为 :
H50d 0 K 1d2 2 2T50m 0K 2d1Z 2T 2 2 [H]
蜗轮和蜗杆设计
11.1 蜗杆传动的类型蜗杆传动 圆弧圆柱蜗杆传动
其齿面一般是在车床上用直线刀刃的 阿车基刀米切德制蜗而杆成,车渐刀开安线装蜗位杆置不同, 加工出的蜗杆齿面的齿廓形状不同。 法向直廓蜗杆 锥面包络圆柱蜗杆
其蜗杆的螺旋面是用刃边为凸圆弧形 的车刀切制而成的。
在m和d1为标准值时,z1↑→l↑
正确啮合时,蜗轮蜗杆螺旋线方向相同,且l=b
11.2 蜗杆传动的主要参数和几何尺寸计算
4.蜗杆分度圆直径d1和蜗杆直径系数q 由于蜗轮是用与蜗杆尺寸相同的蜗轮滚刀配对加工而成的,为了限制
滚刀的数目,国家标准对每一标准模数规定了一定数目的标准蜗杆分度圆 直径d1。
直径d1与模数m的比值称为蜗杆的直径系数。
1.蜗杆的头数z1、蜗轮齿数z2和传动比 i 较少的蜗杆头数(如:单头蜗杆)可以实现较大的传动比,但传动效
率较低;蜗杆头数越多,传动效率越高,但蜗杆头数过多时不易加工。通 常蜗杆头数取为1、2、4、6。
蜗轮齿数主要取决于传动比,即z2= i z1 。 z2不宜太小(如z2<26),否则将使传动平稳性变差。 z2也不宜太大,否则在模数一定时,蜗轮直径将增大,从而使相啮合的蜗杆支承间距加大,降低 蜗杆的弯曲刚度。
适用于钢制蜗杆对青铜或铸铁蜗轮 涡轮齿面接触疲劳强度的设计公式为
m2d1KT2(Z25[0H0])2
11.5 蜗杆传动的强度计算 11.5.3 蜗轮齿轮的齿根弯曲疲劳强度计算 涡轮齿根弯曲强度的校核公式为:
传动比 i
i n1 z2 d 2 n2 z1 d 1
11.2 蜗杆传动的主要参数和几何尺寸计算
2.模数m和压力角a
蜗杆与蜗轮啮合时,蜗杆的轴面模数、压力角应与蜗轮的端面模数、
压力角相等,即
ma1= mt2 = m
aa1= at2=20 0
3.导程角l
Lz1pa1z1m
tanl L z1mz1m d1 d1 d1
11.3 蜗杆传动的失效形式和计算准则 11.3.2 蜗杆传动的计算准则
对于闭式蜗轮传动,通常按齿面接触疲劳强度来设计,并校核齿根弯曲疲劳强度。
对于开式蜗轮传动,或传动时载荷变动较大,或蜗轮齿数z2大于90时,通常只须按齿根弯曲 疲劳强度进行设计。
由于蜗杆传动时摩擦严重、发热大、效率低,对闭式蜗杆传动还必须作热平衡计算,以 免发生胶合失效。
整体式蜗轮 观看涡轮照片
齿圈式蜗轮
镶铸式蜗轮
螺栓联接式蜗轮
11.5 蜗杆传动的强度计算
11.5.1 蜗杆传动的受力分析
普通蜗杆传动的承载能力 计算2
蜗杆传动的受力分析与斜齿圆柱齿轮相似,轮齿在受到法向载荷Fn的情况下,可分解出径向载荷 Fr、周向载荷Ft、轴向载荷Fa。
在不计摩擦力时,有以下关系: