大数据架构与关键技术.doc

合集下载

大数据平台架构设计与实现

大数据平台架构设计与实现

大数据平台架构设计与实现随着数据量的爆炸式增长,大数据平台逐渐成为众多企业必不可少的一项重要技术,它能够帮助企业在海量数据中挖掘出更加精准、有用的信息。

然而,一个高效、可靠的大数据平台不仅仅需要拥有大量的数据存储和计算能力,还需要有合理的架构设计和实现方案。

本篇文章着重介绍大数据平台架构设计和实现方案的相关内容。

一、大数据平台的定义在大数据平台的定义中,大数据可以是拥有超过传统数据库管理系统能够存储和处理的能力的数据集合。

可以是结构化数据、半结构化数据或非结构化数据,而大数据平台就是建立在这些大数据之上的数据处理、存储、管理及分析工具的集合。

二、大数据平台的架构设计大数据平台的架构设计是让数据从采集到存储、处理再到分析等各个环节实现自动化流程的过程。

大数据平台的架构设计分为以下三个方面的基础组成:1、数据采集层数据采集层是大数据平台架构的第一步,它负责从各种设备、软件、传感器和各种现场活动中收集数据。

数据采集层应该尽可能地把数据从源头采集,建立在数据生产源的数据采集系统最优。

2、数据存储层数据存储层是大数据平台架构的第二步,它是数据存放的区域。

在数据存储层,数据会被存储在一种或者多种的存储介质中,比如Hadoop的HDFS、Apache的Cassandra、NoSQL、RDBMS等。

对于典型的企业级大数据平台,基于云的数据存储成为了最主流的架构选择。

3、数据处理层数据处理层是大数据平台架构的第三步,它的作用是以批处理、流处理、机器学习等一系列技术手段对数据进行处理和分析。

典型的大数据处理方案,需要基于Hadoop的MapReduce算法和Spark流处理框架。

三、大数据平台的实现方案1、采用异构系统集成采用异构系统集成可以使得数据能在不同的系统和数据源之间进行无缝衔接、便于网络对数据进行管理、分析和智能输出。

比如熟悉的Hadoop、代表Apache的Storm,以及管理方式各异的NoSQL数据库。

大数据关键技术有哪些

大数据关键技术有哪些

引言:随着信息技术的快速发展,大数据已经成为了当前社会经济发展的重要驱动力。

而在大数据的背后,有许多关键技术支撑着它的发展。

本文将详细阐述大数据的关键技术,并分析其在实际应用中的重要性。

概述:大数据是指数据量规模巨大,类型繁多,处理速度快的数据集合。

在处理大数据时,关键技术起着至关重要的作用。

这些关键技术包括存储技术、计算技术、分析技术、挖掘技术和隐私保护技术。

下面将逐一进行详细阐述。

正文:一、存储技术1. 分布式文件系统:分布式文件系统通过将大数据分布在多个物理节点上,实现数据的存储和管理。

典型的分布式文件系统包括Hadoop Distributed File System(HDFS)和Google File System (GFS)。

2. 分布式数据库:分布式数据库是指将数据分布在多个节点上进行存储和管理的数据库系统。

典型的分布式数据库包括Apache Cassandra和MongoDB等。

3. 列式存储:列式存储是一种将数据按照列进行存储的方式,相比于传统的行式存储,它能够提供更高的查询性能。

HBase和Cassandra等数据库采用了列式存储的方式。

二、计算技术1. 分布式计算:分布式计算是指将计算任务分布在多个计算节点上进行并行计算的技术。

Apache Spark和MapReduce是常用的分布式计算框架。

2. 并行计算:并行计算是指将一个大任务划分成多个子任务,并且这些子任务可以并行地进行计算。

典型的并行计算模型有共享内存模型和消息传递模型。

3. 可扩展性:可扩展性是指系统在面对大规模数据时,能够保持高性能和低延迟的能力。

具备良好可扩展性的系统能够自动根据工作负载的增加或减少来调整资源的分配。

三、分析技术1. 数据预处理:大数据分析的第一步是进行数据预处理,包括数据清洗、数据集成和数据转换等过程,以确保数据的质量和准确性。

2. 数据挖掘:数据挖掘是指从大数据中发现潜在模式、关联规则和异常值等有价值的信息。

大数据技术优势及架构设计

大数据技术优势及架构设计

大数据技术优势及架构设计随着互联网技术不断发展,大数据技术的应用也越来越广泛。

大数据技术以其高效的数据处理和分析能力,成为信息化时代的重要组成部分和竞争力源泉。

本文将围绕大数据技术的优势和架构设计展开讨论。

一、大数据技术优势1、高效的数据处理能力大数据技术具有高效的数据处理能力,不管数据量多大,都能够快速地进行处理。

这是因为大数据技术采用的是分布式计算模型,拥有多个计算节点,每个节点都能够同时处理不同的数据,运算速度非常快。

2、强大的数据分析能力大数据技术能够通过数据的分析和挖掘,深度挖掘数据潜在的信息和规律。

例如,数据科学家可以通过大数据分析来查找垃圾邮件,预测客户流失率,或者找出诸如天气趋势等其他相关预测和分析。

3、智能的决策支持大数据技术的分析能力能够在较短时间内获取到大量的信息,并根据这些信息进行智能的决策。

例如,企业可以通过分析客户数据,来合理安排各项运营的计划和策略,从而提升企业的运营效率。

4、优化的资源利用大数据技术使用的是分布式计算模型,能够充分利用计算机集群的资源,比如,CPU、内存和存储等资源。

通过分析任务的特点和数据量的大小,灵活地分配资源,从而达到最优的资源利用效果。

二、大数据架构设计大数据技术的优势得益于其架构设计。

下面将重点讨论大数据架构设计中的几个要素。

1、数据采集数据采集是大数据技术的基础,也是大数据分析的前提。

在大数据采集阶段,需充分考虑数据来源、类型、量和处理方式等,采集的数据需要高质量、高效率和高可靠性。

2、数据存储数据存储是大数据技术的核心要素之一,通常采用分布式存储方案。

数据存储管理系统需具备高可靠性、可扩展性和安全性等特点。

同时,在存储方案的选择上,需根据企业需求、具体应用场景和数据类型等进行权衡和选择。

3、数据处理数据处理是大数据架构的核心技术之一,采用了分布式计算模型。

数据处理阶段主要涉及到数据分析、数据挖掘和数据预测等方面。

为了提高数据处理效率和准确性,需根据具体的处理需求,选择合适的算法和模型,以及合适的计算框架。

大数据分析的关键技术

大数据分析的关键技术

大数据分析的关键技术随着信息技术的飞速发展和互联网的普及应用,大数据在各个领域的应用也越来越广泛。

传统的数据分析方法在处理大规模、高维度的数据时已经显得力不从心,而大数据分析技术就应运而生。

大数据分析的关键技术是为了有效地从海量数据中提取有用的信息和知识,以便支持决策和创新。

本文将介绍几种关键的大数据分析技术。

一、数据挖掘技术数据挖掘技术是大数据分析中的核心技术之一。

它通过应用统计学、机器学习和模式识别等方法,从大规模数据集中发现隐藏的模式和知识。

数据挖掘技术可以从结构化和非结构化的数据中提取出有用的信息和知识,包括关联规则、分类、聚类、预测等。

在数据挖掘技术中,关联规则的挖掘是一种重要的技术。

它可以帮助我们发现数据集中的频繁项集和它们之间的关联规则。

例如,在电商网站中,我们可以通过挖掘购买记录数据集,找到一些频繁购买的商品组合,从而为推荐系统提供参考。

二、机器学习技术机器学习技术是大数据分析中的另一个关键技术。

它通过构建和训练模型,从大规模数据中学习知识和经验,然后利用这些知识和经验对新数据进行预测和分类。

机器学习技术可以分为监督学习和无监督学习两种。

在监督学习中,我们需要提供已知的输入和输出样本来训练模型。

通过训练,模型可以学习到输入和输出之间的映射关系,从而可以对新的输入数据进行预测。

在大数据分析中,监督学习技术可以用来进行分类、回归等任务。

而无监督学习则是从无标签的数据中学习出数据的内在结构和分布。

通过聚类和降维等方法,无监督学习可以帮助我们发现数据中的隐含模式和关系。

这些隐含模式和关系可以提供我们对大数据的理解和洞察。

三、自然语言处理技术自然语言处理技术是一种关键的大数据分析技术。

随着社交媒体、论坛、新闻等各种文本数据的快速增长,如何从这些海量的文本数据中提取有用的信息和知识成为了一个关键问题。

自然语言处理技术可以帮助我们理解和分析文本数据。

在自然语言处理技术中,文本分类和情感分析是两个常用的技术。

大数据发展概述及关键技术

大数据发展概述及关键技术

随着信息技术和人类生产生活交汇融合,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会管理、国家管理、人民生活都产生了重大影响。

近年来,我国政府、企业、科研机构都投入了大量的精力开展大数据相关的研究工作,大数据在政策、技术、产业、应用等方面均获得了长足发展。

大数据是信息化发展的新阶段。

随着信息技术和人类生产生活交汇融合,互联网快速普及,全球数据呈现爆发增长、海量集聚的特点,对经济发展、社会管理、国家管理、人民生活都产生了重大影响。

近年来大数据在政策、技术、产业、应用等多个层面都取得了显著发展。

在政策层面,大数据的重要性进一步得到巩固。

党的十九大提出“推动互联网、大数据、人工智能和实体经济深度融合”,深刻分析了我国大数据发展的现状和趋势,对我国实施国家大数据战略提出了更高的要求。

在技术层面,以分析类技术、事务处理技术和流通类技术为代表的大数据技术得到了快速的发展。

以开源为主导、多种技术和架构并存的大数据技术架构体系已经初步形成。

大数据技术的计算性能进一步提升,处理时延不断降低,硬件能力得到充分挖掘,与各种数据库的融合能力继续增强。

在产业层面,我国大数据产业继续保持高速发展。

权威咨询机构 Wikibon 的预测表示,大数据在 2022 年将深入渗透到各行各业。

在应用层面,大数据在各行业的融合应用继续深化。

大数据企业正在尝到与实体经济融合发展带来的“甜头”。

利用大数据可以对实体经济行业进行市场需求分析、生产流程优化、供应链与物流管理、能源管理、提供智能客户服务等,这非但大大拓展了大数据企业的目标市场,更成为众多大数据企业技术进步的重要推动力。

随着融合深度的增强和市场潜力不断被挖掘,融合发展给大数据企业带来的益处和价值正在日益显现。

在利用大数据提升政府管理能力方面,我国在 2022 年出台了《政务信息系统整合共享实施方案》、《政务信息资源目录编制指南(试行)》等多项政策文件推进政府数据汇聚、共享、开放,取得了诸多发展。

大数据的关键技术及其应用场景

大数据的关键技术及其应用场景

大数据的关键技术及其应用场景大数据是当今信息时代的重要产物,它以庞大的数据量、多样的数据类型和高速的数据处理能力为特征,对各个领域的发展起到了重要的推动作用。

而大数据的关键技术则是支撑大数据应用的基础,下面将介绍几个关键技术及其应用场景。

一、数据采集与存储技术数据采集是大数据应用的第一步,而数据存储则是保障数据的可靠性和高效性的重要环节。

在数据采集方面,传感器技术的发展使得各种设备和系统能够实时采集和传输各类数据,如温度、湿度、压力等。

而在数据存储方面,分布式文件系统和分布式数据库技术的应用,能够将海量的数据存储在多个节点上,提高数据的可靠性和访问效率。

二、数据清洗与预处理技术由于大数据的来源多样且数据质量参差不齐,因此需要对数据进行清洗和预处理,以提高数据的准确性和可用性。

数据清洗技术主要包括去重、填充缺失值、异常值处理等操作,而数据预处理技术则包括数据标准化、特征选择、降维等操作。

这些技术的应用场景包括金融风控、医疗诊断、智能交通等领域。

三、数据挖掘与分析技术数据挖掘是从大数据中发现隐含模式、规律和知识的过程,而数据分析则是对数据进行统计和推理,为决策提供支持。

数据挖掘技术包括关联规则挖掘、分类与预测、聚类分析等方法,而数据分析技术包括统计分析、机器学习、人工智能等方法。

这些技术的应用场景包括市场营销、舆情分析、智能推荐等领域。

四、数据可视化与交互技术大数据的特点是数据量庞大且多样,如何将数据转化为可视化的图表和图像,以方便用户理解和分析,是数据可视化技术的核心任务。

数据可视化技术主要包括图表绘制、地理信息展示、虚拟现实等方法。

此外,交互技术也是数据应用中的重要环节,通过人机交互的方式,使用户能够方便地查询、分析和操作数据。

这些技术的应用场景包括数据报表展示、智慧城市、虚拟现实游戏等领域。

五、数据安全与隐私保护技术随着大数据的广泛应用,数据安全和隐私保护问题也日益突出。

数据安全技术主要包括数据加密、访问控制、防火墙等方法,而隐私保护技术则包括数据匿名化、脱敏处理、隐私保护算法等方法。

大数据平台的架构设计与部署

大数据平台的架构设计与部署

大数据平台的架构设计与部署随着互联网和移动互联网的普及,大数据时代已经来临。

大数据平台成为企业和政府机构日常工作中不可或缺的一部分,它可以帮助企业和机构提高工作效率、优化流程、降低成本和风险等。

然而,要实现一个高效稳定的大数据平台,需要经过严密的架构设计和精心的部署。

一、大数据平台架构设计大数据平台的架构设计主要包括硬件架构、软件架构和网络架构。

其中,硬件架构包括服务器和存储设备的选择;软件架构涉及到大数据处理框架的选择和配置;网络架构包括网络拓扑和传输协议的选择。

下面分别介绍一下这些内容。

1、硬件架构:在选择服务器和存储设备时,需要考虑数据量大小、数据处理速度、数据安全和稳定性等因素。

通常情况下,服务器可以选择高主频、高核数的CPU和大内存、高速度的硬盘;存储设备可选择高速度、高稳定性的硬盘和SSD。

此外,为了提高系统的可靠性和扩展性,可以采用分布式存储方案,将数据分散存储在多个存储设备中。

2、软件架构:在软件架构的选择上,需要根据数据处理需求选择适合的大数据处理框架。

例如,实时流数据处理可以采用Apache Storm;批处理数据可以使用Apache Hadoop。

此外,为了提高数据处理速度,可以采用Spark、Impala和Hive等内存计算框架。

3、网络架构:在网络架构的设计上,需要考虑网络拓扑的选择和传输协议的配置。

可以采用星型、环形、总线型、树型和混合型等多种拓扑方式。

在传输协议的选择上,可以选择TCP/IP、HTTP、REST、SOAP等协议,还可以采用专用的数据传输协议,例如HDFS、MapReduce、YARN和HBase等。

二、大数据平台部署在设计完大数据平台的架构之后,需要进行部署。

大数据平台的部署分为服务器物理部署和软件部署两个阶段。

下面对这两个阶段进行详细介绍。

1、服务器物理部署:服务器物理部署包括服务器机箱的安装、电源线和网络线的连接、服务器机箱的风扇、电源和硬盘等部件的安装等。

大数据时代下软件工程关键技术分析

大数据时代下软件工程关键技术分析

大数据时代下软件工程关键技术分析1. 引言1.1 背景介绍在当今数字化信息爆炸的时代,大数据已经成为驱动各行各业发展的重要力量。

随着互联网、物联网、社交媒体等技术的迅猛发展,海量数据不断涌现,给传统的软件工程带来了巨大挑战和机遇。

大数据时代下的软件工程已经成为一个备受关注的研究领域。

随着越来越多的数据被生成和存储,传统的软件开发模式已经无法满足对大规模数据处理的需求,因此需要寻找新的技术手段来应对这一挑战。

大数据时代也为软件工程带来了许多新的机遇,如数据驱动的软件开发、自动化测试、智能化分析等。

对大数据时代下软件工程的关键技术进行分析和研究,对于推动软件工程的发展具有重要意义。

【字数不足,继续补充】1.2 研究意义在大数据时代,软件工程的关键技术分析具有重要的研究意义。

随着互联网、云计算和物联网的快速发展,大数据已经成为当今信息社会的重要组成部分,其规模和复杂性远远超过传统的数据处理方式。

研究大数据时代下软件工程的关键技术,有助于提高软件系统的可靠性、安全性和效率,满足大规模数据处理的需求。

大数据时代下软件工程的挑战和问题日益凸显,例如数据量巨大、多样化和实时性要求高等特点,传统的软件开发方法往往已无法满足需求。

通过分析和研究关键技术,可以为软件工程师提供有效的解决方案,帮助他们应对日益复杂和多变的大数据环境。

了解大数据技术的发展趋势和应用场景,对于促进软件工程的创新和发展具有重要意义。

通过深入研究大数据时代下的软件工程技术,可以为软件开发行业注入新的活力和动力,推动行业的持续改进和进步。

研究大数据时代下软件工程的关键技术分析,对于促进软件工程领域的发展具有重要意义。

1.3 研究目的在大数据时代,软件工程领域面临着前所未有的挑战和机遇。

本文旨在深入探讨大数据时代下软件工程的关键技术,分析数据采集和清洗技术、数据存储和管理技术以及数据分析和挖掘技术等方面的发展现状和趋势,以期为研究人员和从业者提供明晰的方向和引导,促进软件工程领域的持续发展和创新。

阐述大数据的关键技术

阐述大数据的关键技术

阐述大数据的关键技术大数据是指在传统数据处理软件难以处理的庞大的、复杂的数据集。

这种数据可以是结构化的,比如数据库里的表格,也可以是非结构化的,比如社交媒体上的文字或图片。

大数据通常涉及数据挖掘、存储、处理、分析等方面的技术。

下面将详细介绍几个关键的大数据技术:1.分布式存储与计算:大数据的第一个关键技术是分布式存储与计算。

由于大数据的规模极大,传统的存储和计算方法无法满足需求。

因此,分布式存储与计算技术被引入。

这种技术利用多台计算机协同工作,每台计算机处理一部分数据,大大提高了数据处理速度。

例如,Hadoop和Spark 等框架就是这种技术的典型代表。

2.数据挖掘与机器学习:大数据的另一个关键技术是数据挖掘和机器学习。

在大数据时代,我们需要从海量数据中提取有价值的信息,这就需要使用数据挖掘和机器学习的方法。

这些方法可以自动地发现数据中的模式和规律,从而为决策提供支持。

例如,深度学习、神经网络等技术就是常用的机器学习方法。

3.数据库技术:虽然传统的关系型数据库在处理大数据时面临挑战,但是一些新型的数据库技术,如NoSQL数据库,能够更好地处理大数据。

NoSQL数据库可以处理海量的数据,并且不需要严格的结构化查询语言,因此更加灵活。

例如,MongoDB、Cassandra等就是常见的NoSQL数据库。

4.数据处理与分析:大数据的处理和分析是一个复杂的过程,涉及到数据的清洗、转换、聚合等多个步骤。

这些步骤需要使用一些专门的技术和工具,比如数据管道、数据处理算法等。

通过这些技术和工具,我们可以将原始的数据转化为有价值的信息。

5.可视化技术:可视化是展示大数据的一种重要手段。

通过图形、图表等方式,我们可以将复杂的数据以易于理解的形式呈现出来。

这可以帮助我们更好地理解和分析数据。

例如,Tableau、PowerBI等工具就是常用的数据可视化工具。

6.隐私保护与安全:随着大数据的使用越来越广泛,隐私保护和安全问题也变得越来越重要。

大数据技术:加强关键核心技术攻关

大数据技术:加强关键核心技术攻关

大数据技术:加强关键核心技术攻关随着信息技术的快速发展和智能化水平的不断提高,大数据技术在现代社会中正扮演着越来越重要的角色。

大数据技术的发展不仅仅是硬件和软件的升级,更是一次重大的技术革命,是对传统技术的颠覆。

在大数据技术的发展过程中,加强关键核心技术攻关显得尤为重要。

一、关键技术的定义什么是关键技术?关键技术是指在特定领域内,对于实施特定任务或达到特定目标必不可少的技术或工具。

在大数据技术发展中,关键技术一直是维持技术领先地位的重要保障。

这些技术主要包括数据采集、存储、分析、挖掘以及应用等方面的技术。

二、大数据技术的现状目前,大数据技术已经逐渐走出实验室,进入商业应用领域。

虽然在大数据技术的发展过程中取得了举世瞩目的成果,但是,这个领域也面临着一些严重问题,例如数据安全问题、数据分析方法的局限性、网络数据共享以及存储等方面的问题。

这些问题的存在导致大数据技术的发展还需要更多关键核心技术的支持。

三、关键核心技术的研究方向1. 数据采集技术数据采集是大数据技术中的关键环节之一。

如何通过有效的方式采集数据,成为高性能大数据平台的重要保障。

目前,传感器技术、移动设备技术、人工智能等都在为大数据采集提供了更多的可能性。

未来,大数据采集技术需要结合更多现有技术以及新兴技术,实现数据的快速采集、处理和交换。

2. 数据存储与管理技术随着数据产生速度的日益增长,数据管理和存储技术显得更加重要。

数据存储的主流技术已经从传统的关系数据库转向了更加高效的分布式存储技术。

大数据存储中的关键问题包括数据备份、数据恢复、数据的实时查询以及分析等方面。

在未来,大数据存储技术需要结合更加高效的数据索引技术、分布式存储技术、数据安全技术等发展,实现数据的更加高效的存储与管理。

3. 数据分析与挖掘技术数据分析与挖掘是大数据技术发展的最重要方向之一。

目前数据分析技术已经可以实现数据的预测、分类、聚类等多种分析操作。

但在大数据领域,传统的数据分析技术已经不能满足需求。

云计算和大数据的架构和技术

云计算和大数据的架构和技术

云计算和大数据的架构和技术随着科技的飞速发展和互联网的普及,数据已经成为了当今社会最宝贵的资源之一。

然而,如何处理、存储和分析这些海量数据已经成为了很多企业所面临的一大难题。

云计算和大数据技术的出现,为这一难题提供了新的解决办法。

本文将就云计算和大数据的架构和技术进行探讨。

一、云计算的基本概念云计算是指通过互联网将计算能力和存储能力等计算资源提供给用户的一种方式。

云计算的本质是将计算机技术、网络技术和服务技术融合在一起,实现“随需使用、按需付费”的服务模式。

用户只需在云计算平台上选择所需的服务,就可以轻松获得所需的计算资源,而不必担心硬件设备、软件安装和维护等问题。

二、云计算的组成云计算主要由三个部分组成:云计算基础设施、云计算平台和云计算应用。

其中,云计算基础设施包括硬件、网络设备和存储设备等;云计算平台包括操作系统、虚拟化、容器化、编程语言等技术;云计算应用包括各种基于云计算的应用程序。

三、大数据的基本概念大数据指的是数据量巨大、类型多样、处理速度快、价值密度高的数据。

大数据是通过分布在不同地点的大量计算机产生的,例如互联网、物联网、社交媒体等。

大数据的主要特点包括三个方面:高速度、高容量和高复杂度。

四、大数据的处理方式大数据的处理可以分为三个阶段:数据采集、数据存储和数据分析。

其中,数据采集是指从不同来源获取数据的过程,数据存储是指将采集到的数据进行存储,数据分析是指对存储的数据进行分析和挖掘。

在大数据的存储方面,传统的关系型数据库已经无法满足大数据的存储需求,因此,新型的存储技术也应运而生。

例如,Hadoop分布式文件系统,是一种基于分布式架构的大数据文件系统,可以扩展到数千台服务器上,实现PB级别的数据存储。

在大数据的处理方面,主要涉及到数据的分析和挖掘等技术。

例如,Spark是一种基于内存计算的分布式计算框架,可以快速处理大规模数据集。

此外,深度学习等人工智能技术也成为了大数据处理的重要手段。

云计算与大数据的关键技术及应用

云计算与大数据的关键技术及应用

云计算与大数据的关键技术及应用云计算被认为是继个人电脑、互联网之后电子信息技术领域又一次重大变革,其通过虚拟化有效地聚合各类资源,通过网络化按需供给资源,通过专业化提供丰富的应用服务,这种新型的计算资源组织、分配和使用模式,有利于合理配置计算资源并提高利用率、降低成本、促进节能减排,实现绿色计算;云计算发展的技术基础主要包括互联网、网络计算、虚拟化技术、服务计算,以及按需付费机制;其目的是为用户提供基于虚拟化技术的按需服务,提供形式主要分为基础设施即服务IaaS,平台即服务PaaS和软件即服务SaaS;依据底层基础设施提供者与使用者的所属关系,云计算平台可以分为公共云、私有云和混合云;对于大数据还没有一个正式的定义,目前最为普遍的定义就是“用传统方法或工具不能处理或分析的数据”;大数据具有大量、速度快和多样性三大特征,这些特征是传统数据处理方法和工具所无法胜任的;云计算关键技术主要包括四个方面:1.云平台服务优化管理技术;服务优化管理是提高云平台服务质量和平台性能的关键问题;其关键技术包括:云服务资源管理,研究物理机、虚拟机与虚拟集群的按需管理和分区隔离机制;云任务管理,研究云计算任务的分类、高效调度、负载平衡、功耗管理与容错等;云数据管理,研究大规模结构化、非结构化和多媒体数据的建模、组织、存储、操纵、检索、备份和保护以及数据服务技术;应用行为分析与系统测评,研究云计算负载刻画、云任务运行监控与云系统评测的度量方法和基准程序集合;云安全及隐私保护,研究支持不同用户的功能、性能和故障隔离,支持用户身份和用户数据的隐私保护,提供政府监督管接口等;2.云计算应用构建与集成技术;云计算应用构建与集成技术是为行为用户提供服务的关键;关键技术包括应用服务化、应用虚拟化、应用服务集成技术;3.云计算应用系统持续运行技术;为了支持企业的关键业务,云计算平台应用系统的持续运行是基本需求,因此需要研究云计算应用系统的持续运行技术,主要研究:云计算平台物理资源和虚拟化资源的动态监控技术、云计算平台服务监控技术、云计算应用和用户活动的监控技术;基于监控的故障评测、异常处理、容错及恢复机制,软件服务无缝迁移技术等;计算系统持续运行技术,研究云计算平台中虚拟机的出错迁移机制、虚拟化集群的容错机制、虚拟机安全机制等;4.云计算多模式客户端技术;网络时代的计算以数据、用户和服务为3大中心,云端共存、云端互动是未来计算架构发展趋势;云客户端既包括传统的PC机、笔记本,也包括手机、PDA、汽车移动终端和家电终端等智能移动设备;主要研究多种形态的云客户端接入技术、多模式客户端服务环境;面向云计算典型行业应用需求,需要研制多种形态,支持三网融合的轻量级云客户端接入技术,为用户提供简单易用的云计算服务;面向典型行业应用众多用户的个性化需求,研究多模式的客户端自适应云服务软件环境;大数据并非一项技术,其前身是商务智能BI;大数据是一系列信息技术的集合,包括数据采集、数据管理、计算处理、数据分析和数据展现5个关键技术环节;其中,数据管理、计算处理和数据分析3个环节的变革较大;数据采集主要是从本地数据库、互联网、物联网等数据源导入数据,包括数据的提取、转换和加载;由于数据源不一样,数据采集的技术体系也不尽相同;其面临的挑战主要来自两方面,一是如何自动实现对接收的海量数据按照特定策略进行过滤,从而大幅度降低后续存储和处理的压力;二是如何自动生成元数据,准确描述数据出处,获得途径和环境等背景信息,并且将企业内部的数据与互联网的元数据相关联,进行多维元数据分析;不同行业对于元数据的录制要求不尽相同;大数据对存储管理技术的挑战主要在于扩展性;首先是容量上的扩展,要求底层存储架构和文件系统以低沉本的方式及时按需扩展存储空间;传统的NAS、SAN 等存储架构下,存储和计算分离,进行数据计算时I/O容易成为瓶颈,文件系统也存在吞吐量和可扩展性差的问题;新的以谷歌GFS和Hadoop HDFS为代表的系统中,普遍采用了分布式的存储架构,使得计算和存储节点合一,消除了I/O瓶颈,文件系统也采用分布式并行设计;但GFS/HDFS主要针对大文件的追加Append写入和读取进行了优化;下一步的重点是突破GFS/HDFS在写操作、小文件存取等方面的性能瓶颈,设计新的文件系统;其次是数据格式可扩展,满足各种非结构化数据的管理需求;对大数据进行分析处理要消耗大量的计算资源,这对计算的速度和成本都提出了更高要求;采用并行计算是应对大计算量的普遍做法;但传统的并行计算系统,一般由专用的性能强大的硬件构成,造价昂贵,若想提高系统性能,需要采取纵向扩展Scale Up的方式,即通过提升单机CPU性能、增加内存、扩展磁盘等达到性能提升;这种扩展容易达到瓶颈,难以支撑持续的计算能力扩展,而且成本很高;总结起来,下一步大数据计算技术的主要方向将集中在研发实时性高的大规模并行处理技术上,以支撑超大规模机器学习、超大规模流量计算等实时分析需求;当前大数据分析技术面临的挑战,一方面是要对结构化和半结构化数据开展深度分析,另一方面是要开发非结构化数据的宝藏,从而将海量复杂多源的数据转化为有用的知识;数据展现主要是如何以更直观和互动的方式展示分析结果,便于人们理解;大数据的分析系统必须提供数据来源、分析过程、查询机制等一系列信息,并以可视化的方式呈现出来;目前,可视化技术多与Web技术相结合,以图形或图像的格式呈现,比如SVG一系列的绘图技术和最新的 HTML5 的画布<canvas>等;未来三维动态呈现是趋势;大数据与云计算相结合所释放出的巨大能力,几乎将波及到所有的行业,而信息、互联网和通信产业将首当其冲;特别是通信业,在传统话音业务低值化、增值业务互联网化的趋势中,大数据与云计算有望成为其加速转型的动力和途径,将在五大领域带来新的机会;1.提高网络服务质量;随着互联网和移动互联网的发展,运营商的网络将会更加繁忙,用于监测网络状态的信令数据也会快速增长;通过大数据的海量分布式存储技术,可以更好地满足存储需求;通过智能分析技术,能够提高网络维护的实时性,预测网络流量峰值,预警异常流量,有效防止网络堵塞和宕机,为网络改造、优化提供参考,从而提高网络服务质量,提升用户体验;2.更加精准的客户洞察客户洞察是指在企业或部门层面对客户数据的全面掌握并在市场营销、客户联系等环节的有效应用;通过使用大数据分析、数据挖掘等工具和方法,电信运营商能够整合来自市场部门、销售部门、服务部门的数据,从各种不同的角度全面了解自己的客户,对客户形象进行精准刻画,以寻找目标客户,制定有针对性的营销计划、产品组合或商业决策,提升客户价值;判断客户对企业产品、服务的感知,有针对性的进行改进和完善;通过情感分析、语义分析等技术,可以针对客户的喜好、情绪,进行个性化的业务推荐;3.提升行业信息化服务水平智慧城市的发展以及教育、医疗、交通、环境保护等关系到国计民生的行业,都具有极大的信息化需求;目前,电信运营商针对智慧城市及行业信息化服务虽然能够提供一揽子解决方案,但主要还是提供终端和通信管道,行业应用软件和系统集成尚需要整合外部的应用软件提供商,对于用户的价值主要体现在网络化、自动化等较低水平;而随着社会、经济的发展,用户及用户的用户对于智能化的要求将逐步强烈,因此运营商如能把大数据技术整合到行业信息化方案中,帮助用户通过数据采集、存储和分析更好地进行决策,将能极大提升论文集宽带中国战略与创新学术研讨会信息化服务的价值;4.基于云的数据分析服务大数据和云计算相结合,使得数据分析也可以作为一种服务进行提供;电信运营商目前的云计算服务,主要还是以提供数据中心等资源为主;下一步,电信运营商可以在数据中心的基础上,搭建大数据分析平台,通过自己采集、第三方提供等方式汇聚数据,并对数据进行分析,为相关企业提供分析报告;5.保障数据安全大数据也有大风险,其中之一就是用户隐私泄露及数据安全风险;由于大量的数据产生、存储和分析,数据保密和隐私问题将在未来几年内成为一个更大的问题,企业必须尽快开始研究新的数据保护措施;而电信运营商在网络安全、数据中心安全等方面具有优势,如能以此为基础,建立整个大数据领域的安全保障优势,必将从大数据的发展中获益匪浅;云计算大数据时代的到来使得全社会日益成为一个整体,在这一体系中个人隐私的保护已经成为社会信用体系建设的重要基础;我们在鼓励创新和进步的同时必须清醒地看到,无论美国还是任何国家对云计算大数据的使用和公开都是有选择、有目的的,不是无原则地开放,这不仅是受到法律和规则的限制,也与一个国家的整体发展规划和全球战略密切相关;我们在保护个人隐私方面所做的努力不仅是对每个社会成员的保护,更是对国家安全和社会长期持续健康发展的保护;。

大大数据的架构与关键技术

大大数据的架构与关键技术

4大数据参考架构和关键技术4。

1大数据参考架构大数据作为一种新兴技术,目前尚未形成完善、达成共识的技术标准体系。

本章结合NIST和JTC1/SC32的研究成果,结合我们对大数据的理解和分析,提出了大数据参考架构(见图5)。

图5 大数据参考架构图大数据参考架构总体上可以概括为“一个概念体系,二个价值链维度"。

“一个概念体系”是指它为大数据参考架构中使用的概念提供了一个构件层级分类体系,即“角色—活动—功能组件",用于描述参考架构中的逻辑构件及其关系;“二个价值链维度"分别为“IT价值链”和“信息价值链”,其中“IT价值链”反映的是大数据作为一种新兴的数据应用范式对IT 技术产生的新需求所带来的价值,“信息价值链”反映的是大数据作为一种数据科学方法论对数据到知识的处理过程中所实现的信息流价值。

这些内涵在大数据参考模型图中得到了体现.大数据参考架构是一个通用的大数据系统概念模型。

它表示了通用的、技术无关的大数据系统的逻辑功能构件及构件之间的互操作接口,可以作为开发各种具体类型大数据应用系统架构的通用技术参考框架.其目标是建立一个开放的大数据技术参考架构,使系统工程师、数据科学家、软件开发人员、数据架构师和高级决策者,能够在可以互操作的大数据生态系统中制定一个解决方案,解决由各种大数据特征融合而带来的需要使用多种方法的问题。

它提供了一个通用的大数据应用系统框架,支持各种商业环境,包括紧密集成的企业系统和松散耦合的垂直行业,有助于理解大数据系统如何补充并有别于已有的分析、商业智能、数据库等传统的数据应用系统。

大数据参考架构采用构件层级结构来表达大数据系统的高层概念和通用的构件分类法。

从构成上看,大数据参考架构是由一系列在不同概念层级上的逻辑构件组成的。

这些逻辑构件被划分为三个层级,从高到低依次为角色、活动和功能组件。

最顶层级的逻辑构件是角色,包括系统协调者、数据提供者、大数据应用提供者、大数据框架提供者、数据消费者、安全和隐私、管理.第二层级的逻辑构件是每个角色执行的活动.第三层级的逻辑构件是执行每个活动需要的功能组件。

大数据体系结构及关键技术

大数据体系结构及关键技术

大数据体系结构及关键技术随着互联网的发展和智能设备的普及,数据的产生和存储量呈指数级增长。

这些海量的数据不仅包含着巨大的价值,同时也带来了巨大的挑战,即如何高效地管理、处理和分析这些数据。

为了应对这一挑战,大数据体系结构和相关的关键技术应运而生。

1.数据采集与存储层:这一层负责数据的采集和存储。

数据采集可以通过传感器、日志、网络爬虫等方式进行,数据存储可以采用关系数据库、分布式文件系统、NoSQL数据库等方式。

这一层的主要目标是实现高效、可扩展的数据采集和存储。

2.数据处理层:这一层负责数据的处理和分析。

数据处理可以通过数据清洗、预处理、特征提取等方式进行,数据分析可以采用统计分析、机器学习、数据挖掘等方法。

这一层的主要目标是实现高效、可靠的数据处理和分析。

3.数据服务与应用层:这一层负责提供数据服务和应用。

数据服务可以包括数据查询、数据分析、数据可视化等功能,应用可以包括推荐系统、广告投放系统、风控系统等。

这一层的主要目标是实现高效、可用的数据服务和应用。

与大数据体系结构密切相关的关键技术有以下几个方面:1.数据采集和存储技术:包括传感器、日志、网络爬虫等数据采集技术,以及关系数据库、分布式文件系统、NoSQL数据库等数据存储技术。

这些技术可以实现高效、可扩展的数据采集和存储。

2.数据处理和分析技术:包括数据清洗、预处理、特征提取等数据处理技术,以及统计分析、机器学习、数据挖掘等数据分析技术。

这些技术可以实现高效、可靠的数据处理和分析。

3.数据传输和通信技术:包括数据压缩、数据传输、网络通信等技术。

这些技术可以实现高效、可靠的数据传输和通信。

4.数据安全和隐私保护技术:包括数据加密、身份认证、访问控制等技术。

这些技术可以保护数据的安全和隐私。

5.数据可视化和交互技术:包括数据可视化、数据探索、用户界面设计等技术。

这些技术可以实现直观、易用的数据展示和交互。

综上所述,大数据体系结构和相关的关键技术在实现高效、可扩展的数据管理和分析方面起到了重要作用。

大数据平台的系统架构设计与实现

大数据平台的系统架构设计与实现

大数据平台的系统架构设计与实现随着数字化时代的到来,大数据已经成为了一个重要的话题。

如何利用大数据,成为现代企业的一个重要命题。

为了有效管理和利用数据,传统的数据存储已经无法满足需求,这时候,大数据平台便应运而生。

大数据平台是一个能够支持快速处理和分析大量数据的系统集成方案。

在大数据时代,大数据平台的架构设计和实现是至关重要的。

一、大数据平台的架构设计大数据平台的结构设计通常包括以下几个部分:1. 数据源数据源指大数据平台获取数据的渠道,包括传感器、社交媒体、Web应用程序和传统数据库等。

在架构设计中,需要将数据源进行分类,以便于后续数据分析和处理。

2. 数据采集数据采集是将数据从数据源获取,并将其存储到大数据平台中。

大数据平台通常使用一些常见的大数据工具,如Storm、Kafka和Flume等。

这些工具能够帮助我们获取数据,并将其按照指定的格式写入数据仓库。

3. 数据仓库数据仓库是大数据平台的核心部件。

在数据仓库中,数据被存储在一个中央位置中,并且能够轻松地进行分析和处理。

大数据仓库通常包括存储、索引和查询三个组件。

4. 数据分析数据分析是大数据平台的一个重要组成部分,它可以利用大数据平台存储的数据来寻找数据中隐藏的模式或者规律。

对于大数据平台而言,数据分析通常具有以下几个阶段:(1) 数据预处理:数据预处理是数据分析的第一步,通过预处理,可以帮助我们检查数据是否完整、是否合法,以及数据的质量是否需要进行改进。

(2) 数据挖掘:数据挖掘是数据分析过程中最复杂和最关键的部分,通过数据挖掘,可以找到数据中隐藏的规律和模式,帮助我们更好地理解数据。

(3) 数据可视化:数据可视化可以让我们更加方便地理解数据分析结果。

通过数据可视化,可以将数据分析结果以图表等形式呈现出来,使得数据分析结果更加直观。

二、大数据平台的实现大数据平台的实现需要考虑多方面的因素,包括硬件和软件等。

下面我们从几个方面来讨论大数据平台的实现。

简述大数据技术的关键技术

简述大数据技术的关键技术

简述大数据技术的关键技术
大数据技术是指处理海量数据的一系列技术和工具。

与传统的数据处理方法相比,大数据技术具有更高的效率、更快的速度和更多的可扩展性。

以下是大数据技术的关键技术:
1. 分布式存储:大数据处理需要分布式存储,即将数据分布存储在多台计算机上。

Hadoop是最常用的分布式存储系统之一。

2. 分布式计算:为了加速大数据处理的速度,需要使用分布式计算技术,即将计算任务分发到多台计算机上并同时处理。

Spark是目前最流行的分布式计算系统之一。

3. 数据挖掘和机器学习算法:数据挖掘和机器学习算法可以帮助我们从大量数据中发现有用的信息和模式。

常用的机器学习算法包括决策树、随机森林和神经网络等。

4. 可视化工具:为了更好地理解大数据处理的结果,需要使用可视化工具将数据转换为图表和图形。

常用的可视化工具包括Tableau和D3.js等。

5. 数据安全:大数据处理中需要保护数据的安全性,防止数据泄露和攻击。

为此,需要采用诸如访问控制、认证和加密等安全措施。

综上所述,以上是大数据技术的关键技术。

随着数据的快速增长和新技术的出现,大数据技术将不断发展和进步。

- 1 -。

大数据平台的架构设计与优化

大数据平台的架构设计与优化

大数据平台的架构设计与优化随着科技的发展和互联网的普及,数据量呈指数级增长,大数据已成为各个行业中必不可少的一部分。

大数据平台的架构设计和优化,对于高效地处理海量数据、提高数据分析效果至关重要。

本文将探讨大数据平台的架构设计与优化方面的重要内容。

一、架构设计大数据平台的架构设计应注重以下几个方面:1. 数据采集与存储数据采集是大数据平台的第一步,需要考虑到数据的来源、格式和传输方式。

常见的数据来源包括网络日志、传感器、社交媒体等,每种数据都有不同的格式和传输方式。

在设计架构时,需要选择合适的数据采集工具和协议,确保数据能够高效地传输到存储介质。

在数据存储方面,需考虑到数据的规模和性能要求。

常见的数据存储介质有分布式文件系统和分布式数据库。

对于海量数据的存储,可采用分布式文件系统如Hadoop HDFS,而对于需求更高的实时性能,可选用分布式数据库如Apache Cassandra或MongoDB。

2. 数据处理与计算大数据平台的关键在于对海量数据的处理和计算能力。

常见的数据处理方式有批处理和实时处理两种。

对于批处理,可采用Apache Hadoop中的MapReduce模型,将数据分片处理并在集群中进行分布式计算。

对于实时处理,可使用Apache Storm或Spark Streaming等框架,能够实时处理数据流并产生实时结果。

此外,还需要考虑数据处理过程中的并行度和容错性。

并行度可以通过增加计算节点和分布式算法来实现,提升处理效率和性能。

容错性方面,可采用数据冗余和备份机制来应对节点故障和数据丢失等风险。

3. 数据分析与挖掘大数据平台的核心目标之一是从数据中挖掘有价值的信息和模式。

数据分析和挖掘需要使用合适的工具和算法,并根据具体需求进行定制化开发。

在数据分析方面,可采用常用的机器学习算法和统计模型来进行数据挖掘。

例如,可以使用K-means算法进行聚类分析,使用决策树和随机森林进行分类预测,使用关联规则算法进行关联分析等。

简述大数据技术的关键技术

简述大数据技术的关键技术

简述大数据技术的关键技术
随着互联网的普及和信息化的发展,大数据技术正在成为一个热门话题。

大数据技术可以帮助人们获取和分析大量的数据,从而提高决策的准确性和效率。

但是,大数据技术并不是一种简单的技术,它由许多关键技术组成。

首先,大数据技术需要高效的数据存储和管理技术。

随着数据量的不断增加,传统的存储方式已经无法满足需求。

因此,出现了各种新型的数据存储技术,如分布式文件系统、NoSQL数据库等。

这些技术可以提高数据的存储和管理效率,同时也具有高可扩展性和可靠性。

其次,大数据技术需要高效的数据处理和分析技术。

数据处理和分析是大数据技术的核心,它们可以帮助人们从大量的数据中获取有用信息。

为了提高数据处理和分析的效率,大数据技术采用了各种并行计算和分布式计算技术,如Hadoop、Spark等。

这些技术可以将数据分布到多个计算节点上进行处理,从而提高计算速度和效率。

第三,大数据技术需要高效的数据挖掘和机器学习技术。

数据挖掘和机器学习可以帮助人们从数据中发现潜在的规律和趋势,从而帮助人们做出更准确的决策。

为了实现这一目标,大数据技术采用了各种数据挖掘和机器学习算法,如聚类、分类、回归等。

总之,大数据技术是一个综合性强的技术,需要多种技术的支持。

随着技术的不断发展,大数据技术将会变得更加成熟和完善。

- 1 -。

大数据的技术体系与架构

大数据的技术体系与架构

大数据的技术体系与架构随着信息技术的飞速发展,面对越来越庞大、复杂的数据资源,我们需要一种更加智能化、高效化的管理手段来对这些数据进行分析和利用。

而大数据技术的出现恰好填补了这个空缺,成为了当前信息技术领域中最为火热的研究方向之一。

本文将从大数据技术体系与架构方面进行论述。

一、大数据技术体系大数据技术体系包括了多种技术,这些技术在不断的发展与演化中,确立了自己的地位和价值。

其中,我认为以下几个方面是目前大数据技术体系的核心。

1. 数据采集与存储大数据基于“一切皆可计算”这一理念,数据的采集是大数据应用的第一步。

采集到的数据需要进行处理、清洗后进行存储。

在大数据技术体系中,Hadoop分布式文件系统(HDFS)是最为常用的数据存储方案。

2. 数据处理与分析大数据处理是一个相对复杂的工作,往往需要通过多种技术手段来完成。

包括数据清洗、数据预处理、数据挖掘、机器学习、数据可视化等,都是大数据处理中的重要一环。

3. 数据交互与应用大数据技术的应用方向往往是多样化的,其中一个重要方向便是数据交互与应用。

在这一项工作中,我们需要利用多种技术手段,比如推荐算法、搜索引擎优化、移动应用开发等,来将大数据转化为具有商业价值的应用。

4. 数据安全与隐私保护随着数据的不断增长,不法分子不断设法通过黑客攻击、病毒挟持等手段窃取大量机密数据。

因此,在大数据技术体系中,保障数据安全和隐私保护是绝不能忽视的问题。

二、大数据技术架构大数据技术架构是指将上述多种技术结合在一起,形成一个完整的技术体系,用来支撑企业或机构复杂的业务系统。

下面介绍一下大数据技术架构中的四层。

1. 用户层大数据应用的终端用户,主要体现为大数据产品和服务的使用者。

这一层主要要考虑用户需求,因此,这一层在大数据技术架构中的重要性非常高。

2. 应用服务层应用服务层是把各种大数据应用服务组合起来的一层。

它将大数据处理技术和业务需求结合起来,提供各种数据交互接口以满足不同用户需求。

大数据处理平台的系统架构及其技术细节

大数据处理平台的系统架构及其技术细节

大数据处理平台的系统架构及其技术细节随着信息技术的迅猛发展,企业乃至国家的数字化转型已经成为当今互联网领域最为热门的话题之一。

而在这一背景下,大数据处理平台的兴起成为了企业数据处理以及智能化应用的核心。

所谓大数据就是指数据量大、速度快、种类繁多、价值密度低等特征的数据,大数据处理平台是能够快速处理海量、异构和分散的数据的技术平台,它通常具备高度自动化和灵活性,提供强大的数据抽取、清洗、分析、建模、可视化等数据处理工具。

本文旨在介绍大数据处理平台的系统架构及其技术细节,主要从以下几个方面进行深入的讲解。

一、大数据处理平台的基本架构大数据处理平台主要分为以下四层架构:1.数据源层该层主要涵盖数据的采集、存储管理和访问。

数据采集:大数据处理平台的基础是数据的采集,数据可以从文件、数据库、社交平台、网站、移动端、物联网设备、传感器等各种数据源获取。

数据存储:大规模数据存储是大数据平台的核心部分之一,常见的数据存储方式包括分布式文件系统Hadoop HDFS、NoSQL数据库等。

数据访问:为了方便用户对数据的访问,需要建立方便、快速的数据访问渠道,如基于RESTful API的数据服务。

2.数据处理层该层主要涵盖数据预处理、数据分析和数据挖掘等,是整个平台最为核心的一层。

数据预处理:大数据预处理主要通过数据清洗、去噪、标准化、格式转换、数据集成等手段对海量数据进行预处理,以保证后续分析的准确性和效率。

数据分析:基于大数据平台的数据分析不仅是数据分析的工具,同时也是商业智能的应用。

分析主要应用在数据挖掘、数据建模、数据统计分析、数据可视化等方面。

数据挖掘:大数据挖掘成为了平台一个非常关键的部分。

通过机器学习、数据挖掘算法、深度学习等手段对海量数据进行探索极其重要。

3.数据集成层该层主要是对来自不同数据源的数据进行归并、整合和处理的过程。

数据归并:由于来自不同数据源的数据类型和格式不同,为了进行更好的数据分析需调权衡对这些数据进行归并,整合形成相同的格式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4大数据参考架构和关键技术4.1大数据参考架构大数据作为一种新兴技术,目前尚未形成完善、达成共识的技术标准体系。

本章结合NIST 和JTC1/SC32的研究成果,结合我们对大数据的理解和分析,提出了大数据参考架构(见图5)。

图5 大数据参考架构图大数据参考架构总体上可以概括为“一个概念体系,二个价值链维度”。

“一个概念体系”是指它为大数据参考架构中使用的概念提供了一个构件层级分类体系,即“角色—活动—功能组件”,用于描述参考架构中的逻辑构件及其关系;“二个价值链维度”分别为“IT价值链”和“信息价值链”,其中“IT价值链”反映的是大数据作为一种新兴的数据应用范式对IT技术产生的新需求所带来的价值,“信息价值链”反映的是大数据作为一种数据科学方法论对数据到知识的处理过程中所实现的信息流价值。

这些内涵在大数据参考模型图中得到了体现。

大数据参考架构是一个通用的大数据系统概念模型。

它表示了通用的、技术无关的大数据系统的逻辑功能构件及构件之间的互操作接口,可以作为开发各种具体类型大数据应用系统架构的通用技术参考框架。

其目标是建立一个开放的大数据技术参考架构,使系统工程师、数据科学家、软件开发人员、数据架构师和高级决策者,能够在可以互操作的大数据生态系统中制定一个解决方案,解决由各种大数据特征融合而带来的需要使用多种方法的问题。

它提供了一个通用的大数据应用系统框架,支持各种商业环境,包括紧密集成的企业系统和松散耦合的垂直行业,有助于理解大数据系统如何补充并有别于已有的分析、商业智能、数据库等传统的数据应用系统。

大数据参考架构采用构件层级结构来表达大数据系统的高层概念和通用的构件分类法。

从构成上看,大数据参考架构是由一系列在不同概念层级上的逻辑构件组成的。

这些逻辑构件被划分为三个层级,从高到低依次为角色、活动和功能组件。

最顶层级的逻辑构件是角色,包括系统协调者、数据提供者、大数据应用提供者、大数据框架提供者、数据消费者、安全和隐私、管理。

第二层级的逻辑构件是每个角色执行的活动。

第三层级的逻辑构件是执行每个活动需要的功能组件。

大数据参考架构图的整体布局按照代表大数据价值链的两个维度来组织,即信息价值链(水平轴)和IT价值链(垂直轴)。

在信息价值链维度上,大数据的价值通过数据的收集、预处理、分析、可视化和访问等活动来实现。

在IT价值链维度上,大数据价值通过为大数据应用提供存放和运行大数据的网络、基础设施、平台、应用工具以及其他IT服务来实现。

大数据应用提供者处在两个维的交叉点上,表明大数据分析及其实施为两个价值链上的大数据利益相关者提供了价值。

五个主要的模型构件代表在每个大数据系统中存在的不同技术角色:系统协调者、数据提供者、大数据应用提供者、大数据框架提供者和数据消费者。

另外两个非常重要的模型构件是安全隐私与管理,代表能为大数据系统其他五个主要模型构件提供服务和功能的构件。

这两个关键模型构件的功能极其重要,因此也被集成在任何大数据解决方案中。

参考架构可以用于多个大数据系统组成的复杂系统(如堆叠式或链式系统),这样其中一个系统的大数据使用者可以作为另外一个系统的大数据提供者。

参考架构逻辑构件之间的关系用箭头表示,包括三类关系:“数据”、“软件”和“服务使用”。

“数据”表明在系统主要构件之间流动的数据,可以是实际数值或引用地址。

“软件”表明在大数据处理过程中的支撑软件工具。

“服务使用”代表软件程序接口。

虽然此参考架构主要用于描述大数据实时运行环境,但也可用于配置阶段。

大数据系统中涉及的人工协议和人工交互没有被包含在此参考架构中。

(1)系统协调者系统协调者角色提供系统必须满足的整体要求,包括政策、治理、架构、资源和业务需求,以及为确保系统符合这些需求而进行的监控和审计活动。

系统协调者角色的扮演者包括业务领导、咨询师、数据科学家、信息架构师、软件架构师、安全和隐私架构师、网络架构师等。

系统协调者定义和整合所需的数据应用活动到运行的垂直系统中。

系统协调者通常会涉及到更多具体角色,由一个或多个角色扮演者管理和协调大数据系统的运行。

这些角色扮演者可以是人,软件或二者的结合。

系统协调者的功能是配置和管理大数据架构的其他组件,来执行一个或多个工作负载。

这些由系统协调者管理的工作负载,在较低层可以是把框架组件分配或调配到个别物理或虚拟节点上,在较高层可以是提供一个图形用户界面来支持连接多个应用程序和组件的工作流规范。

系统协调者也可以通过管理角色监控工作负载和系统,以确认每个工作负载都达到了特定的服务质量要求,还可能弹性地分配和提供额外的物理或虚拟资源,以满足由变化/激增的数据或用户/交易数量而带来的工作负载需求。

(2)数据提供者数据提供者角色为大数据系统提供可用的数据。

数据提供者角色的扮演者包括企业、公共代理机构、研究人员和科学家、搜索引擎、Web/FTP和其他应用、网络运营商、终端用户等。

在一个大数据系统中,数据提供者的活动通常包括采集数据、持久化数据、对敏感信息进行转换和清洗、创建数据源的元数据及访问策略、访问控制、通过软件的可编程接口接口实现推或拉式的数据访问、发布数据可用及访问方法的信息等。

数据提供者通常需要为各种数据源(原始数据或由其它系统预先转换的数据)创建一个抽象的数据源,通过不同的接口提供发现和访问数据功能。

这些接口通常包括一个注册表,使得大数据应用程序能够找到数据提供者、确定包含感兴趣的数据、理解允许访问的类型、了解所支持的分析类型、定位数据源、确定数据访问方法、识别数据安全要求、识别数据保密要求以及其他相关信息。

因此,该接口将提供注册数据源、查询注册表、识别注册表中包含标准数据集等功能。

针对大数据的4V特性和系统设计方面的考虑,暴露和访问数据的接口需要根据变化的复杂性采用推和拉两种软件机制。

这两种软件机制包括订阅事件、监听数据馈送、查询特定数据属性或内容,以及提交一段代码来执行数据处理功能。

由于需要考虑大数据量跨网络移动的经济性,接口还可以允许提交分析请求(例如,执行一段实现特定算法的软件代码),只把结果返回给请求者。

数据访问可能不总是自动进行,可以让人类角色登录到系统提供新数据应传送的方式(例如,基于数据馈送建立订阅电子邮件)。

(3)大数据应用提供者大数据应用提供者在数据的生命周期中执行一系列操作,以满足系统协调者建立的系统要求及安全和隐私要求。

大数据应用提供者通过把大数据框架中的一般性资源和服务能力相结合,把业务逻辑和功能封装成架构组件,构造出特定的大数据应用系统。

大数据应用提供者角色的扮演者包括应用程序专家、平台专家、咨询师等。

大数据应用提供者角色执行的活动包括数据的收集、预处理、分析、可视化和访问。

大数据应用程序提供者可以是单个实例,也可以是一组更细粒度大数据应用提供者实例的集合,集合中的每个实例执行数据生命周期中的不同活动。

每个大数据应用提供者的活动可能是由系统协调者、数据提供者或数据消费者调用的一般服务,如Web服务器、文件服务器、一个或多个应用程序的集合或组合。

每个活动可以由多个不同实例执行,或者单个程序也可能执行多个活动。

每个活动都能够与大数据框架提供者、数据提供者以及数据消费者交互。

这些活动可以并行执行,也可以按照任意的数字顺序执行,活动之间经常需要通过大数据框架提供者的消息和通信框架进行通信。

大数据应用提供者执行的活动和功能,特别是数据收集和数据访问活动,需要与安全和隐私角色进行交互,执行认证/授权并记录或维护数据的出处。

收集活动用于处理与数据提供者的接口。

它可以是一般服务,如由系统协调者配置的用于接收或执行数据收集任务的文件服务器或Web服务器;也可以是特定于应用的服务,如用来从数据提供者拉数据或接收数据提供者推送数据的服务。

收集活动执行的任务类似于ETL 的抽取(extraction)环节。

收集活动接收到的数据通常需要大数据框架提供者的处理框架来执行内存队列缓存或其他数据持久化服务。

预处理活动执行的任务类似于ETL的转换(transformation)环节,包括数据验证、清洗、去除异常值、标准化、格式化或封装。

预处理活动也是大数据框架提供者归档存储的数据来源,这些数据的出处信息一般也要被验证并附加到数据存储中。

预处理活动也可能聚集来自不同的数据提供者的数据,利用元数据键来创建一个扩展的和增强的数据集。

分析活动的任务是实现从数据中提取出知识。

这需要有特定的数据处理算法对数据进行处理,以便从数据中得出能够解决技术目标的新洞察。

分析活动包括对大数据系统低级别的业务逻辑进行编码(更高级别的业务流程逻辑由系统协调者进行编码),它利用大数据框架提供者的处理框架来实现这些关联的逻辑,通常会涉及到在批处理或流处理组件上实现分析逻辑的软件。

分析活动还可以使用大数据框架提供者的消息和通信框架在应用逻辑中传递数据和控制功能。

可视化活动的任务是将分析活动结果以最利于沟通和理解知识的方式展现给数据消费者。

可视化的功能包括生成基于文本的报告或者以图形方式渲染分析结果。

可视化的结果可以是静态的,存储在大数据框架提供者中供以后访问。

更多的情况下,可视化活动经常要与数据消费者、大数据分析活动以及大数据提供者的处理框架和平台进行交互,这就需要基于数据消费者设置的数据访问参数来提供交互式可视化手段。

可视化活动可以完全由应用程序实现,也可以使用大数据框架提供者提供的专门的可视化处理框架实现。

访问活动主要集中在与数据消费者的通信和交互。

与数据收集活动类似,访问活动可以是由系统协调者配置的一般服务,如Web服务器或应用服务器,用于接受数据消费者请求。

访问活动还可以作为可视化活动、分析活动的界面来响应数据消费者的请求,并使用大数据框架提供者的处理框架和平台来检索数据,向数据消费者请求作出响应。

此外,访问活动还要确保为数据消费者提供描述性和管理性元数据,并把这些元数据作为数据传送给数据消费者。

访问活动与数据消费者的接口可以是同步或异步的,也可以使用拉或推软件机制进行数据传输。

(4)大数据框架提供者大数据框架提供者角色为大数据应用提供者在创建特定的大数据应用系统时提供一般资源和服务能力。

大数据框架提供者的角色扮演者包括数据中心、云提供商、自建服务器集群等。

大数据框架提供者执行的活动和功能包括提供基础设施(物理资源、虚拟资源)、数据平台(文件存储、索引存储)、处理框架(批处理、交互、流处理)、消息和通信框架、资源管理等。

基础设施为其他角色执行活动提供存放和运行大数据系统所需要的资源。

通常情况下,这些资源是物理资源的某种组合,用来支持相似的虚拟资源。

资源一般可以分为网络、计算、存储和环境。

网络资源负责数据在基础设施组件之间的传送;计算资源包括物理处理器和内存,负责执行和保持大数据系统其他组件的软件;存储资源为大数据系统提供数据持久化能力;环境资源是在考虑建立大数据系统时需要的实体工厂资源,如供电、制冷等。

相关文档
最新文档