第4章刚体的定轴转动
大学物理刚体的定轴转动习题及答案
![大学物理刚体的定轴转动习题及答案](https://img.taocdn.com/s3/m/11caa6fa7e192279168884868762caaedd33baa4.png)
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化答:当刚体作匀变速转动时,角加速度β不变;刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变;又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化;2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩;()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====;既 z M I β=; 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式; 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:1如果它们的角动量相同,哪个轮子转得快2如果它们的角速度相同,哪个轮子的角动量大答:1由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;2如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大; 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒;5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求:(1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度; 解:1由题意飞轮的初角速度为飞轮作均减速转动,其角加速度为故从开始制动到停止转动,飞轮转过的角位移为 因此,飞轮转过圈数为/2θπ∆=100圈;2开始制动后5秒时飞轮的角速度为6.如图所示, 一飞轮由一直径为2()d m ,厚度为()a m 的圆盘和两个直径为1()d m ,长为()L m 的共轴圆柱体组成,设飞轮的密度为3(/)kg m ρ,求飞轮对轴的转动惯量;解:如图所示,根据转动惯量的可加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;由此可得7. 如图所示,一半径为r,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度;解:设绳中张力为T对于重物按牛顿第二定律有22m g T m a -= 1对于滑轮按转动定律有212Tr mr β=2 由角量线量关系有a r β= 3联立以上三式解得8. 如图所示,两个匀质圆盘同轴地焊在一起,它们的半径分别为r 1、r 2,质量为1m 和2m ,可绕过盘心且与盘面垂直的光滑水平轴转动,两轮上绕有轻绳,各挂有质量为3m 和4m 的重物,求轮的角加速度β;解:设连接3m 的绳子中的张力为T1,连接4m 的绳子中的张力为T2; 对重物3m 按牛顿第二定律有3133m g T m a -= 1 对重物4m 按牛顿第二定律有2444T m g m a -= 2对两个园盘,作为一个整体,按转动定律有112211221122T r T r m r m r β⎛⎫-=+ ⎪⎝⎭3aLd 1d 2由角量线量之间的关系有 31a r β=442a r β= 5联立以上五式解得9. 如图所示,一半径为R,质量为m 的匀质圆盘,以角速度ω绕其中心轴转动;现将它平放在一水平板上,盘与板表面的摩擦因数为μ;1求圆盘所受的摩擦力矩;2问经过多少时间后,圆盘转动才能停止 解:分析:圆盘各部分的摩擦力的力臂不同,为此,可将圆盘分割成许多同心圆环,对环的摩擦力矩积分即可得总力矩;另由于摩擦力矩是恒力矩,由角动量定理可求得圆盘停止前所经历的时间;1圆盘上半径为r 、宽度为dr 的同心圆环所受的摩擦力矩为负号表示摩擦力矩为阻力矩;对上式沿径向积分得圆盘所受的总摩擦力矩大小为2由于摩擦力矩是一恒力矩,圆盘的转动惯量212I mr =,由角动量定理可得圆盘停止的时间为10. 飞轮的质量m =60kg,半径R =0.25m,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题4-10图所示,闸瓦与飞轮之间的摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算.试求:1设F =100 N,问可使飞轮在多长时间内停止转动在这段时间里飞轮转了几转2如果在2s 内飞轮转速减少一半,需加多大的力F解: 1先作闸杆和飞轮的受力分析图如图b .图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反.∵ N F r μ=N N '=∴F l l l N F r 121+='=μμ 又∵ ,212mR I = ∴ F mRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为 这段时间内飞轮的角位移为可知在这段时间里,飞轮转了1.53转. 210s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知 用上面式1所示的关系,可求出所需的制动力为11. 如图所示,主动轮A 半径为r 1,转动惯量为1I ,绕定轴1O 转动;从动轮B 半径为r 2,转动惯量为2I ,绕定轴2O 转动;两轮之间无相对滑动;若知主动轮受到的驱动力矩为M ,求两个轮的角加速度1β和2β;解:设两轮之间摩擦力为f 对主动轮按转动定律有:111M fr I β-= 1对从动轮按转动定律有222fr I β= 2由于两个轮边沿速率相同,有1122r r ββ= 3联立以上三式解得12. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如题4-12a 图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =2m .求:1柱体转动时的角加速度; 2两侧细绳的张力.解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度方向题4-12b图.(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ① 1111a m T g m =- ②βI r T R T ='-'21 ③式中 ββR a r a T T T T ==='='122211,,,而 222121mr MR I += 由上式求得 2由①式 由②式13. 一质量为m 、半径为R 的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m 的子弹以速度0v 射入轮缘如题2-31图所示方向. 1开始时轮是静止的,在质点打入后的角速度为何值2用m ,0m 和θ表示系统包括轮和质点最后动能和初始动能之比. 解: 1射入的过程对O 轴的角动量守恒 ∴ Rm m v m )(sin 000+=θω2020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ14. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为13l 和23l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0υ与杆下端小球m 作对心碰撞,碰后以021υ 的速度返回,试求碰撞后轻杆所获得的角速度.解:碰撞过程满足角动量守恒:而 222212()2()333I m l m l ml =+=2m m O21 0vl l 31l所以 2023mv l ml ω=由此得到:032vlω=15. 如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J A =10 kg ·m2 和 J B =20 kg ·m2.开始时,A 轮转速为600 rev/min,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:1 两轮啮合后的转速n ;2 两轮各自所受的冲量矩.解:1 两轮啮合过程满足角动量守恒: 所以 A AA BI I I ωω=+ 因为 2n ωπ= 故 10600200/min 1020A A AB I n n r I I ⨯===++ 2 两轮各自所受的冲量矩: 末角速度:2200202/603n rad s ππωπ⨯=== A 轮各所受的冲量矩:202060040010(2) 4.1910()3603A A L I I N m s ππωωπ∆=-=⨯-⨯=-=-⨯⋅⋅B 轮各所受的冲量矩:16. 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.球体对于通过直径的轴的转动惯量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径.解:1 球体收缩过程满足角动量守恒:所以17. 一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上圆盘与水平面之间的摩擦系数为,圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求1 子弹击中圆盘后,盘所获得的角速度.2 经过多少时间后,圆盘停止转动.解:1 子弹击中圆盘过程满足角动量守恒: 所以 002211()22mRv mv mR MR m M Rω==++ 2圆盘受到的摩擦力矩为 由转动定律得 M Iβ'=。
刚体的定轴转动
![刚体的定轴转动](https://img.taocdn.com/s3/m/10927626bd64783e09122b3a.png)
J
1 2 m( R12 R2 ) 2
1 mR 2 2 若R1 R2 R, J mR 2
16
例:求长度为L,质量为m的均匀细棒AB的转动惯量。 (1)对于通过棒的一端与棒垂直的轴。 (2)对于通过棒的中心与棒垂直的轴。 m 解(1)细杆为线质量分布,单位长度的质量为: l L 1 3 2 2 dm A B J A x dm x dx L o 0 3 x
2 0
2
0
dm MR
2
绕圆环质心轴的转动惯量为
M
o
R
பைடு நூலகம்dm
J MR
2
讨论:若圆环绕其直径轴转动,再求此圆环的转动 惯量。
14
例: 一质量为m,半径为R的均匀圆盘,求对通过盘 中心并与盘面垂直的轴的转动惯量。
m 解: σ πR 2
dm σ 2π rdr
dJ r dm 2πσ r dr
5
匀变速圆周运动的基本公式
p
1 2 0 0t t 2
0 t
s
R
o
p
x
2 2 0 2 ( 0 )
定轴转动刚体上任一点的速度和加速度 s R 路程与角位移之间的关系:
v R 线速度与角速度的关系:
加速度与角量的关系: 2 dv d v at R R , an 2 R, dt dt R
1
柱壳形状的质元 ,其长为l半径为r厚度为dr, 则该质元的质量为 dm dV ( 2 rdr )l
R2
R2
l
J r dm 2lr dr
2 3 m R1
l
2
大学物理第四章 刚体的转动部分的习题及答案
![大学物理第四章 刚体的转动部分的习题及答案](https://img.taocdn.com/s3/m/89f14d2d974bcf84b9d528ea81c758f5f61f29a3.png)
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
第四章 刚体的转动
![第四章 刚体的转动](https://img.taocdn.com/s3/m/c8f5fadc240c844769eaeea5.png)
m r
2 i i
2
用转动惯量表示
1 2 E k= J 2
四、刚体绕定轴转动的动能定理 设在合外力矩M的作用下,刚体绕定轴转过的角 位移为dθ,合外力矩对刚体所作的元功为 d dW =M dθ,由转动定律 M J J dt 得 d d
M=r F r Fi r Fi M i
M F1 r1 sin 1 F2 r2 sin 2 F3 r3 sin 3
单位: N.m 注意:力矩的单位和功的单位不是一回事,力矩的 单位不能写成焦耳。 与转动垂直但通过转轴的力对转动不产生力矩; 与转轴平行的力对转轴不产生力矩; 刚体内各质点间内力对转轴不产生力矩。 对于刚体的定轴转动,不同的力作用于刚体上的 不同位置(或不同作用方向)可以产生相同的效 果。
§4-2 力矩
转动定律
转动惯量
一、力矩 从转轴与截面的交点到力的作用线的垂直距离叫做力对 转轴的力臂。力的大小和力臂的乘积,就叫做力对转 轴的力矩。用M表示。 用矢量表示 M rF 或:
M=Fr sin
若力F不在垂直与转轴的平面内,则可把该力分解为两个 力,一个与转轴平行的分力,一个在垂直与转轴平面 内的分力,只有后者才对刚体的转动状态有影响。 合力矩对于每个分力的力矩之和。
第四章 刚体的转动
§4-1 刚体的定轴转动 一、刚体
定义:在外力作用下形状和大小保持不变的物体称为刚体。 说明: 刚体和质点一样是一个理想化的力学模型; 刚体内任何两点之间的距离在运动过程中保持不变; 刚体可以看成一个包含由大量质点、而各个质点间距 离保持不变的质点系。
大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解
![大学物理(科学出版社,熊天信、蒋德琼、冯一兵、李敏惠)第四章习题解](https://img.taocdn.com/s3/m/548dc4d784254b35eefd348c.png)
第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
刚体定轴转动的转动定律
![刚体定轴转动的转动定律](https://img.taocdn.com/s3/m/8268f14769eae009581bec60.png)
R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M
T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R
2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m
R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?
4_1刚体的定轴转动
![4_1刚体的定轴转动](https://img.taocdn.com/s3/m/935eb0335a8102d276a22f3d.png)
4 – 1 刚体的定轴转动 转过的圈数 (2)t )
第四章 刚体的转动
75 π N= = = 37.5 r 2π 2π
θ
= 6s 时,飞轮的角速度 π ω = ω 0 + αt = (5π × 6)rad s 1 = 4π rad s 1 6
t (3) )
= 6s 时,飞轮边缘上一点的线速度大小 v = rω = 0.2 × 4π m s 2 = 2.5 m s 2
第四章 刚体的转动
z
θ (t )
>0 r 沿逆时针方向转动 θ < 0
参考平面
x
参考轴
θ = θ (t + t ) θ (t )
角速度矢量
ω ω
ω 方向 方向:
θ dθ ω = lim0 = t → t dt
右手螺旋方向 右手螺旋方向
4 – 1 刚体的定轴转动 刚体定轴转动( 刚体定轴转动(一 定轴转动 维转动) 维转动)的转动方向可 以用角速度的正负来表 示. 角加速度
1 ω ω 解 (1) 0 = 5 π rad s , t = 30 s 时, = 0. 1)
设 t = 0 s 时, 0 = 0 .飞轮做匀减速运动 飞轮做匀减速运动 θ
α=
ω ω0
t
0 5π π 1 2 = rad s = rad s 30 6
飞轮 30 s 内转过的角度
ω 2 ω 02 (5 π ) 2 = = 75 π rad θ= 2α 2 × ( π 6)
4 – 1 刚体的定轴转动
第四章 刚体的转动
c = 2ω t 2 = (π 75) rad s 3
1 2 π ω = ct = rad s 3t 2 转子的角速度 2 150 dθ π ω= = rad s 3 t 2 由角速度的定义 d t 150 θ t π 3 2 得 ∫0 d θ = 150 rad s ∫0 t d t π 3 3 有 θ = rad s t 450
第四章 刚体的定轴转动
![第四章 刚体的定轴转动](https://img.taocdn.com/s3/m/1ba4ef372f60ddccdb38a00f.png)
c
mg
解 : ( 1)棒在任意位置时的重力 矩
l M mg cos 2
M J 1 2 ml 3
3g cos 2l
1 1 2 d (2) mg cos ml 2 3 dt 1 d d 1 2 d ml 2 ml 3 d dt 3 d
分离变量积分
A
O
x
l
A
l
dx
h A
x
l
dx
B
O x l
dx
A l A x
O
x l
dx h A
l
dx
B
O x l
dx
解 如图所示,在棒上离轴x 处,取一长度元dx,如棒的质量线 密度为,这长度元的质量为dm=dx。 (1)当转轴通过中心并和棒垂直时,我们有
J 0 r dm l / 2 x dx
合力矩。合力矩与合力的矩是不同的概念,不要混淆。
在研究力对轴的矩时,可用正负号来表示力矩的方向。
二、定轴转动的转动定律
取刚体内任一质元i,它所受合外力为 F , 内力为 f 。 i i
只考虑合外力与内力均在转动平面内的情形。 ( , ) z 对mi用牛顿第二定律:
Fi f i mi ai
= 2m。组合轮可以绕通过其中心且垂直于盘面的光滑水 平固定轴o转动,对o轴的转动惯量J=9mr2/2 。两圆盘边 缘上分别绕有轻质细绳,细绳下端各悬挂质量为m的物体 A和B,这一系统从静止开始运动,绳与盘无相对滑动且长
度不变。已知r =10cm 。
求:(1)组合轮的角加速度; (2)当物体上升h=0.4m时,组合轮的角速度。
1 2 J 2
线动量
第四章 刚体力学的定轴转动
![第四章 刚体力学的定轴转动](https://img.taocdn.com/s3/m/be0231a2960590c69ec3764a.png)
3
三、刚体转动的角速度和角加速度 角速度 刚体在dt 时间内 的角位移dq 与dt 之比。 z
dq
dq w dt
(rad s )
1
r
θ
P
角速度的方向由右手定则确定。 角加速度 刚体在Dt时间内 角速度的增量Dw 与Dt 之比的极 限
2
式中JC 为刚体对通过质心的轴的转动惯量, m是刚 体的质量,d是两平行轴之间的距离 。 2. 垂直轴定理 若z 轴垂直于厚度为无限小的刚体薄板板面, xy 平 面与板面重合, 则此刚体薄板对三个坐标轴的转动惯 量有如下关系
Jz J x J y
15
例2:在上一例题中, 对于均匀细棒, 我们已求得 对通过棒心并与棒垂直的轴的转动惯量为
1 2 J ml 12
求对通过棒端并与棒垂直的轴的J。 1 解:两平行轴的距离 d l , 代入平行轴定理, 2 得
由定义得:
dw ct dt
dw ct dt
6
对上式两边积分
由条件知
w
0
dw c tdt
0
t
1 2 w ct 2
2π 1 1 t 300 s , w 18000 rad s 600 π rad s 60 2w 2 600 π π 3 3 c rad s rad s 所以 t2 300 2 75
由角速度定义 得到:
dq π w rad s 3 t 2 d t 75
π q rad s 3 t 3 150
7
q
0
π t 2 dq t dt 150 0
π 3 转子转数: N 300 3 104 2 π 2 π 450
大学物理-刚体的定轴转动-习题和答案
![大学物理-刚体的定轴转动-习题和答案](https://img.taocdn.com/s3/m/ea57d1796c175f0e7dd13747.png)
第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
4第四章 刚体的定轴转动
![4第四章 刚体的定轴转动](https://img.taocdn.com/s3/m/9ef0b841001ca300a6c30c22590102020740f2bd.png)
第 1 讲 刚体的定轴转动
预习要点 1. 理解刚体的运动; 2. 掌握描述刚体定轴转动的运动学方法; 3. 理解力矩的概念及力矩的功;
式中 mi ri2 表示第i个质点对转轴的转动惯量;
对质量连续分布的刚体,任取质量元 dm ,其到轴的
距离为 r ,则转动惯量:
J r2dm 单位:kg ·m2
若系统由多个刚体组成,则系统对转轴的总转动惯量, 等于各部分对同一转轴的转动惯量之和
一个长为4L的轻杆,连有两个质量都是m的小球(大小可 忽略),此系统可绕垂直于杆的轴转动,求下列转动惯量;
在转动平面内,O为转动平面与转轴的焦点,r 为从O 点指向
M 力的作用点 A 的位矢,两矢量的夹角为 ;
力 F 对定轴 OZ 的力矩 :
(力臂:力的作用线到转轴的距离)
z
M Z Fd Fr sin
通常,从OZ轴正向俯视,有 逆时针转动(趋势)力矩为正, 反之为负;
单位:牛·米(N ·m)
F
Or
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬
有质量为m1和m2的物体,滑轮可视为均质圆盘, 质量 为m,半径为r,绳子不可伸长而且与滑轮之间无相对 滑动.求物体加速度、滑轮转动的角加速度和绳子的张
力. 设 m2 m1
解: 受力分析如图:
FT1 m1g m1a m2g FT2 m2a
FT2R FT1R J a r
m2
)
gl
sin
α
第4章 刚体的转动
![第4章 刚体的转动](https://img.taocdn.com/s3/m/5861658708a1284ac85043f3.png)
d2t
v rω
at r
at r
an
ra
an rω2
a r 2 rω2 2
et
at v
(3) 角速度矢量
O’
O
简化 加速
减速 转动平面
4.2 刚体的定轴转动定律
4.2.1 力对转轴的力矩
v M
rv
v F
大小: M rF sin
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律
电荷守恒定律 质量守恒定律 宇称守恒定律等
例1 如图所示,一竖直悬挂的木杆,可绕杆端O处的水平
固定轴转动. 开始时,木杆竖直下垂. 质量m1=50g的小球 以v0=30m·s-1的水平速度与木杆的下端相碰,碰后小球以 v1=10m·s-1的速度向反方向弹回. 杆长l=40cm ,木杆质量 m2=600g. 设碰撞时间极短,求碰撞后木杆获得的角速度.
4.2.3 转动惯量
J miri2 i
J r2dm
转动惯量的单位:kg·m2
转动惯量的物理意义:转动惯性的量度
(1) 转动惯量的计算
质量离散体
i3
J miri2 m1r12 m2r22 m3r32 i 1
质量连续体 J r2dm
线分布 质量为线分布
面分布
体分布
——质量线密度
质量为面分布 质量为体分布
——质量面密度 ——质量体密度
(2) 转动惯量与下列因素有关:
A 刚体的质量;B 刚体的质量分布;C 定轴的位置。
(3) 计算转动惯量的两个定理
平行轴定理
物体绕某一转轴的转动惯量 J 等于绕过质心并与该轴平行的
大学物理一复习第四章刚体的转动
![大学物理一复习第四章刚体的转动](https://img.taocdn.com/s3/m/85dc44a04128915f804d2b160b4e767f5bcf8018.png)
[A]
期中考题
8、在光滑的水平面上,一根长L=2m的绳子,一端固定于O点,另一端系一质量为m=0.5kg的物体,开始时,物体位于位置A,OA间距离d=0.5m,绳子处于松弛状态,现在使物体以初速度VA =4m /s垂直于OA向右滑动,设在以后的运动中物体到达位置B,此时物体速度的方向与绳垂直。
O
A
受力分析:
物体从静止下落时满足
m:
h
M:
稳定平衡状态,当其受到微小扰动时,细杆将在重力作用下由静止开始绕铰链O 转动.试计算细杆转动到与竖直线成 角时的角加速度和角速度.
书例3 一长为 l 、质量为 m 匀质细杆竖直放置,其下端与一固定铰链O相接,并可绕其转动.由于此竖直放置的细杆处于非
m,l
二、转动定律
三、转动定律应用举例
1. 矢量式(定轴转动中力矩只有两个方向);
2. 具有瞬时性且M、J、 是对同一轴而言的。
解题方法及应用举例
1.确定研究对象。
2.受力分析(只考虑对转动有影响的力矩)。
3.列方程求解(平动物体列牛顿定律方程,转动刚体列转动定律方程,并利用角量与线量关系)。
熟练掌握
角动量定理
03
角动量守恒定律
04
条件:M=0
05
熟练掌握
06
熟练掌握
07
二、基本定理、定律
1 如图:一定滑轮两端分别悬挂质量都是m的物块A和B,图中R和r,已知滑轮的转动惯量为J,求A、B两物体的加速度及滑轮的角加速度.
解
r
R
β
FT1
FT2
mg
mg
A
B
解得
例2:光滑斜面倾角为 ,顶端固定一半径为 R ,质量为 M 的定滑轮,质量为 m 的物体用一轻绳缠在定滑轮上沿斜面下滑,求:下滑的加速度 a 。 解:物体系中先以物体 m 研究对象,受力分析, 在斜面 x 方向上
大学物理学(课后答案)第4章
![大学物理学(课后答案)第4章](https://img.taocdn.com/s3/m/f7fe4b1c4431b90d6c85c7f7.png)
第4章 刚体的定轴转动习 题一 选择题4-1 有两个力作用在一个有固定转轴的刚体下,对此有以下几种说法:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对L 述说法下述判断正确的是[ ](A )只有(l )是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确 (D )(1)、(2)、(3)、(4)都正确 解析:力矩是描述力对刚体转动的作用,=⨯M r F 。
因此合力为零时,合力矩不一定为零;合力矩为零时,合力也不一定为零。
两者并没有一一对应的关系。
答案选B 。
4-2 有A 、B 两半径相同,质量相同的细圆环。
A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为A I 和B I ,则有[ ](A )A B I I > (B )A B I I < (C )无法确定哪个大 (D )A B I I = 解析:转动惯量2i i iI m r =∆∑,由于A 、B 两细圆环半径相同,质量相同,所以转动惯量相同2A B I I mR ==,而与质量分布均匀与否无关。
选D 。
4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图4-3所示.今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是[ ](A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大(C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零解析:在棒摆到竖直位置的过程中,重力势能和转动动能相互转化,因此转速越来越大,即角速度从小到大。
整个过程中棒只受到重力矩的作用,211cos 23M mg l J ml θαα===,所以3cos 2gl αθ=,随着转角θ逐渐增大,角加速度α由大变小。
第4章-刚体转动
![第4章-刚体转动](https://img.taocdn.com/s3/m/0cccae3bc381e53a580216fc700abb68a982ad95.png)
例1 如图, 有一半径为 R 质量为 m的匀质圆盘, 可绕
通过盘心 O 垂直盘面的水平轴转动. 转轴与圆盘之间的
摩擦略去不计. 圆盘上绕有轻而细的绳索, 绳的一端固
定在圆盘上, 另一端系质量为 m 的物体. 试求物体下落
时的加速度、绳中的张力和圆盘的角加速度.
m
Ro
m
oR
m
T
m
T'
Py
解:1) 分析受力 2)选取坐标
2 刚体定轴转动的角动量
L mirivi ( miri2 )
i
i
L J
单位:kg·m2·s-1,量纲:ML2T-1
二 刚体定轴转动的角动量定理
z
O ri
vi
mi
dL d(J) J d J M
dt dt
dt
t2
t1
Mdt t2 Mdt
t1
L2
L1
dL L2 dL
L1
J2 J1
➢ 角速度矢量 lim d
t t0 dt
方向: 右手螺旋方向
参考轴
6
4-1 刚体的定轴转动
➢ 刚体定轴转动(一维转动)的转动方向可以用角速
度的正负来表示 .
➢
角加速度
d
dt
z
z
定轴转动的特点
0 0
1) 2)
每任一一质 质点 点均 运作 动圆周 ,运动,,均圆相面同为,转但动v平,面a 不;同;
球体(沿任一直径): 圆筒(沿几何中心轴):
J 2 mR2 5
J m 2
R12 R22
21
4-2 力矩 转动定律 转动惯量
讨论 ➢ 有两个飞轮:一个是木制的,周围镶上铁制
4_刚体的定轴转动
![4_刚体的定轴转动](https://img.taocdn.com/s3/m/aa5990cc8bd63186bcebbca3.png)
从以上各式即可解得
m2 m1 g M r / r m2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
37
若m=0,Mr=0,则
1 m1 2 m 2 m g M / r 2 T1 m1 g a 1 m 2 m1 m 2 1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m 2 m1 m 2
物体转动与否不仅与力的方向大小有关还与力作用的位置有关定轴转动的力矩只能引起物体变形对转动无贡献转动平面内a力与转轴平行b力与转轴垂直对转动无贡献仅使物体发生形变只有与转轴垂直的分力产生力矩使物体绕轴转动的垂直距离转轴到力在定轴动问题中如不加说明所说的力矩是指力在转动平面内的分力对转轴的力矩
第三章
刚体的定轴转动
l/2 2
28
(2)建立坐标系,分割质量元
x J x 2 dm l o 2 m x dx dx x 0 l 1 3 2 l 2 1 2 ml J C m ml 12 3 2
J x 2 dm
(3)建立坐标系,分割质量元
x
2
m x dx l / 2 h l 1 2 2 2 ml mh J C mh 12
25
转动惯量
多个质点组成的系统:
J mi ri
i
2
质量连续分布的刚体:
J r dm
2
平动 m 转动 J
v w
a a
mv Jw
dv F ma m dt d M z J J dt
26
小结
• • • • • 刚体的概念 刚体的运动自由度 刚体定轴转动的自由度 刚体定轴转动的运动方程 刚体定律转动定律
第四章刚体的定轴转动
![第四章刚体的定轴转动](https://img.taocdn.com/s3/m/9889de77770bf78a6429543c.png)
L 2
x2dx
1
ML2
L L2
12
z
(2) 由平行轴定理:
zc L/2
C
I
I C M (
L 2
)2
1 12
ML2
1 4
ML2
1 3
ML2
例题4-2: 求密度均匀的圆盘对通过中心并与盘面垂直的转轴 的转动惯量。设圆盘的半径为R,质量为M。
在圆盘上取一半径为r、宽度为dr的圆环,环的面积为2rdr,
环的质量为:
dm
2rdr
M
R2
2rdr
2M R2
rdr
转动惯量:
M
dr
I
r 2dm
2M R2
R r 3dr 1 MR 2
0
2
r p
§4-4 刚体的转动定理
1、力矩:
外力在平行于转轴方向的分力对刚体定轴转动不起作用,
所以只需考虑外力在垂直于轴的平面内的分力。
M
f
定义:外力相对于某固定轴的力矩为:
开始运动时的角速度;
(1)棒和子弹的转动惯量:
IM
1 3
Ml 2
,
Im
m(
3 4
l
)2
9 16
ml 2
由角动量守恒:
o θ0
3l
4C
mv 3 l ( 1 Ml 2 9 ml 2 )
A
43
16
求得:
36 mv
8.88 ( rad / s )
( 16 M 27 m )l
习题4-23 一匀质木棒l = 0.40m,M=1.00kg,可绕轴o在竖直面内 无摩擦转动,开始棒处于竖直位置,一质量m=8g,
大学物理习题册及解答(第二版)第四章-刚体的定轴转动
![大学物理习题册及解答(第二版)第四章-刚体的定轴转动](https://img.taocdn.com/s3/m/b16319f510661ed9ac51f314.png)
上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc MR2
O
P
ŷ
P΄
x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
m(l a) J
杆摆动过程机械能守恒
J 1 Ml2 3
1 J 2 Mg l (1 cos )
2
2
解得小球碰前速率为 Ml
2gl sin
m(l a) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少?
解:选人、滑轮、与重物为系统,系统所受对滑轮轴的
外力矩为
1 MgR
人
物2
设u为人相对绳的匀速度,为重物上升的
速度。则该系统对滑轮轴的角动量为
L M R M (u )R (1 M R2 ) 13 MR MRu
2
24
8
据转动定律
du 0 dt
dL dt
a
即 1 MgR d (13 MR MRu)
6. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度 / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的 水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置 无初转速地释放.则杆刚被释放时的角加速度a0 _ , 杆与水平方向夹角为60°时的角加速度a_
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I mi ri
I r dm
2
2
常用的几个刚体的转动惯量
质点: I Mr 均匀圆环: I c
2
r
2
M
C R
M
mR
1 2 均匀圆盘: J c垂直 mR 2
均匀杆:
C R
M
1 2 I c ML 12
1 2 I A ML 3
A
C l 2 l 2
M
刚体的转动定理
mi mi yi mi
i i
r1 m1 rC x
mz mi
z
如果质量连续分布
xC
rC
rdm dm
yC zC
xdm dm ydm dm zdm dm
若质量均匀分布,则质心与几何中心重合
质心运动定理
质点组动量定理
dp d d dri F外 mi v i mi dt dt dt dt d2 2 mi r i dt mi r i M r C
I r dm
2
反映质量极其分布
转动惯量的计算: [ 例4-1 ]质量为m,长度为 L 0
L
的均质细杆的转动惯量 解: 建立坐标系如图 1.任取线元 dx,距离左端 x m dm dx L 2.质元dm的转动惯量
2
0
ω
x dx
3.杆的转动惯量
dI x dm m x 2dx L
L 0
质量dm=dS
dm 2rdr
2
M / R
2
ω
R
r dr
dI r dm 2r 3dr
I
1 2 2r dr MR 2
3
M
常用的几个刚体的转动惯量
质点: I Mr 均匀圆环: I c
2
r
2
M
C R
M
mR
1 2 均匀圆盘: J c垂直 mR 2
4.1刚体的运动 刚体的平动 在运动中,连接刚体内任意两点的直线在各个 时刻的位置都彼此平行 平动时,刚体上所有点运动都相同。 o′ · o′ ·
可用其上任何一点的运动来 代表整体的运动(如质心)。 刚体的转动:
*定轴转动: o
o′ · o o
*定点转动:
定轴转动:
转轴:保持静止的点的连线 方向:角速度方向 刚体质点间的相对运动只能是绕某 一固定轴转动的结果。 定点转动: 运动中刚体上只有一点固定不动, 整个刚体绕过该定点的某一瞬时 轴线转动(如陀螺的运动)。
z
进动
O
质心 质心运动定理
质心 在研究质点系的运动时,常引入质量中心的概念, 称质心(the center of mass) 质点系中若干个质点质量及位置分别为 m1,m2,…mn; r1,r2,…rn。该质点系质心的 位置矢量定义为
xC mx
i i
y
rC
mr
i
i
mi
yC zC
d 2 rC F外 M M aC 2 dt
质点组的质心运动定理,也适用于刚体 质点组中各个质点无论如何运动, 其质心的运动由合外力决定。
刚体的势能
E p mi gyi Mgyc Mghc
其中hc为质心相对于参考点的 高度。 例4-1如图所示,一 均质细杆,长为L,质 量为m,求其有竖直转 到水平位置的势能变化。 y y1m
质心
rC rdm dm
xC yC zC
质心运动定理
d 2 rC F外 M M aC 2 dt
xdm dm ydm dm zdm dm
刚体的势能
E p Mghc
线速度与角速度矢量 质点的角动量
vi r i
பைடு நூலகம்
L z r i mi v i 刚体的角动量 L ri mi vi I
力矩(对轴) 力f在转动平面内
M r f
力f不在转动平面内
Mz、r
o
φ
f
对转动有贡献的力的分量为f//
M r f //
Mz
f
r
刚体的定轴转动定律 M z r F// Lz ri m i v i I z d dL z ( ri m i v i ) dt dt d ( ri m i v i )
dt d ri ( m i v i ) dt
Lz Li z ri mi vi
所有质元作圆周运动
mivi ri
m i ri ri
ri mi vi
2 i i
I z
m r
ri mi vi
Lz I z
其中
I z mi ri
2
刚体对 Z轴的转动惯量 连续分布系统
均匀杆:
C R
M
1 2 I c ML 12
1 2 I A ML 3
A
C l 2 l 2
M
关于转动惯量的性质 可加
I Ii
i
IC d
I
平行轴定理
2 I I c Md
C
m
平行
正交轴定理
xoy 面的平面刚体
z
Iz Ix Iy
ri
x
m i
y
同样质量,轴的方位不同,I不同 同样的轴,质量分布不同时,I不同
第 4章
刚体的运动
刚体的定轴转动
质心 质心运动定理
刚体的角动量 转动惯量
刚体的转动定理 刚体的角动量定理和角动量守恒定律 刚体的动能定理
4.1刚体的运动 刚体:任何情况下形状和体积都不改变的物体 (理想化模型)。 说明: *刚体是特殊的质点系,其上各质点间的相对 位置保持不变。 *有关质点系的规律均可用于刚体,且表达 形式较一般的质点系简单。
I
1 m 2 2 x dx mL 3 L
4.对于过质心轴
0L
I
L 2 L 2
m 1 mL2 dx 12 L
0 x dx
ω
[ 例4-2 ] 均质细圆环的转动惯量。
任取线元dl , dm=dl,距离轴r
M
ω
0
I r dm r
2
2
dm Mr
2
r
[ 例4-3 ]质量为M,半径为R 的 均质圆盘的转动惯量 任取面元ds(离r远处dr宽细环)
1
yC
x z o C
刚体的角动量 转动惯量
角速度矢量
Z vi ri
从上向下看,逆时 针转角为正。 d
dt
右手关系 线速度与角速度矢量
Z vi
ri
vi r i
刚体的角动量
质点的角动量 刚体的角动量
L z r i mi v i
Z
mivi ri Z