第2章 弹性力学基本理论

合集下载

第二章 弹性力学的基本理论

第二章 弹性力学的基本理论

2
0 0 0
0 0 0
0
0
0
x (2-18)
y
0 0 0
0
0
z
yz
0 0
0
0
66
zx xy
61
弹性力学简明教程
二、平面问题
平面问题{ 平面应力问题 平面应变问题 1、平面应力问题:
z zx zy 0
xz yz 0
由(2-15)式知:
z
fy
0
(2-4)
xz
x
yz
y
z
z
fz
0
x
0
0
0
y 0
0
0 z
0
z y
z
0
x
x
y x
0
36
y
z yz
zx xy
61
fx fy fz
31
0 31
H P 0
36
61
31
31
(2-6)
弹性力学简明教程
二、空间问题的平衡微分方程
弹性力学简明教程
§2 平衡微分方程
一、平面问题的平衡微分方程
y
y
y
dy
x
fy
yx
yx
y
dy
xy
xy
x
dx
y
xy
dy c dx
fx
yx
x
x
x
dx
o(z)
x y
平衡微分方程:
Fx 0 Fy 0
微元体:厚度为1
平面问题的特点:
一切现象都看作是在一个平面内发生的
Fx 0 Fy 0
Mc 0

2--弹性力学基本理论

2--弹性力学基本理论

yz

zx
• 应变的定义
• 设平行六面体单元,3个轴棱边 :
– 变形前为MA,MB,MC; – 变形后变为M'A',M'B',M'C'

x、 y、 z
•正应变(小变形)
•符号规定: 正应变以伸长为正。
•剪应变
•符号规定: 正应变以伸长为正;剪应变以角度变小为正。
材料力学 — 区别与联系 — 弹性力学
y
y
q
q
sx
ͼ 1-1a
x
0
sx x
ͼ 1-1b
材料力学 — 区别与联系 — 弹性力学
ͼ 1-3a ͼ 1-3b
2.1 弹性力学的基本假定
• 连续性假设:物体所占的空间被介 质充满,不考虑材料缺陷,在物体 内的物理量是连续的, 可以采用连续 函数来描述对象。
虽然都从静力学、几何学与物理学三方面进行研究, 但是在建立这三方面条件时,采用了不同的分析方法。 材料力学是对构件的整个截面来建立这些条件的,因而 要常常引用一些截面的变形状况或应力情况的假设。这 样虽然大大简化了数学推演,但是得出的结果往往是近 似的,而不是精确的。而弹性力学是对构件的无限小单 元体来建立这些条件的,因而无须引用那些假设,分析 的方法比较严密,得出的结论也比较精确。所以,我们 可以用弹性力学的解答来估计材料力学解答的精确程度, 并确定它们的适用范围。
当△S 趋近于0,则为P点的面力
•面力分量 •符号规定:与坐标轴方向一致为正,反之为负。 •面力的量纲:[力]/[长度]^2 •列阵表示:Fs={X Y Z}T
集中力
体力与面力都是分布力,集中力则只是作用在一个点

2-弹性力学基本理论

2-弹性力学基本理论

x
1 E
( x
y
)
y
1 E
(
y
x
)
xy
2(1 E
) xy
x
1 2
E
( x
1
y)
y
1 2
E
(
y
1
x
)
xy
2(1 E
) xy
E E (1 2 )
(1 )
弹性力学基础 2.2.5 物理方程
两种平面问题的物理方程写成统一形式。若以应变表示应力 ,则两种平面问题物理方程的统一形式如下
应变特征:如图选取坐标系,以任一横截面为xy面,任一纵线为
z轴。则任一横截面均可视为对称面,有沿z方向的位移
z
x
w0
弹性力学基础 2.2.2平面应变问题
所有各点的位移矢量都平行于x y平面,则
z 0 , zy yz 0 , zx xz 0
因此,平面应变问题只有三个应变分量,仅为x、y的函数, 与z无关,如下
x
yx
y
xy x
Gx
x
x x
dx
T
G Gx Gy
Gy
xy
xy x
dx
y
y
y y
yx
dy
yx y
dy
弹性力学基础 2.2.3 平衡微分方程
x
yx
y
xy x
Gx Gy
x
x x
dx
xy
xy x
dx
y
y
y y
yx
dy
yx y
dy
由 Fx 0 ,得
x
x
yx
y
Gx
0

有限元法基本原理及应用第2章重庆大学龙雪峰

有限元法基本原理及应用第2章重庆大学龙雪峰

有限元原理及应用
第二章 弹性力学基本理论
3.完全弹性假设。 假设除去引起物体变形的外力之后,物体形状能够完全恢 复,而没有任何残余变形并且假定材料服从胡克定律,即 应力与应变成正比,这样物体在任意瞬时,应变完全取决 于该瞬时所受外力,而与它之前加载的历史无关,与外力 施加顺序也无关。 由材料力学知,物体所受应力未达到比例极限之前,可 近似看作完全弹性体。
有限元原理及应用
第二章 弹性力学基本理论
2.均匀性假设。 假设物体内各处材料的力学性能完全相同,即从物体中任 意取出一个微元体进行分析,都可以使用同一组材料常数。 实际上,物体是由颗粒组成的,不可能是完全均匀的, 但只要颗粒的尺寸远远小于物体的尺寸并且均匀分布,将 物体性能看作各组成部分性能的统计平均量是没问题的。 这里的均匀性假设并不妨碍弹性力学处理由不同材料组成 的弹性体,只要在每一部分都满足均匀性假设即可。
有限元原理及应用
• 2.2.7 主应变 • 由单元体六个应变分量:
第二章 弹性力学基本理论
• 可以求出过该点任意方向线应变和任意两 线段之间角度的改变:
2.7 2.8
式中l、m、n 为过物体内一点P 的线 段PN 的方向余弦, l1、m1、 n1为过P 点 与PN 成θ 角的线段PN1 的方向余弦,θ’ 为物体受力变形后线段PN 与PN1 的夹角, 如图2.5 所示。
有限元原理及应用
第二章 弹性力学基本理论
• 这个极限矢量p 就是物体在截面mn 上的、在P 点所受内力的 集度,即P 点的应力。因为ΔA 是标量,所以p 的方向就是ΔF 的极限方向。 • 对于应力,通常沿截面的法向和切向将应力分解为正应力σ 和切应力τ,如图2.3 所示。应力及其分量的因次是[力][长 度]-2。 • 在物体内的同一点,不同方向的截面上的应力是不同的。过 一点,各截面上应力的大小和方向的总和称为一点的应力状 态。

第二章 固体弹性力学基础

第二章 固体弹性力学基础

应力定义为:单位面积上所受的内力,是在面力或 体力作用下,物体内部假想面上单位面积上的一对 大小相等、方向相反的力,是作用在该面上力的大 小的度量。
应力也称为胁强(力的强度):应力并不是一个 “力”,因为它的量纲不是力而是单位面积上的力。
应力的方向与作用力的方向相反。
6
2.1 应力分析
16
2、非均匀变形 用物体内部变形 单元体(应变椭 圆)表示非均匀 变形 ——褶皱
17
2.2.3 应变分类
应变---当弹性体受到应力作用后,将发生体积和形 状的变化,即应变。



体积形变----指物体只发生体积变化而无形状变化的 应变。它是受正应力作用的结果。 形状形变-----物体只发生形状的变化。它是剪切应力 作用的结果。 理论力学是研究物体的整体运动。把物体作为一种刚 体,在外力作用下只能产生整体平移和转动。 弹性力学不仅要考虑物体的整体运动,而且要研究物 体内部各质点的相对运动,相对运动是产生应变的必 要条件。
设N为M 邻近点,其向径 为 r dr 。受力后N点位移 到 N ,它的位移向量记 为 u(r dr) 。 N点对M点的相对位移是
z
N (x+dx,y+dy,z+dz)
dr
M (x,y,z)
u (r )
u( r )
u (r dr)
N
u(r dr) u(r)
dx 1。由 (1-9) ds
u e e xx x
同理可求得沿y和z轴上单位长度得伸长值
e e yy
e e zz
v y w z
28
(2)切应变:变形体不仅在三个坐标方向上有相对伸长(或 压缩),而且还会产生旋转,即夹角也会发生变化。(见下图) 假设两个正交线元素 MN和MP。受力后, 相对位移分别是du1 和du2。假设: dx=|MN|=|dr1| dy=|MP|=|dr2| MN、MP的相对位移 du1和du2对可由(11)式求出。

弹性力学-第二章 平面问题基本理论 (徐芝纶第五版)

弹性力学-第二章 平面问题基本理论 (徐芝纶第五版)
基本方程是二维的。
平面应力问题
平面应变问题
3
1.平面应力问题
支承板
z x
y
(2) 受力特性
外力(体力、面力)和约束,仅平行于 板面作用,沿z方向不变化。
(1) 几何特性
一个方向的尺寸比另两个 方向的尺寸小得多。
——平板
4
1.平面应力问题
(3) 应力特征
由于板面上不受力,有
sx =sx(x,y)
sy =sy(x,y)
53
54
55
56
习题
57
第二章 教学参考资料 (一)本章学习要求及重点
本章系统地介绍了平面问题的基本理论: 基本方程和边界条件,及两种基本解法。这 些内容在弹性力学中具有典型性和代表性。 因此,学好平面问题的基本理论,就可以方 便地学习其他各章。为此,我们要求学生深 入地理解本章的内容,掌握好以下几点:
)
f
y
0.
68
(2)用位移表示的应力边界条件
E
1
2
[l
(
u x
v
y
)m12
(
u y
v x
)]s
fx,
E
1
2
[m(
v y
u
x
)l12
(
u y
v x
)]s
fy.
(在s 上ss)
69
(3)位移边界条件
(u)s u , (v)s v.
(在Su上)
70
4、按应力求解平面问题(平面应力问题),
应力分量 σ x , σ y ,t x必y 须满足下列全部条件:
sx =sx(x,y) sy =sy(x,y) txy =txy(x,y) sz =sz (x,y) txz =tyz =0

弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论
应力边界条件:
在应力约束 面上: 设 面法线与x轴正向夹角
的余玄为l,与y轴正向夹角
的余玄为m。
混合条件:
位移约束与应力约束的组合。
边界条件举例
x
y q
x
y
p
圣维南原理及其应用
圣 维 南 ( Adhémar Jean Claude Barré de Saint-Venant , 1797~1886)原理:如果把物体的一小部分边界上的面力, 变换为分布不同但静力等效的面力(主矢量相同,对于同 一点的主矩也相同),那么近处的应力分布将有显著改变, 但是远处所受的影响可以忽略不计。
— 边界条件
按位移求解平面应力问题(5)
— 小结
按位移求解平面问题需要:
1. 位移分量满足微分方程:
2.边界条件:
按位移求解平面问题(5)
— 举例
x
ρg
y=h y
按位移求解平面问题(6)
— 举例
x
ρg
y=h y
按应力求解平面应力问题(1)
— 用位移表达应变(几何方程)
形变协调方程或相容方程 连续体的形变分量不是相互独立的,它们之间必须满足 相容方程,才能保证真实的位移分量存在。
因此,由 中第一式:
最后得到:
由 中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
应力调和方程 代入
得到:
简写为:
常体力情况下的平面问题
常体力情况下的平面问题需要满足:
1.艾里应力函数表示的相容方程:
2.边界条件
3.位移单值条件
弹性力学第二章平面问题的基本理论

第2章 弹性力学的基本知识

第2章 弹性力学的基本知识

(2)均匀性假设:假定物体内各点处材料均相同。
(3)各向同性假设:假定物体内各点处各个方向上的物理性质相同。
(4)完全弹性假设:胡可定律
(5)几何假设——小变形假设: 变形产生的位移与物体的尺 寸相比 ,是微小的。
关于外力、应力、应变和位移的定义
1.外力
体力 (定义)分布在物体体积内的力,如重力、惯性力等。 分为体积力(体力)和表面力(面力)两类。 有限元分析也使用集中力这一概念。
以通过一点的沿坐标正向微分线段的 正应变ε和 切(剪)应变 γ 来表示。 正应变εx ,εy , εz 以伸长为正。
切应变γxy , γyz ,γzx 以直角减小为正, 用弧度表示。 正应变和切应变都是无因次的量 应变列阵 x y z xy yz zx
Tຫໍສະໝຸດ 4. 位移材力研究方法
也考虑这几方面的条件,但不是十分严格的:常常引用近 似的计算假设(如平面 截面假设)来简化问题,并在许多 方面进行了近似的处理。 因此材料力学建立的是近似理论,得出的是近似的解答。 从其精度来看,材力解法只能 适用于杆件形状的结构。
★ 弹塑性力学研究问题的基本方法
在受力物体 内任取一点 (单元体)为 研究对象。
写成矩阵形式:
ε=
σ
ε=φσ 显然: φ=D-1
三、平衡方程
弹性体中任一点满足平衡方程, 在给定边界上满 足应力边界条件。
弹力的研究方法
在体积V内 由微分体的平衡条件,建立平衡微分方程; 由微分线段上应变与位移的几何关系,建立几何方程; 由应力与形变之间的物理关系,建立物理方程; 在边界 S 面上
x
二、物理方程
若弹性体只有单向拉伸或压缩时,根据材料 力学胡克定律:

02《弹性力学》教案:第二章:平面问题的基本理论

02《弹性力学》教案:第二章:平面问题的基本理论

二、弹性力学平面问题
弹性力学平面问题的特点有两个: ( 1) 、从几何尺寸的角度看,物体一个方向的尺寸,较之其它两个方向的尺 寸要大得多,或小得多。 ( 2) 、从受力分析的角度看,物体所受的体力分量和面力分量,以及由此产 生的应力分量、应变分量和位移分量,都与某一个坐标轴(例如 z 轴)无关。 有 两 种 典 型 情 况 , 分 别 是 平 面 应 力 问 题 ( pla ne s tre ss pr obl e m ) 和 平 面 应 变 问 题 ( pla ne stra i n pr obl e m ) 。分别讨论。 1、 平 面 应 力 问 题 几 何 尺 寸 : 物 体 是 很 薄 的 等 厚 度 平 板 , 沿 z 方 向 的 厚 度 为 t; 沿 x 方 向 和 y 方 向的尺寸,远大于厚度 t。 坐 标 系 : 以 薄 板 的 中 面 为 xoy 面 , z 轴 垂 直 于 xoy 面 。 受力特点:体力作用于板内,平行于板面且不沿厚度变化, ( X、Y) ,沿厚 度均匀分布。 面力作用于板边,平行于板面且不沿厚度变化, ( X 、Y ) ,沿厚 度均匀分布。
σ x = σ x ( x, y ) , 则 在 c d 面 上 , 由 于 长 度 增 加 了 dx , 则 c d 面 上 的 正 应 力 分 量 应 随
之 变 化 。应 力 分 量 的 这 种 变 化 可 用 泰 勒 级 数 展 开 求 得 。实 际 上 ,在 c d 面 上 ,我 们 有
σ x ( x + dx, y ) = σ x ( x, y ) +
11
Generated by Foxit PDF Creator © Foxit Software For evaluation only.

弹性力学-第二章

弹性力学-第二章

(a)
(b)
y
o
z
a
b
x
(c) 刚性槽
2.平面问题的应力边界条件 设在S 部分边界上给定了面力分量 f x ( s) 和 f y ( s) , 则可由边界上任一点微分体的平衡条件,导出应力 与面力之间的关系式。
0 o y P y
tyx txy
x
B
y
fx
A
x
P
x
fy
fx
n
fy
f
斜面上的应力
由式 (2-3)
x=-b为负x 面
l cos n, x cos180 1
m cos n, y cos 90 0
(σ x ) xb f x , (t xy ) x b f y
n
b a x
fx fy
σx
σx
fx fy
t xy
y
t xy
应力边界条件的两种表达式: (1)公式写法 公式写法通常只用于 边界为非坐标面时
x=a为正x 面
l cos n, x cos 0 1
m cos n, y cos 90 0
(σ x ) xa f x , (t xy ) xa f y
b a x
n
fx fy
σx
σx
fx fy
t xy
y
t xy
当边界面为坐标面时
(l x mt xy ) s f x ( s) (m y lt xy ) s f y ( s)
( 2) 斜边 y x tan
l cos n, x cos 90 sin
m cos n, y cos

《弹性力学》第二章_平面问题的基本理论

《弹性力学》第二章_平面问题的基本理论

o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z

E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x

第二章弹性力学基础

第二章弹性力学基础

第二章弹性力学基础弹性力学又称弹性理论,它是固体力学的一个分支。

弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。

弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。

材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。

弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。

对杆状构件作较精确的分析,也需用弹性力学。

结构力学-----研究杆状构件所组成的结构。

例如桁架、刚架。

第一节弹性力学假设在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。

1. 假设物体是线弹性的假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。

即该比例关系不随应力、应变的大小和符号而变。

由材料力学已知:脆性材料的物体:在应力≤比例极限以前,可作为近似的完全弹性体;韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。

这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。

2. 假设物体是连续性的假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。

有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。

注:实际上,一切物体都是由微粒组成的,都不能符合该假定。

但是由于物体粒子的尺寸以及相邻粒子间的距离,都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。

3. 假设物体是均匀性、各向同性的整个物体是由同一材料组成的。

这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。

弹性力学简明教程 第2章 平面问题的基本理论

弹性力学简明教程 第2章 平面问题的基本理论

一 、求AB面上的正应力σn和切应力τn
设px、py为斜面AB的应力p在x、y 轴上的投影。斜面
AB的长度为 ds, 则AB=ds, PB=lds, PA=mds 。
由平衡条件∑Fx=0 得:
l ds m d s
px ds x l ds xy m ds f x
2
0
除以ds ,然后令ds→0, 得:
根据剪应力互等性:
τxz =0 ,τyz =0
故只有平行于xy面的三个平面应力分量
σx , σy , τxy
二、平面应变问题
几何特征:很长的柱体,其 横截面不沿长度变化。 载荷特征: 1)在柱面上承受平行于横 截面并且不沿长度变化的 面力或约束;
2)体力也平行于横截面并 且不沿长度变化。
o
x
y
二、平面应变问题
第二章 平面问题的基本理论
2-1 平面应力问题与平面应变问题 2-2 平衡微分方程 2-3 平面问题中一点的应力状态 2-4 几何方程 刚体位移 2-5 物理方程 2-6 边界条件 2-7 圣维南原理及其应用 2-8 按位移求解平面问题 2-9 按应力求解平面问题 相容方程 2-10 常体力情况下的简化 应力函数
( x
x
x
dx)dy 1 xdy 1 ( yx
yx
y
dy)dx 1 yxdx 1
f xdxdy 1
0
整理得:
O
x
x
x
yx
y
fx
0
y方向有
FY 0 :
y
y
xy
x
fy
0
yx y
xy
x
y
C fx
x
x x

《弹性力学》第二章平面问题的基本理论

《弹性力学》第二章平面问题的基本理论

平面问题研究方法
01
02
03
解析法
通过弹性力学的基本方程 和边界条件,求解出满足 条件的应力、应变和位移 分量。
数值法
利用计算机进行数值计算, 如有限元法、差分法等, 求解出弹性体的应力、应 变和位移分布。
实验法
通过实验手段,如光弹性 实验、应变电测实验等, 直接测定弹性体的应力、 应变和位移。
02 基本方程与定解条件
物理方程反映了材料的力学性质,是弹性力学中的重要基础。
03
定解条件(边界条件与初始条件)
01
02
03
定解条件是弹性力学问 题中必须满足的附加条 件,包括边界条件和初
始条件。
边界条件描述了物体边 界上的应力、位移等物 理量的已知情况,是求 解弹性力学问题的重要
依据。
初始条件描述了物体在 初始时刻的应力、位移 等物理量的已知情况, 对于动态问题和瞬态问
04 平面问题解法及实例分析
按位移求解平面问题
位移边界条件
在位移边界上,物体受到的约束可以 转化为在给定位移边界上各点的位移。
平衡微分方程
根据弹性力学的基本方程,可以建立 以位移表示的平衡微分方程。
应力边界条件
在应力边界上,物体受到的面力可以 转化为应力边界上各点的应力分量。
求解方法
通过联立平衡微分方程和应力边界条 件,可以求解出位移分量,进而求得 应力分量。
复杂应力函数求解技巧
复杂应力函数的特点
复杂应力函数可能具有复杂的数学形式和边界条件,求解难度较大。
求解技巧
针对复杂应力函数的求解,可以采用变量分离法、积分变换法、复 变函数法等数学工具进行简化处理,降低求解难度。
实例分析
以一个复杂的弹性力学问题为例,介绍如何运用上述技巧求解复杂 应力函数,并给出相应的应力分量分布图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x

u
z




z
z 0
0


0


z


u v

0

w


y


x
3、物理方程(应力与应变之间的关系)
x


1 E
x y z
y

1 E
y z x
•微观上这个假设不成立——宏观假设。
2. 均匀性假设
•——假设弹性物体是由同一类型的均匀材料组成的。 因此物体各个部分的物理性质都是相同的,不随坐标 位置的变化而改变。
•——物体的弹性性质处处都是相同的。
•工程材料,例如混凝土颗粒远远小于物体的几何形 状,并且在物体内部均匀分布,从宏观意义上讲,也 可以视为均匀材料。
——在弹性体的平衡等问题讨论时,可以不考虑因 变形所引起的尺寸变化。
——忽略位移、应变和应力等分量的高阶微量,使 基本方程成为线性的偏微分方程组。
6. 无初始应力假设
——假设物体处于自然状态,即在外界因素作用之前, 物体内部没有应力。
弹性力学求解的应力、位移仅仅是外力、边界约 束或温度改变而产生的。
向或负面上的应力沿坐
x
图1-7
标负向为正。
口诀:正面正向或负面负向的应力为正。
例:应力和面力的符号规定有什么区别?试分别画 出正面和负面上的正应力和正的面力的方向。
Oz
x
y
注意:
弹性力学
材料力学 图1-8
(3)注意弹性力学切应 力符号和材料力学是有 区别的。在图1-8中, 弹性力学里,切应力都 为正,而材料力学中相 邻两面的符号是不同的, 顺时针转动为正。
2.性质:在物体内的同一点,不同截面上的应力是不 同的。
3.应力集度:
r
ΔA面积上的内力的平均集度为: F
r
A
P点的应力为:pr lim F
A0 A
z

B
r
r F
m △A
p
P n
P点的应力分量为 、
--正应力 ---切应力
o
A
y 因次是[力][长度]-2。
图1-4
0
1
1
1
0

D E(1 ) 1 1
x
4.应力分量
应力不仅和点的位置有关,和截面的方位也有关,
不是一般的矢量,而是二阶张量。
zA o
x
C
(1)为了分析一点的应力
状态,在这一点从物体内取出一
个微小的正平行六面体,各面上
B 的应力沿坐标轴的分量称为应力 分量。
P
y 图1-5
在略去体力和高阶微量的情况下, 相互平行的面上的应力大小相等, 方向相反。

0



0

y
uv
A


x
0
0
y

y

x
y x
微分算子矩阵
AT d ----几何方程
• §2-3 弹性力学的基本方程 主要是描述应力、应变、位移及外力间的相互关系
•对于环氧树脂基玻璃纤维复合材料,不能处理为均 匀材料。
3. 各向同性假设
•——假定物体在各个不同的方向上具有相同的物 理性质,这就是说物体的弹性常数将不随坐标方向 的改变而变化。
•当然,像木材、竹子以及纤维增强材料等,属于 各向异性材料。
•——这些材料的研究属于复合材料力学研究的对 象。
4. 完全弹性假设
• 应力
σ (σx σ y τxy )T 。
• 结点位移列阵 δ (ui vi u j v j )T 。
• 结点力列阵 F (Fix Fiy Fjx Fjy )T 。
FEM中应用的方程:
几何方程 ε (u v v u )T。
(a)
x y x y
物理方程
σ Dε,
基本量和基本方程的矩阵表示
采用矩阵表示,可使公式统一、简洁,且 便于编制程序。
本章无特别指明,均表示为平面应力问 题的公式。
基本物理量:
• 体力 • 面力 • 位移函数
f ( fx f y )T 。 f ( fx f y )T 。 d (u(x, y),v(x, y))T。
• 应变
ε (εx εy γxy )T 。
(b)
其中D为弹性矩阵,对于平面应力问题



1 μ 0
D
E 1 μ
2

μ
0
1 0
0 。
1 μ 2

(c)
几何方程---位移与应变之间的关系
x

u x
y

v y

xy

u y

v x




x y
xy


x

y
xzy


yz
zx



x
v

y

w z

u
y

v
v


0
0 y 0
y
0
x
w
A
xy
y
x B
n

px

n
py p
N

O
2
P
1
y
N
B
x
将x、y轴分别放在两个主 A 应力的方向
N
N
§2-2 弹性力学的基本假设
•工程问题的复杂性是诸多方面因素组成的。如果不 分主次考虑所有因素,则问题的复杂,数学推导的困 难,将使得问题无法求解。
•根据问题性质,忽略部分暂时不必考虑的因素,提 出一些基本假设。使问题的研究限定在一个可行的范 围。
1、平衡方程 (应力间的关系)

x
x

yx
y

zx
z

fx

0

xy
x

y
y

zy
z

fy

0


xz
x

yz
y

z
z

fz

0
2、几何方程(应变与位移的关系)
u



x
0



x

(2)性质:一般情况下,体力随点的位置不同 而不同,体力是连续分布的。
(3)体力集度:
r
体力的平均集度为: F
V
P点所受体力的集度为:
r
x
f lim F
V 0 V
r
z
△V
r f
F
P
O
y
图1-2
f
的方向就是
r F
的极限方向。
(4)体力分量: 将f 沿三个坐标轴分解,
可得到三个正交的分力:
y
yx
y

yz

y
zx zy z
共六个应力分量。
x
(三)形变(应变)
形变就是形状的改变。物体的形变可以归结为长 度的改变和角度的改变。
C
1.线应变:图1-9中线段
PA、PB、PC每单位长度的伸
缩,即单位伸缩或相对伸缩,
称为线应变。分别用 x 、 y 、
PP



z

1 E
z x y



xy

1 G

xy



yz

1 G

yz


zx

1 G

zx
其中: E为杨氏弹性模量
为泊松比
G为剪切弹性模量 且:G E
2(1 )
因此物理方程可以简写为: D

1

1 1
•——对应一定的温度,如果应力和应变之间存在一 一对应关系,而且这个关系和时间无关,也和变形历 史无关,外力消失后能够恢复原形,称为完全弹性。
•完全弹性分为线性和非线性弹性,弹性力学研究限 于线性的应力与应变关系。
•研究对象的材料弹性常数不随应力或应变的变化而 改变。
5. 小变形假设
——假设在外力或者其他外界因素(如温度等)的 影响下,物体的变形与物体自身几何尺寸相比属于 高阶小量。
vvv f fxi fy j fzk x
z
f
z
r f
r F
△V
fy
fx P
O
y
图1-2
fx、fy、fz 称为物体在P点的体力分量,其 方向与坐标轴正向相同时为正,因次是[力][长 度]-3。(N/m3)方向沿坐标轴为正。
2. 面力 (1)定义:分布在物体表面上 z 的力。如流体压力和接触力。
第二章 有限元法的基本原理
机械与汽车工程学院 School of Mechanical and Automobile Engineering
§2-1 弹性力学中的几个基本概念 (一)外力
按照外力作用的不同分布方式,可分为体 积力和表面力,分别简称体力和面力。 1.体力
(1)定义:所谓体力是分布在物体体积内的 力,如重力和惯性力。
(2)性质:一般情况下,面
相关文档
最新文档