概率与数理统计公式大全

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。

其中概率论是研究随机事件发生的可能性或概率的科学。

而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。

本文将整理概率论与数理统计中常用的公式。

一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。

2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。

3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。

2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。

3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全

考研概率论与数理统计公式大全1.概率公式:-概率的加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-概率的乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)-全概率公式:P(B)=P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)-贝叶斯公式:P(Ai,B)=P(B,Ai)P(Ai)/(P(B,A1)P(A1)+P(B,A2)P(A2)+...+P(B,An)P(An))2.随机变量与分布:- 期望:E(X) = ∑(xP(X=x))或E(X) = ∫(xf(x)dx)- 方差:Var(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2- 协方差:Cov(X, Y) = E[(X - E(X))(Y - E(Y))]- 标准差:SD(X) = sqrt(Var(X))-二项分布:P(X=k)=C(n,k)p^k(1-p)^(n-k)- 泊松分布:P(X = k) = (lambda^k)e^(-lambda) / k!- 正态分布:P(X = x) = (1 / (sqrt(2*pi)*sigma)) * e^(-(x-mu)^2 / (2*sigma^2))3.估计与检验:-极大似然估计:L(θ)=∏(f(x_i;θ))-似然比检验:λ=L(θ)/L(θ0)- 估计的无偏性:E(θ_hat) = θ- 估计的有效性:Var(θ_hat) ≤ Var(θ)- 中心极限定理:对于均值为μ、方差为σ^2的随机变量X,若样本容量n趋于无穷大,则样本均值X_bar的极限分布服从正态分布4.相关与回归:- 相关系数:r = Cov(X, Y) / (SD(X) * SD(Y))-简单线性回归方程:Y=β0+β1X+ε- 最小二乘估计:β1 = Cov(X, Y) / Var(X)- 线性回归预测:Y_hat = β0 + β1X5.抽样分布:- 样本均值分布:X_bar ~ N(μ, σ^2 / n)- 样本比例分布:p_hat ~ N(p, p(1-p) / n)-卡方分布:X^2~χ^2(k)-t分布:T~t(n)-F分布:F~F(m,n)以上是一些概率论与数理统计中常见的公式,希望对你的学习有所帮助。

概率与数理统计公式

概率与数理统计公式

概率与数理统计公式1.组合公式:组合公式用于计算从n个元素中选取k个元素的组合数,表示为C(n,k)。

其计算公式为:C(n,k)=n!/(k!*(n-k)!)2.排列公式:排列公式用于计算从n个元素中选取k个元素的排列数,表示为P(n,k)。

其计算公式为:P(n,k)=n!/(n-k)!3.基本概率公式:基本概率公式用于计算一个事件A发生的概率P(A),表示为P(A)=n(A)/n(S),其中n(A)表示事件A发生的样本空间中的元素数,n(S)表示样本空间中的元素总数。

4.条件概率公式:条件概率公式用于计算在已知事件B发生的条件下,事件A发生的概率P(A,B),表示为P(A,B)=P(A∩B)/P(B),其中P(A∩B)表示事件A与事件B同时发生的概率。

5.乘法公式:乘法公式用于计算同时发生的多个事件的概率,表示为P(A∩B)=P(A)*P(B,A),其中P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率。

6.加法公式:加法公式用于计算多个事件中至少一个事件发生的概率,表示为P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率。

7.期望公式:期望公式用于计算随机变量的平均值,表示为E(X)=Σ(x*P(X=x)),其中x表示随机变量的取值,P(X=x)表示随机变量的概率分布。

8.方差公式:方差公式用于描述随机变量取值的离散程度,表示为Var(X) =Σ((x - E(X))^2 * P(X=x)),其中x表示随机变量的取值,E(X)表示随机变量的期望。

9.标准差公式:标准差公式是方差的平方根,表示为σ(X) = sqrt(Var(X)),其中Var(X)表示随机变量的方差。

10.正态分布公式:正态分布公式用于描述连续型随机变量的分布,表示为P(X=x) = 1 / (σ * sqrt(2π)) * exp(-(x-μ)^2 / (2σ^2)),其中μ表示期望,σ表示标准差。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。

在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。

下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。

概率论与数理统计计算公式

概率论与数理统计计算公式

概率论与数理统计计算公式概率论和数理统计是数学中的两个重要分支,广泛应用于自然科学、社会科学和工程技术等领域。

在实际中,我们经常需要计算各种概率和统计量,因此理解和掌握概率论和数理统计中的计算公式是十分重要的。

接下来,我将给出概率论和数理统计中一些常用的计算公式。

一、概率计算公式:1.加法原理:如果A和B是两个事件,那么它们的和事件(A∪B)的概率可以由如下公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)2.条件概率:如果A和B是两个事件,且P(A)>0,那么事件B在已知事件A发生的条件下发生的概率可以由如下公式计算:P(B,A)=P(A∩B)/P(A)3.全概率公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A,我们有:P(A)=ΣP(A,Bi)P(Bi),其中i取1到n。

4.贝叶斯公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A和i取1到n,我们有:P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中j取1到n。

5.乘法定理:如果A和B是两个事件,那么它们的交事件的概率可以由如下公式计算:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)二、统计量计算公式:1.样本均值:对于由n个观测值组成的样本,样本的均值可以由如下公式计算:\(\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n x_i\)2.样本方差:对于由n个观测值组成的样本,样本的方差可以由如下公式计算:\(S^2 = \frac{1}{n-1} \sum\limits_{i=1}^n (x_i - \bar{X})^2\) 3.标准差:样本的标准差是样本方差的平方根\(S = \sqrt{S^2}\)4.相关系数:对于两个随机变量X和Y,它们的相关系数可以由如下公式计算:\(\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}\)5.协方差:样本的协方差可以由如下公式计算:\(Cov(X,Y) = \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})\)以上只是概率论和数理统计中的一些常用计算公式,实际应用中还有很多其他的公式和方法。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。

2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。

3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。

4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。

5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。

6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。

7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。

8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。

9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。

概率论与数理统计核心公式汇总

概率论与数理统计核心公式汇总

概率论与数理统计核心公式汇总本文将介绍概率论与数理统计中的核心公式,这些公式在统计学和数据分析中起到至关重要的作用,帮助我们理解和处理各种随机现象和数据集。

通过掌握这些公式,我们可以更好地进行数据分析、推断和预测。

概率论核心公式1. 事件的概率计算公式事件的概率定义为:$P(A)=\\frac{n(A)}{n(S)}$,其中P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中的总次数。

2. 条件概率公式条件概率的计算公式为:$P(A|B)=\\frac{P(A \\cap B)}{P(B)}$,表示事件B发生的条件下事件A发生的概率。

3. 贝叶斯定理贝叶斯定理表示为:$P(A|B)=\\frac{P(B|A)P(A)}{P(B)}$,用于在给定相关事件的条件下计算其余事件的概率。

数理统计核心公式1. 样本均值和总体均值的关系样本均值$\\bar{X}=\\frac{\\sum_{i=1}^{n}X_i}{n}$,总体均值$\\mu=\\frac{\\sum_{i=1}^{N}X_i}{N}$。

当样本容量足够大时,样本均值接近于总体均值。

2. 样本方差和总体方差的关系样本方差$s^2=\\frac{\\sum_{i=1}^{n}(X_i-\\bar{X})^2}{n-1}$,总体方差$\\sigma^2=\\frac{\\sum_{i=1}^{N}(X_i-\\mu)^2}{N}$。

样本方差用于估计总体方差。

3. 中心极限定理中心极限定理表明,样本容量足够大时,样本均值的分布近似服从正态分布,不论总体分布是什么形式。

总结概率论与数理统计中的核心公式为我们提供了处理和分析数据的重要工具。

通过合理运用这些公式,我们可以更准确地理解数据背后的规律并做出有效的决策。

希望本文所介绍的核心公式对您有所帮助。

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理概率论和数理统计是数学中重要的分支,广泛应用于科学、工程、经济、金融等领域。

本文将对概率论和数理统计中常用的公式进行整理,以帮助读者更好地理解和应用这些概念和方法。

一、概率论公式1. 基本概率公式:P(A) = n(A) / n(S)其中P(A)表示事件A发生的概率,n(A)表示事件A的样本空间,n(S)表示样本空间中所有可能结果的个数。

2. 概率的加法公式:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)其中P(A ∪ B)表示事件A或B发生的概率,P(A ∩ B)表示事件A和B同时发生的概率。

3. 条件概率公式:P(A | B) = P(A ∩ B) / P(B)其中P(A | B)表示在事件B已经发生的条件下,事件A发生的概率。

4. 乘法公式:P(A ∩ B) = P(B) * P(A | B) = P(A) * P(B | A)其中P(A ∩ B)表示事件A和B同时发生的概率。

5. 全概率公式:P(A) = ∑[P(Bi) * P(A | Bi)]其中{Bi}为样本空间S的一个划分,P(Bi)表示事件Bi发生的概率。

二、数理统计公式1. 期望:E(X) = ∑[x * P(X = x)]其中X表示随机变量,x表示X可能取到的值,P(X = x)表示X取到x的概率。

2. 方差:Var(X) = E[(X - E(X))^2]其中E(X)表示随机变量X的期望。

3. 标准差:σ(X) = √(Var(X))其中Var(X)表示随机变量X的方差。

4. 协方差:Cov(X, Y) = E[(X - E(X)) * (Y - E(Y))]其中X和Y分别表示两个随机变量。

5. 相关系数:ρ(X, Y) = Cov(X, Y) / (σ(X) * σ(Y))其中Cov(X, Y)表示X和Y的协方差,σ(X)和σ(Y)分别表示X和Y的标准差。

三、概率分布公式1. 二项分布:P(X = k) = C(n, k) * p^k * (1 - p)^(n-k)其中X服从二项分布,n表示试验次数,k表示成功次数,p 表示每次试验成功的概率。

概率论与数理统计超全公式总结

概率论与数理统计超全公式总结

E (X )=∑∑x i p i jijxxn+∞ n n−λλkP (X = k ) = e , (k = 0,1,...)k !(a ≤ x ≤ b )1b − af (x ) =概率论与数理统计公式总结F (x ) = P (X ≤ x ) = ∑P (X = k )k ≤x分布函数 对离散型随机变量F ' (x ) = f (x )第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当 A 、B 互斥时, P(A+B)=P(A)+P(B)对连续型随机变量F (x ) = P (X ≤ x ) =∫−∞f (t )dt条件概率公式分布函数与密度函数的重要关系:P (A | B ) =P (AB )P (B )F (x ) = P (X ≤ x ) =∫−∞f (t )dt概率的乘法公式P (AB ) = P (B )P (A | B )= P (A )P (B | A )二元随机变量及其边缘分布分布规律的描述方法全概率公式:从原因计算结果P (A ) = ∑ P (B k )P (A | B k )k =1联合密度函数联合分布函数f (x , y ) ≥ 0f (x , y ) F (x , y )+∞ +∞Bayes 公式:从结果找原因∫−∞ ∫−∞f (x , y )dx dy = 1 0 ≤ F (x , y ) ≤ 1P (B k| A ) = P (B i )P (A | B i ) ∑P (B )P (A | B )F (x , y ) = P {X ≤ x ,Y ≤ y }f (x ) = ∫ f (x , y )d y 联合密度与边缘密度第二章kkk =1Xf Y (y ) = −∞+∞−∞f (x , y )dx二项分布(Bernoulli 分布)——X~B(n,p)P (X =k )=C k p k (1−p)n −k,(k =0,1,...n , ) 泊松分布——X~P(λ)概率密度函数离散型随机变量的独立性P {X = i ,Y = j } = P {X = i }P {Y = j }连续型随机变量的独立性f (x , y ) = f X (x ) f Y (y ) 第三章数学期望离散型随机变量,数学期望定义怎样计算概率P (a ≤ X ≤ b )b连续型随机变量,数学期望定义� E(a)=a ,其中 a 为常数P (a ≤ X ≤ b ) = ∫af (x )d x均匀分布 X~U(a,b)指数分布 X~Exp (θ)• E(a+bX)=a+bE(X),其中 a 、b 为常数 � E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量 g(X)的数学期望常用公式+∞∫−∞ f (x )dx = 1+∞E (X ) = ∑x k ⋅P kk =−∞+∞E (X ) = ∫−∞x ⋅ f (x )dxE (g (X )) = ∑ g (x k ) p kk∫Y / nD (X +Y ) = D (X ) + D (Y ) + 2E {(X − E (X ))(Y − E (Y ))} X ~ N (µ,σ2 )i σ 12 σ E (X Y ) = ∑∑x i y j p i jij2σ22−(x −µ) e 12πσf (x ) =不相关不一定独立第四章 正态分布E (X ) = µ,D (X ) = σ2方 差 定义式常用计算式常用公式当 X 、Y 相互独立时:标准正态分布的概率计算 标准正态分布的概率计算公式P (Z ≤ a ) = P (Z < a ) = Φ(a )P (Z ≥ a ) = P (Z > a ) = 1− Φ(a )P (a ≤ Z ≤ b ) = Φ(b ) − Φ(a )P (−a ≤ Z ≤ a ) = Φ(a ) − Φ(−a ) = 2Φ(a ) −1一般正态分布的概率计算一般正态分布的概率计算公式 P (X ≤ a ) = P (X < a ) = Φ(a − µσ ) a − µ方差的性质P (X ≥ a ) = P (X > a ) = 1− Φ( σ)D(a)=0,其中 a 为常数P (a ≤ X ≤ b ) = Φ(b − µ− Φ(a − µD(a+bX)=b2D(X),其中 a 、b 为常数当 X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数E {[X − E (X )][Y − E (Y )]}= E (XY ) − E (X )E (Y )第 五 章卡方分布σ ) σ)n若X ~ N (0,1),则∑ X 2 ~ χ2(n )i =121n2 2协方差的性质若Y ~ N (µ,σ ),t 分布则 2 ∑(Y i− µ) i =1 ~ χ (n )若X ~ N (0,1), Y ~ χ2(n ),则X ~ t (n )独立与相关独立必定不相关 Cov (aX ,bY ) = abCov (X ,Y )若U ~ χ2 (n ), F 分布正态总体条件下 样本均值的分布:V ~ χ2(n ),则U / n 1 V / n 2~ F (n 1,n 2 )相关必定不独立2X ~ N (µ,)nX − µ~ N (0,1)σ/ n 2− E (X )) ⋅ f (x )dx x +∞−∞∫ D (X ) =( E (XY ) = ∫ ∫ xyf (x , y )dxdy σX ~ N (µ,σ2 ) ⇔ Z = X − µ~ N (0,1)D (X )D (Y )XY ρ =C ov (X ,Y )Cov (X +Y , Z ) = Cov (X , Z ) + Cov (Y , Z )C ov (X , X ) = E (X 2 ) − (E (X ))2 =D (X )Cov (X ,Y ) = E (XY ) − E (X )E (Y )D (X +Y ) = D (X ) + D (Y )D (X ) =E (X 2 ) − [E (X )]2当X 与Y 独立时,E (XY ) = E (X )E (Y )Φ(a ) = 1− Φ(−a ) E (X +Y ) = E (X ) + E (Y )E (X ) = ∫ ∫ xf (x , y )dxdyn ⎠ n ⎠ n ⎠σ2 1 + 2 n 1 n 2 σ2 σ / n(x 1 − x 2 )± z α/ 2 2 2 ⎜ χ χ ⎛ ⎜ ⎟12x ± z样本方差的分布:正态总体方差的区间估计 两个正态总体均值差的置信区间(n −1)S 2 ~ χ2 (n −1) X − µ~ t (n −1) 大样本或正态小样本且方差已知σ2两个正态总体的方差之比⎛⎜ ⎜ ⎝S 2 / S 2两个正态总体方差比的置信区间1 2~ F (n 1 −1,σ2 /σ2n 2 −1)2 / S 2 , 2 / S 2⎞ ⎝ F α/ 2 (n 1 −1,n 2 −1) F α/ 2 (n 1 −1,n 2 −1) ⎠第六章点估计:参数的估计值为一个常数矩估计 最大似然估计n似然函数第七章假设检验的步骤1 根据具体问题提出原假设 H0 和备择假设 H12 根据假设选择检验统计量,并计算检验统计值3 看检验统计值是否落在拒绝域,若落在拒绝域则L = Π i =1f (x i ;θ)L = Π i =1p (x i ;θ)拒绝原假设,否则就不拒绝原假设。

数理统计常用公式整理

数理统计常用公式整理

数理统计常用公式整理一、概率公式1. 概率的加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)2. 条件概率公式:P(A|B) = P(A∩B) / P(B)3. 乘法公式:P(A∩B) = P(B) × P(A|B) = P(A) × P(B|A)4. 全概率公式:P(B) = ΣP(Ai) × P(B|Ai),其中Ai为样本空间的划分。

5. 贝叶斯公式:P(Ai|B) = P(Ai) × P(B|Ai) / ΣP(Aj) × P(B|Aj),其中Ai为样本空间的划分。

二、随机变量公式1. 期望:E(X) = Σx×P(X=x),其中x为随机变量X的取值,P(X=x)为其概率。

2. 方差:Var(X) = E((X-E(X))^2) = E(X^2) - [E(X)]^23. 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))4. 两个随机变量X和Y的相关系数:ρ(X,Y) = Cov(X,Y) / (σ(X) × σ(Y)),其中σ(X)和σ(Y)分别为X和Y的标准差。

三、常见分布公式1. 二项分布:P(X=k) = C(n,k) × p^k × (1-p)^(n-k),其中n为试验次数,k为成功次数,p为单次试验成功的概率。

2. 泊松分布:P(X=k) = (λ^k × e^(-λ)) / k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。

3. 正态分布:f(x) = (1 / (σ×√(2π))) × e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差。

4. t分布:f(t) = (Γ((v+1)/2) / (√(vπ) × Γ(v/2))) × (1 + t^2/v)^(-((v+1)/2)),其中v为自由度。

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

(完整版)概率论与数理统计公式整理(超全版)

(完整版)概率论与数理统计公式整理(超全版)
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。

2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。

3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。

4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。

5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。

2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。

3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。

4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。

5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。

6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。

以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。

掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。

概率论与数理统计 公式(全)

概率论与数理统计 公式(全)

对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi

i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
密度函数具有下面 4 个性质:
1° f (x) 0 。

f (x)dx 1


P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X x
;..
(4)分布函数 (5)八大分布
;..
..
设事件 B1, B2 ,…, Bn 及 A 满足
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n,
n
A Bi

i1 , P( A) 0 ,

P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
..
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
(2)加 法和乘 法原理
(3)一 些常见 排列 (4)随 机试验 和随机 事件
(5)基 本事 件、样 本空间 和事件
3° F() lim F(x) 0, F() lim F(x) 1;

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。

2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。

3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。

4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。

5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。

6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。

7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。

二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。

2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。

3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。

4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。

5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。

6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。

7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。

3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。

5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。

6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。

二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。

2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。

5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。

6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。

概率和统计公式大全

概率和统计公式大全

概率和统计公式大全1.基本概率公式-事件发生的概率:P(A)=n(A)/n(S),其中n(A)是事件A发生的可能结果数,n(S)是总的可能结果数。

-互斥事件的概率:P(A∪B)=P(A)+P(B),其中A和B是互斥事件。

-对立事件的概率:P(A')=1-P(A),其中A'表示事件A的补集。

2.条件概率公式-两个事件A和B同时发生的概率:P(A∩B)=P(A)*P(B,A),其中P(B,A)表示已知事件A发生的条件下,事件B发生的概率。

-两个事件A和B互斥的概率:P(A∪B)=P(A)+P(B)-P(A∩B)。

-两个事件A和B互相独立的概率:P(A∩B)=P(A)*P(B)。

3.随机变量和概率分布- 随机变量的期望:E(X) = ∑(xi * P(X=xi)),其中xi是随机变量X的可能取值,P(X=xi)是随机变量X取值为xi的概率。

- 随机变量的方差:Var(X) = E((X - E(X))^2) = E(X^2) -(E(X))^2-二项分布的概率:P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中C(n,k)表示从n个元素中选取k个的组合数,p是单次实验成功的概率。

-正态分布的概率:P(a≤X≤b)=Φ((b-μ)/σ)-Φ((a-μ)/σ),其中Φ(x)是标准正态分布的累积分布函数,μ是正态分布的均值,σ是标准差。

4.抽样与统计推断-样本均值的期望:E(x̄)=μ,其中μ是总体均值。

- 样本方差的无偏估计:s^2 = Σ(xi - x̄)^2 / (n-1),其中xi是样本中的观察值,x̄是样本均值,n是样本容量。

-正态总体均值的置信区间:x̄±t*(s/√n),其中x̄是样本均值,s是样本标准差,n是样本容量,t是自由度为n-1的t分布的临界值。

-正态总体比例的置信区间:p±z*√(p(1-p)/n),其中p是样本比例,n是样本容量,z是标准正态分布的临界值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章随机事件及其概率第二章随机变量及其分布(1)离散型随机变量的分布律设离散型随机变量X的可能取值为X k(k=1,2,…)且取各个值的概率,即事件(X=X k)的概率为P(X=x k)=p k,k=1,2,…,则称上式为离散型随机变量X的概率分布或分布律。

有时也用分布列的形式给出:ΛΛΛΛ,,,,,,,,|)(2121kkk pppxxxxXPX=。

显然分布律应满足下列条件:(1)≥kp,Λ,2,1=k,(2)∑∞==11kkp。

(2)连续型随机变量的分布密度设)(xF是随机变量X的分布函数,若存在非负函数)(xf,对任意实数x,有⎰∞-=x dxxfxF)()(,则称X为连续型随机变量。

)(xf称为X的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:1°)(≥xf。

2°⎰+∞∞-=1)(dxxf。

(3)离散与连续型随机变量的关系dxxfdxxXxPxXP)()()(≈+≤<≈=积分元dxxf)(在连续型随机变量理论中所起的作用与kk pxXP==)(在离散型随机变量理论中所起的作用相类似。

(4)分布函数设X 为随机变量,x 是任意实数,则函数)()(x X P x F ≤=称为随机变量X 的分布函数,本质上是一个累积函数。

)()()(a F b F b X a P -=≤< 可以得到X 落入区间],(b a 的概率。

分布函数)(x F 表示随机变量落入区间(– ∞,x]内的概率。

分布函数具有如下性质:1° ,1)(0≤≤x F +∞<<∞-x ;2° )(x F 是单调不减的函数,即21x x <时,有 ≤)(1x F )(2x F ; 3° 0)(lim )(==-∞-∞→x F F x , 1)(lim )(==+∞+∞→x F F x ;4° )()0(x F x F =+,即)(x F 是右连续的; 5° )0()()(--==x F x F x X P 。

对于离散型随机变量,∑≤=x x kk px F )(;对于连续型随机变量,⎰∞-=xdx x f x F )()( 。

(5)八大分布0-1分布 P(X=1)=p, P(X=0)=q二项分布在n 重贝努里试验中,设事件A 发生的概率为p 。

事件A 发生的次数是随机变量,设为X ,则X 可能取值为n ,,2,1,0Λ。

kn k kn n q p C k P k X P -===)()(, 其中n k p p q ,,2,1,0,10,1Λ=<<-=,则称随机变量X 服从参数为n ,p 的二项分布。

记为),(~p n B X 。

当1=n 时,kkqp k X P -==1)(,1.0=k ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

泊松分布 设随机变量X 的分布律为λλ-==e k k X P k!)(,0>λ,Λ2,1,0=k ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λπX 或者P(λ)。

泊松分布为二项分布的极限分布(np=λ,n →∞)。

超几何分布),min(,2,1,0,)(n M l l k C C C k X P nNkn MN k M ==•==--Λ 随机变量X 服从参数为n,N,M 的超几何分布,记为H(n,N,M)。

几何分布Λ,3,2,1,)(1===-k p q k X P k ,其中p ≥0,q=1-p 。

随机变量X 服从参数为p 的几何分布,记为G(p)。

均匀分布设随机变量X 的值只落在[a ,b]内,其密度函数)(x f 在[a ,b]上为常数ab -1,即⎪⎩⎪⎨⎧-=,0,1)(ab x f 其他, 则称随机变量X 在[a ,b]上服从均匀分布,记为X ~U(a ,b)。

分布函数为⎰∞-==xdx x f x F )()(当a ≤x 1<x 2≤b 时,X 落在区间(21,x x )内的概率为ab x x x X x P --=<<1221)(。

0, x<a , ,a b ax -- a ≤x ≤b1, x>b 。

a ≤x ≤b指数分布其中0>λ,则称随机变量X 服从参数为λ的指数分布。

X 的分布函数为记住积分公式:!0n dx e xx n=⎰+∞-正态分布设随机变量X 的密度函数为222)(21)(σμσπ--=x ex f , +∞<<∞-x ,其中μ、0>σ为常数,则称随机变量X 服从参数为μ、σ的正态分布或高斯(Gauss )分布,记为),(~2σμN X 。

)(x f 具有如下性质:1° )(x f 的图形是关于μ=x 对称的; 2° 当μ=x 时,σπμ21)(=f 为最大值;若),(~2σμN X ,则X 的分布函数为 dt e x F x t ⎰∞---=222)(21)(σμπσ。

参数0=μ、1=σ时的正态分布称为标准正态分布,记为)1,0(~N X ,其密度函数记为 2221)(x ex -=πϕ,+∞<<∞-x ,分布函数为⎰∞--=Φxt dt ex 2221)(π。

)(x Φ是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)=21。

如果X ~),(2σμN ,则σμ-X ~)1,0(N 。

⎪⎭⎫⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=≤<σμσμ1221)(x x x X x P 。

=)(x f ,x e λλ- 0≥x ,0, 0<x ,=)(x F ,1xe λ-- 0≥x , ,0 x<0。

(6)分位数下分位表:αμα=)(≤XP;上分位表:αμα=)(>XP。

(7)函数分布离散型已知X的分布列为ΛΛΛΛ,,,,,,,,)(2121nni pppxxxxXPX=,)(XgY=的分布列()(iixgy=互不相等)如下:ΛΛΛΛ,,,,),(,),(),()(2121nni pppxgxgxgyYPY=,若有某些)(i xg相等,则应将对应的ip相加作为)(i xg的概率。

连续型先利用X的概率密度f X(x)写出Y的分布函数F Y(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出f Y(y)。

第三章二维随机变量及其分布(1)联合分布离散型如果二维随机向量ξ(X,Y)的所有可能取值为至多可列个有序对(x,y),则称ξ为离散型随机量。

设ξ=(X,Y)的所有可能取值为),2,1,)(,(Λ=jiyxji,且事件{ξ=),(jiyx}的概率为p ij,,称),2,1,()},(),{(Λ===jipyxYXPijji为ξ=(X,Y)的分布律或称为X和Y的联合分布律。

联合分布有时也用下面的概率分布表来表示:YXy1y2…y j…x1p11p12…p1j…x2p21p22…p2j…M M M M Mx i p i1…ijp…M M M M M这里p ij具有下面两个性质:(1)p ij≥0(i,j=1,2,…);(2).1=∑∑iji jp连续型对于二维随机向量),(Y X =ξ,如果存在非负函数),)(,(+∞<<-∞+∞<<-∞y x y x f ,使对任意一个其邻边分别平行于坐标轴的矩形区域D ,即D={(X,Y)|a<x<b,c<y<d}有⎰⎰=∈Ddxdy y x f D Y X P ,),(}),{(则称ξ为连续型随机向量;并称f(x,y)为ξ=(X ,Y )的分布密度或称为X 和Y 的联合分布密度。

分布密度f(x,y)具有下面两个性质: (1) f(x,y)≥0; (2)⎰⎰+∞∞-+∞∞-=.1),(dxdy y x f(2)二维随机变量的本质 )(),(y Y x X y Y x X =====I ξξ(3)联合分布函数设(X ,Y )为二维随机变量,对于任意实数x,y,二元函数},{),(y Y x X P y x F ≤≤=称为二维随机向量(X ,Y )的分布函数,或称为随机变量X 和Y 的联合分布函数。

分布函数是一个以全平面为其定义域,以事件})(,)(|),{(2121y Y x X ≤<-∞≤<-∞ωωωω的概率为函数值的一个实值函数。

分布函数F(x,y)具有以下的基本性质: (1);1),(0≤≤y x F(2)F (x,y )分别对x 和y 是非减的,即当x 2>x 1时,有F (x 2,y )≥F(x 1,y);当y 2>y 1时,有F(x,y 2) ≥F(x,y 1); (3)F (x,y )分别对x 和y 是右连续的,即);0,(),(),,0(),(+=+=y x F y x F y x F y x F(4).1),(,0),(),(),(=+∞+∞=-∞=-∞=-∞-∞F x F y F F (5)对于,,2121y y x x <<0)()()()(11211222≥+--y x F y x F y x F y x F ,,,,.(4)离散型与连续型的关系dxdy y x f dy y Y y dx x X x P y Y x X P )()()(,,,≈+≤<+≤<≈==(5)边缘分布离散型 X 的边缘分布为),2,1,()(Λ====∑•j i p x X P P ij ji i ;Y 的边缘分布为),2,1,()(Λ====∑•j i p y Y P P ij ij j 。

连续型 X 的边缘分布密度为⎰+∞∞-=;dy y x f x f X ),()(Y 的边缘分布密度为.),()(⎰+∞∞-=dx y x f y f Y(6)条件分布离散型在已知X=x i 的条件下,Y 取值的条件分布为;•===i ij i j p p x X y Y P )|( 在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P •===连续型在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =; 在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =(7)独立性一般型 F(X,Y)=F X (x)F Y (y)离散型j i ij p p p ••=有零不独立连续型f(x,y)=f X (x)f Y (y) 直接判断,充要条件: ①可分离变量②正概率密度区间为矩形二维正态分布,121),(2222121211221))((2)1(212⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+---⎪⎪⎭⎫ ⎝⎛----=σμσσμμρσμρρσπσy y x x ey x fρ=0随机变量的函数若X 1,X 2,…X m ,X m+1,…X n 相互独立, h,g 为连续函数,则: h (X 1,X 2,…X m )和g (X m+1,…X n )相互独立。

相关文档
最新文档