数字信号处理第二章Z变换
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①极点zk,为D(z)=0的根 ②计算系数Ak时,要写成:
③利用已知z变换时,注意收敛域
配分法: 例2-4-1:
(在滤波器的设计中,分子、分母通常写成负幂的形式)
求系数Ak
例2-4-2:
利用z变换的时移性质: 令: 则:
长除法-原理
即D(z)除以N(z)的商为z的多项式,多项式的系数即为序列x(n) 左边序列对应z的正次幂的系数,右边序列对应z的负次幂的系数
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
系统函数:
§2.4 z反变换
部分分式法:
X(z)一般是z的有理分式,可写成X(z)=N(z)/D(z),而N(z)、
D(z)一般是实系数多项式,则X(z)可以写成部分分式之和的形 式
再利用已知的z变换:
结合收敛域写出反变换:
需要注意的问题:
当输入x(n)=(n)时,输出y(n)称为单位抽样
响应h(n)。
3、注意的问题:系统的稳定性和因果性
§2.2 收敛域
1、定义: 使序列x(n)的z变换X(z)收敛的所有z值的 集合称作X(z)的收敛域。 2、收敛条件:(级数的收敛条件) X(z)收敛的充要条件是绝对可和。
一、有限长序列
例1:求序列
的Z变换及收敛域。
收敛域为:
例2:求序列
解:
的Z变换及收敛域。
其收敛域应包括
即
充满整个Z平面。
例3:求序列
二、右边序列
的Z变换及收敛域。
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
例4:求序列 解:
的Z变换及收敛域。
当
时,这是无穷递缩等比级数。
三、左边序列
例5:求序列
的Z变换及收敛域。
例6:
四、双边序列
LT主要问题:收敛域、极点、反变换
常用的LT:
S平面与Z平面的映射关系
连续信号xa(nT)抽样后为 抽样信号的拉氏变换为
抽样序列x(n)=xa(nT) 的z变换为 比较两式得s平面到z平面的映射关系为:
(主要应用于AF到DF转换)
•将s平面用直角坐标表示:
,
横坐标为,纵坐标为模拟角频率;
•将z平面用极坐标表示:
s=jΩ X(S)
z=esT
X(z) z=ejω
模拟:x(t)
X(j) =T
X(ejω)
t=nT
s
数字:x(n)
§2.6 离散系统的系统函数和 系统的频率响应
一、离散系统的系统函数
1、差分方程和系统函数的关系
系统的差分方程为:
对方程两边做z变换,得:
整理得系统函数为:
2、 H(z)和单位抽样响应h(n) 的关系
,|a|<1
|a|<|z|<1/|a|
双边序列的收敛域是左边序列和右边序列z变换的 公共收敛区间。
课本P27表2.1
作业2.1(2)(6)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
数字信号处理第二章Z变换
讨论z变换的目的:
离散系统可以用差分方程表示:
在数字信号处理中,离散系统就是数字滤波器 ,要分析数字滤波器就要解差分方程,但直接 解起来很麻烦,所以利用z变换把差分方程转化 为代数方程,使求解过程简化。
LT~微分方程
§2.1 Z变换
Z变换的表示:
双边z变换:
单边z变换: Z为复数,以z的实部为横坐标,z的虚部 为纵坐标,可以构成一个z平面
,
横坐标为实轴,纵坐标为虚轴;
•两平面都是复平面。
(1)r与的关系
→
=0,即S平面的虚轴→r=1,即z平面单位圆; <0,即S的左半平面→r<1,即z的单位圆内; >0,即S的右半平面→r>1,即z的单位圆外 。
j
0
0
→
r=0,=0时, =–,=0,即z平面的原点映射
到s平面的实轴上负无穷远处。
零极点
为有理分式,
D(z)=0的根称为z变换的极点, N(z)=0的根称为z变换的零点。
极点与收敛域的关系: 收敛域不包含极点,收敛域总是以极点为收敛 边界,收敛圆必然通过极点。零、极点分为单 根和重根,单根又分为实根和共轭复根(若为 复根,必然是共轭的,因为系数是实数),滤 波器设计只考虑单根的情况。
= 0T,
z:始于原点的射线;
jIm[Z]
Re[Z]
0百度文库
Re[Z]
二、Z变换与FT的关系
傅里叶变换是拉氏变换在s平面的虚轴上的 特例,由于s平面的虚轴映射到z平面的单位 圆上,因此抽样序列在单位圆上的z变换就 是它的傅里叶变换。
连续: L[h(t)]
离散: Z[h(t)]
频率响应 系统函数
各个变换的关系:
例:
因为D(z)的系数是实数,所以复极点必然成对出现
作业2.3
§2.5 Z变换与Laplace变换、序列的 傅里叶变换的关系
一、 Z变换与Laplace变换的关系
利用LT可以得到连续系统的一些性质,利用z变换 可以得到离散系统的系统函数,而在设计数字滤 波器时可以先设计AF,再通过代换得到DF,所以 AF和DF的关系就可从LT与z变换的关系得到。
Z- —1 ) Z 4 Z- —14
—14 —14
-
—116
Z-1
为了得到z的正次幂的 多项式,将除数和被 除数按z的升幂排列
—116 Z-1 —116 Z-1- —614 Z-2
—614 Z -2 —614 Z-2 - —215—6 Z-3
—215—6 Z-3
...
极点分为:实极点、复极点 若为复极点必然是共轭极点,必然是成对出现
长除法-例子
为了得到z的正次幂的多项式,将除数和被除数按z的升幂排列
4-Z)
4Z+Z2+ —41 Z 3+ —116Z 4+ —614Z 5+ ...
16 Z 16 Z - 4 Z2
4 Z2
4 Z2 - Z3
Z3
Z 3 - —14 Z 4
—14 —14
Z Z
4
4-
—116
Z
5
—116 Z 5
…
1+ —14 Z-1+11—6 Z-2 + 6—14 Z -3...
(2)与的关系(=T)
的取值范围是从-→(负频端无意义,只是
用于数学分析),而在圆周上变化,具有明显 的周期性,以2为周期,这样的对应关系非单值
关系,所以要把限制在一个周期内。
= T,从–→, 所以在一个周期内:为–/T→/T
=0,S平面的实轴,
=0,z平面正实轴;
=0(常数), S:平行实轴的直线,
③利用已知z变换时,注意收敛域
配分法: 例2-4-1:
(在滤波器的设计中,分子、分母通常写成负幂的形式)
求系数Ak
例2-4-2:
利用z变换的时移性质: 令: 则:
长除法-原理
即D(z)除以N(z)的商为z的多项式,多项式的系数即为序列x(n) 左边序列对应z的正次幂的系数,右边序列对应z的负次幂的系数
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
系统函数:
§2.4 z反变换
部分分式法:
X(z)一般是z的有理分式,可写成X(z)=N(z)/D(z),而N(z)、
D(z)一般是实系数多项式,则X(z)可以写成部分分式之和的形 式
再利用已知的z变换:
结合收敛域写出反变换:
需要注意的问题:
当输入x(n)=(n)时,输出y(n)称为单位抽样
响应h(n)。
3、注意的问题:系统的稳定性和因果性
§2.2 收敛域
1、定义: 使序列x(n)的z变换X(z)收敛的所有z值的 集合称作X(z)的收敛域。 2、收敛条件:(级数的收敛条件) X(z)收敛的充要条件是绝对可和。
一、有限长序列
例1:求序列
的Z变换及收敛域。
收敛域为:
例2:求序列
解:
的Z变换及收敛域。
其收敛域应包括
即
充满整个Z平面。
例3:求序列
二、右边序列
的Z变换及收敛域。
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
例4:求序列 解:
的Z变换及收敛域。
当
时,这是无穷递缩等比级数。
三、左边序列
例5:求序列
的Z变换及收敛域。
例6:
四、双边序列
LT主要问题:收敛域、极点、反变换
常用的LT:
S平面与Z平面的映射关系
连续信号xa(nT)抽样后为 抽样信号的拉氏变换为
抽样序列x(n)=xa(nT) 的z变换为 比较两式得s平面到z平面的映射关系为:
(主要应用于AF到DF转换)
•将s平面用直角坐标表示:
,
横坐标为,纵坐标为模拟角频率;
•将z平面用极坐标表示:
s=jΩ X(S)
z=esT
X(z) z=ejω
模拟:x(t)
X(j) =T
X(ejω)
t=nT
s
数字:x(n)
§2.6 离散系统的系统函数和 系统的频率响应
一、离散系统的系统函数
1、差分方程和系统函数的关系
系统的差分方程为:
对方程两边做z变换,得:
整理得系统函数为:
2、 H(z)和单位抽样响应h(n) 的关系
,|a|<1
|a|<|z|<1/|a|
双边序列的收敛域是左边序列和右边序列z变换的 公共收敛区间。
课本P27表2.1
作业2.1(2)(6)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
数字信号处理第二章Z变换
讨论z变换的目的:
离散系统可以用差分方程表示:
在数字信号处理中,离散系统就是数字滤波器 ,要分析数字滤波器就要解差分方程,但直接 解起来很麻烦,所以利用z变换把差分方程转化 为代数方程,使求解过程简化。
LT~微分方程
§2.1 Z变换
Z变换的表示:
双边z变换:
单边z变换: Z为复数,以z的实部为横坐标,z的虚部 为纵坐标,可以构成一个z平面
,
横坐标为实轴,纵坐标为虚轴;
•两平面都是复平面。
(1)r与的关系
→
=0,即S平面的虚轴→r=1,即z平面单位圆; <0,即S的左半平面→r<1,即z的单位圆内; >0,即S的右半平面→r>1,即z的单位圆外 。
j
0
0
→
r=0,=0时, =–,=0,即z平面的原点映射
到s平面的实轴上负无穷远处。
零极点
为有理分式,
D(z)=0的根称为z变换的极点, N(z)=0的根称为z变换的零点。
极点与收敛域的关系: 收敛域不包含极点,收敛域总是以极点为收敛 边界,收敛圆必然通过极点。零、极点分为单 根和重根,单根又分为实根和共轭复根(若为 复根,必然是共轭的,因为系数是实数),滤 波器设计只考虑单根的情况。
= 0T,
z:始于原点的射线;
jIm[Z]
Re[Z]
0百度文库
Re[Z]
二、Z变换与FT的关系
傅里叶变换是拉氏变换在s平面的虚轴上的 特例,由于s平面的虚轴映射到z平面的单位 圆上,因此抽样序列在单位圆上的z变换就 是它的傅里叶变换。
连续: L[h(t)]
离散: Z[h(t)]
频率响应 系统函数
各个变换的关系:
例:
因为D(z)的系数是实数,所以复极点必然成对出现
作业2.3
§2.5 Z变换与Laplace变换、序列的 傅里叶变换的关系
一、 Z变换与Laplace变换的关系
利用LT可以得到连续系统的一些性质,利用z变换 可以得到离散系统的系统函数,而在设计数字滤 波器时可以先设计AF,再通过代换得到DF,所以 AF和DF的关系就可从LT与z变换的关系得到。
Z- —1 ) Z 4 Z- —14
—14 —14
-
—116
Z-1
为了得到z的正次幂的 多项式,将除数和被 除数按z的升幂排列
—116 Z-1 —116 Z-1- —614 Z-2
—614 Z -2 —614 Z-2 - —215—6 Z-3
—215—6 Z-3
...
极点分为:实极点、复极点 若为复极点必然是共轭极点,必然是成对出现
长除法-例子
为了得到z的正次幂的多项式,将除数和被除数按z的升幂排列
4-Z)
4Z+Z2+ —41 Z 3+ —116Z 4+ —614Z 5+ ...
16 Z 16 Z - 4 Z2
4 Z2
4 Z2 - Z3
Z3
Z 3 - —14 Z 4
—14 —14
Z Z
4
4-
—116
Z
5
—116 Z 5
…
1+ —14 Z-1+11—6 Z-2 + 6—14 Z -3...
(2)与的关系(=T)
的取值范围是从-→(负频端无意义,只是
用于数学分析),而在圆周上变化,具有明显 的周期性,以2为周期,这样的对应关系非单值
关系,所以要把限制在一个周期内。
= T,从–→, 所以在一个周期内:为–/T→/T
=0,S平面的实轴,
=0,z平面正实轴;
=0(常数), S:平行实轴的直线,