《数学物理方法》第1章复变函数与解析函数

合集下载

数学物理方法(第四版)高等教育出版社第一章1

数学物理方法(第四版)高等教育出版社第一章1
表示到点2i和到 两点距离相 表示到点 和到-2两点距离相 和到 等点的轨迹。 等点的轨迹。既过原点的直线
-2
(x,y)
x
(0,-1)
(3) Im(i+ z) = 4
Im[i + (x −iy)] = Im[x + i(1− y)] = 4
1− y = 4
表示y= 的直线 表示 -3的直线
y=-3
5、复平面与复数球之关系
例3 设 z =
z1 7 1 ( )=− + i z2 5 5
−1 3i 求 − , Re( z ), Im(z ) 与 zz i 1− i
−1 3i 3i(1+ i) 3 3 3 1 z= − =i − =i − i+ = − i i 1− i (1− i)(1+ i) 2 2 2 2
3 ∴Re(z) = 2
2 x 2
3、复数的三种表示: 、复数的三种表示
1). 代数式 2). 三角式
z = x + iy
z =ρ
x = ρ cosθ
y = ρ sinθ
z = ρ (cos θ + i sin θ )
3). 指数式
e = cosθ + i sin θ

欧拉公式
z = ρe

θ = Argz
4、复数的运算
A
S
•作业:P6 作业: 作业
•1(2)( )( ) ( )( )(5) )(3)( •2(1)( )( )( ) ( )( )(5)( )(4)( )(6) •3(1)( ) ( )( )(4)
§1.2
复变函数
复变函数的定义与定义域: 一、复变函数的定义与定义域: 复变函数定义: 1、复变函数定义: 复数平面上存在一个点集E, 复数平面上存在一个点集 , 对于E的每一点( 每一个 值 ) , 对于 的每一点(每一个z值 的每一点 按照一定的规律, 按照一定的规律 , 有一个或多 ω 与之相对应, 个复数值 与之相对应 , 则称 为z的函数 的函数——复变函数,z称为 复变函数, 称为 的函数 复变函数

数学物理方法第四版课后答案

数学物理方法第四版课后答案

数学物理方法第四版课后答案《数学物理方法第四版课后答案》第一章:复变函数1.1 复数与复平面题目1:将以下复数写成极坐标形式:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) r = √(3^2 + 4^2) = 5, θ = arctan(4/3)∴ z = 5(cos(arctan(4/3)) + i*sin(arctan(4/3)))b) r = √((-2)^2 + (-5)^2) = √(4 + 25) = √29, θ = arctan((-5)/(-2)) = arctan(5/2)∴ z = -√29(cos(arctan(5/2)) + i*sin(arctan(5/2)))c) r = √(0^2 + 5^2) = 5, θ = arctan(0/5) = 0∴ z = 5(cos(0) + i*sin(0)) = 5i题目2:计算以下复数的共轭:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) z* = 3 - 4ib) z* = -2 + 5ic) z* = -5i...第二章:常微分方程2.1 一阶微分方程题目1:求解以下一阶线性非齐次微分方程:a) \\frac{dy}{dx} + 2y = e^xb) \\frac{dy}{dx} - y = 3x^2解答:a) 首先求齐次方程的解,即 \\frac{dy}{dx} + 2y = 0观察到该方程的解为 y = Ce^{-2x},其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} + 2y = e^x令 y = A e^{-2x},其中 A 为待定常数\\frac{dy}{dx} = -2A e^{-2x},代入方程得到 -2A e^{-2x} + 2A e^{-2x} = e^x解得 A = -\\frac{1}{4}∴ 非齐次方程的解为 y = -\\frac{1}{4} e^{-2x},加上齐次方程的解得到最终解 y = Ce^{-2x} - \\frac{1}{4} e^{-2x}b) 首先求齐次方程的解,即 \\frac{dy}{dx} - y = 0观察到该方程的解为 y = Ce^x,其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} - y = 3x^2令 y = A e^x + B,其中 A、B 为待定常数\\frac{dy}{dx} = A e^x,代入方程得到 A e^x - (A e^x + B) = 3x^2解得 B = -3x^2∴ 非齐次方程的解为 y = A e^x - 3x^2,加上齐次方程的解得到最终解 y = Ce^x - 3x^2...通过以上两个例题,可以看出在解一阶线性非齐次微分方程时,首先解齐次方程得到通解,然后根据非齐次项的形式确定待定系数,最后将通解与待定解相加得到最终解。

一章复变函数和解析函数

一章复变函数和解析函数

2020/4/29
2
课程讲授计划
• 第一章 复变函数和解析函数(5) • 第二章 复变函数积分 柯西定理和柯西公式(5) • 第六章 点源和瞬时源 函数(2) • 第七章 傅里叶变换和色散关系(6) • 第八章 线性常微分方程的级数解法和某些特殊函数(8) • 第九章 数学物理方程的定解问题(6) • 第十章 行波法和分离变量法 本征值问题(6) • 第十一章 积分变换法(4) • 第十二章 球坐标下的分离变量法(8) • 第十三章 柱坐标下的分离变量法 Bessel函数(8)
(3)复数的指数函数表示
复数的三角函数表示式
z(cosisin)
利用欧拉公式 eicosisin,
复数可以表示成
z ei 复数的指数表示式
2020/4/29
16
(4)复数的运算规则 (注:运用到实数特例时,能够与实数的运算规则相符)
设z1=x1+iy1和 z2=x2+iy2是两个复数
加减 z1 ± z2 =(x1+iy1) ± (x2 +i y2 )
注意 一般说来, z是一个无穷多值函数 . 当ln z 取主值 ln z时, z e ln z称为幂函数z 的主值;
2020/4/29
26
例1.4 求 (3)5和 21i 的 值 .
e 解 (3) 5 e 5ln(3)
5(ln3i2ki)
3 5 [c o s5 (2 k 1 ) is in5 (2 k 1 )],
Euler把 1 作为特 殊的数 2020/4/29
2
sin x 1 e 1x e 1x 2 1
9
1.1 复数的基本概念
1 复数及其代数运算
(1). 复数的代数形式

数学物理方法第一章

数学物理方法第一章
2 2
x1 iy 1 x 2 iy 2

x1 iy 1 x 2 x 2 iy 2 x 2
iy 2
iy 2
i
x 2 y 1 x1 y 2 x2 y2
2 2
复数的乘除用指数式更方便!
7
数学物理方法
复数的乘除用指数式更方便!
28
数学物理方法
另外,在复平面z上,绕原点和不绕原点转一圈, 角变化不一样。绕原点转一圈角增加了2,而 不绕原点转一圈,角不变。 一般地,对于多值函数ω = f(z),若有这样的点z = z0,在它的邻域内当z的辐角改变2(即z绕z0一周) 时,ω的值并不还原,则z0点称为该函数的枝点。
i
ln i
若0是z的辐角的某一值,则 ln i 0 2 n (n为 整数) 都是lnz的值。即对数函数是一个多值函数。
幂函数:
s s ln z
(s为复数)
z e 我们还可以用类似于实数函数的定义方法定义反
三角函数、反双曲函数等。 值得注意的是正弦、余弦复变函数的模可大于1。
i5ຫໍສະໝຸດ 数学物理方法例1.1 下列式子在复平面z上表示什么 (1)R e z
1 2
,(2)R e 1
z
2
解:(见document 1.1)
例1.2 把下列复数用代数式、指数式和三角式表示 出 (1)i,(2)-1,(3)z2 解:(见document 1.1)
6
数学物理方法
3、复数运算 复数相等:当且仅当两个复数的实部和虚部分别 相等时这两个复数才相等。 复数加减:
2


2
xy
同样有:
0 0 即解析函数的实部和虚部都是二维的调和函数。 x y x y 同一解析函数的实部和虚部称为共轭调和函数。

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数首先,复数是由实数和虚数单位i组成的数,形式上可以写成a+bi,其中a和b分别表示实部和虚部。

复数之间的加、减、乘、除运算规则与实数类似,只是需要注意虚数单位i的平方等于-1,即i²=-1接下来,复变函数是指自变量和函数值都是复数的函数。

对于复数z=x+iy,其中x和y是实数,我们可以将复变函数f(z)再拆分为u(x,y)+iv(x,y),其中u(x,y)和v(x,y)分别是实部和虚部。

如果在一些区域内u(x,y)和v(x,y)都是连续且可微的,那么f(z)就是该区域内的解析函数。

解析函数的几何意义是它可以通过无限次的微商得到。

解析函数具有一些重要的性质。

首先,解析函数的实部和虚部满足柯西-黎曼方程,即它们的一阶偏导数满足以下关系:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x。

其次,解析函数的共轭函数也是解析函数。

第三,解析函数可以表示为幂级数的形式,这是解析函数的显著特征之一、最后,解析函数在一些区域内的积分只依赖于积分路径,与路径无关。

这个性质被称为留数定理。

在复变函数的应用中,经常会遇到三个重要的方程:拉普拉斯方程、泊松方程和亥姆霍兹方程。

拉普拉斯方程是描述无源场的分布的方程,它的形式为▽²f=0,其中▽²表示拉普拉斯算子。

泊松方程是描述有源场的分布的方程,它的形式为▽²f=ρ/ε₀,其中ρ为电荷密度,ε₀为真空介电常数。

亥姆霍兹方程是波动方程的一个特例,描述了电磁场、声波、横波等的传播与干涉,它的形式为▽²f+k²f=0,其中k为波数。

综上所述,《数学物理方法》第1章复变函数与解析函数主要介绍了复数的定义、复变函数与解析函数的概念,以及解析函数的性质和三个重要的方程的应用。

对于学习物理或数学的同学而言,掌握复变函数与解析函数的基本知识是非常重要的,它为后续的学习提供了重要的数学工具。

数学物理方法(第四版)(汪德新)PPT模板

数学物理方法(第四版)(汪德新)PPT模板

12.1傅里 叶变换
1
12.2傅里 叶变换法
2
12.3拉普 拉斯变换
3
12.4拉普拉 斯变换法
4
第三篇数学物理方程
第13章格林函数法
03
*13.3格林函数法
在波动问题中的应

02
*13.2格林函数法 在输运问题中的应

01
*13.1格林函数法 在稳定场问题中的
应用
第三篇数学物理方程
第14章保角变换法
02 第17章Z变换
*17.1Z变换的定义及其性质 *17.2用Z变换求解差分方程
03 第18章小波变换
*18.1从傅里叶变换,加博变换到小波 变换 *18.2连续小波变换的性质
第四篇数学物理 方法的若干新兴 分支
06 参考文献
参考文献
07 附录
附录
1. 附录A微分算符▽的若干常用公式 2. 附录B几种常用的常系数常微分方程的解 3. 附录C广义积分与积分主值 4. 附录D二阶线性齐次常微分方程w″(z)+p(z)w′(z)+q(z)w(z)
数学物理方法(第四版)(汪德新)
演讲人
2 0 2 X - 11 - 11
01 前言
前言
02 第一篇复变函数导论
第一篇复变函数导 论
第1章复变函数与解析函数 第2章复变函数的积分 第3章解析函数的级数表示 第4章留数定理及其应用 第5章解析延拓多值函数及其黎曼面
第一篇复变 函数导论
第1章复变函数与解析函 数
6.3勒让德多项式的正交性与完备 性
6.2勒让德多项式的微分与积分表 达式母函数与递推公式
6.4关联勒让德方程与关联勒让德 函数
第二篇特殊函数场论与狄拉克δ函数

2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载

2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载

2023年《高等数学》第四册(数学物理方法)课后习题答案下载《高等数学》第四册内容简介第一篇复变函数论第一章复数与复变函数第一节复数1.1.1. 复数域1.1.2. 复平面1.1.3. 复数的模与幅角1.1.4. 复数的乘幂与方根第二节复变函数的基本概念1.2.1. 区域与约当曲线1.2.2. 复变函数的概念1.2.3. 复变函数的极限与连续性第三节复球面与无穷远点1.3.1. 复球面1.3.2. 闭平面上的几个概念习题第二章解析函数第一节解析函数的概念及哥西一黎曼条件 2.1.1. 导数的定义2.1.2. 哥西一黎曼条件2.1.3. 解析函数的定义第二节解析函数与调和函数的关系2.2.1. 共轭调和函数的求法2.2.2. 共轭调和函数的几何意义第三节初等解析函数2.3.1. 初等单值函数2.3.2. 初等多值函数习题第三章哥西定理哥西积分第一节复变积分的概念及其简单性质3.1.1. 复变积分的定义及其计算方法3.1.2. 复变积分的简单性质第二节哥西积分定理及其推广3.2.1. 哥西积分定理3.2.2. 不定积分3.2.3. 哥西积分定理推广到复围线的情形第三节哥西积分公式及其推广3.3.1. 哥西积分公式3.3.2. 解析函数的无限次可微性3.3.3. 模的最大值原理哥西不等式刘维尔定理摩勒纳定理第四节解析函数在平面场中的应用3.4.1. 什么叫平面场3.4.2. 复位势3.4.3. 举例习题第四章解析函数的幂级数表示第一节函数项级数的基本性质4.1.1. 数项级数4.1.2. 一致收敛的函数项级数第二节幂级数与解析函数4.2.1. 幂级数的敛散性4.2.2. 解析函数的幂级数表示第三节罗朗级数4.3.1. 双边幂级数的收敛圆环4.3.2. 解析函数的罗朗展式4.3.3. 罗朗展式举例第四节单值函数的孤立奇点4.4.1. 孤立奇点的`三种类型4.4.2. 可去奇点……习题第五章残数及其应用第六章保角变换第二篇数学物理方程第七章一维波动方程的付氏解第八章热传导方程的付氏解第九章拉普拉斯方程的圆的狄利克雷问题的付氏解第十章波动方程的达朗贝尔解第十一章数学物理方程的解的积分方式第十二章定解问题的适定性第十三章付里叶变换第十四章拉普拉斯变换第三篇特殊函数第十五章勒让德多项式球函数第十六章贝塞耳函数柱函数第十七章厄密多项式和拉盖尔多项式附录《高等数学》第四册目录本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。

数学物理方法-复变函数与解析函数

数学物理方法-复变函数与解析函数
上篇 复变函数论
2
数学物理方法 课程说明
数学物理方法为2013学年第二学期理工学院12级光信息专业所 开设, 72学时。 本课程在高等数学(一元和多元微积分、幂级数和Fourier级数、 微分方程、线性代数和概率论)和普通物理(力学、热学、电学和 光学)的基础上,以讲授古典数学物理中的常用方法为主,适当 介绍近年来的新发展,为光信息专业后继的基础课程和专业课 程研究有关的数学物理问题作准备,也为今后工作学习中遇到 的数学物理问题的求解提供基础。
R 0 0 0
第一章 复变函数和解析函数
21
y
(z )
z1
z2
o
x
第一章 复变函数和解析函数
22
第一章 复变函数和解析函数
23
例1:用复数方程表示: (1)过两点 z j = x j + i y j (j = 1 , 2 )的直线; (2)中心在点( 0 , - 1 ) 点的表示:z = x + i y <=> 复平面上的点 P ( x , y )
第一章 复变函数和解析函数
19
向量表示法
第一章 复变函数和解析函数
20
计算 arg z (z ≠ 0) 的公式
y arctan x 0, y x π x 0, y argz 2 y arctan π x 0, y x π x 0, y
2
G : w 4, 0 argw π
函数 w = z2(D) 的几何表示
第一章 复变函数和解析函数
34
常见的复变函数
w = z 2 ; u = x 2- y 2, v = 2 x y
第一章 复变函数和解析函数

数学物理方法 第一章 复变函数

数学物理方法 第一章 复变函数
z1
z2
i=e

iπ / 2
e +1 = 0
This identity is particularly remarkable as it involves e, π, i, 1 and 0, arguably the five Leonhard Eular (1707-1783) Swiss most important constants in 4 mathematician, mathematics.
复数除法图示二
y z2
z1 z= z2
z1
|λ | | z | = | z 2 | | z1 | | λ |= 1 | z1 | | z |= | z2 |
ρ=1
ϕ 2- ϕ 1 ∆ o z2 λ ≈ ∆ o z1 z
o
λ x
z (杨超)13451827646
13
指数运算
z =ρ e
n n inϕ
= ρ (cos nϕ + i sin nϕ ) , 特别当 ρ = 1,
n
e inϕ = (e iϕ ) n = (cos ϕ + i sin ϕ ) n = cos nϕ + i sin nϕ
根式运算
n
z= ρe
n n
[
i(ϕ + 2 kπ )
]
1 n
=n ρ e
i
( ϕ + 2 kπ ) n
ϕ + 2 kπ ϕ + 2 kπ = ρ cos + i sin n n k = 0, 1, 2, ... , n - 1
2 2
(for 0 ≤ ϕ 0 < 2π ) (for 0 ≤ ϕ 0 < π ) (for π ≤ ϕ 0 < 2π )

数学物理方法课后答案 (1)

数学物理方法课后答案 (1)
25(x2 − 6x + 9) + 25 y2 = 625 −150x + 9x2
16x2 + 25 y2 = (20)2 ,点集为椭圆: ( x )2 + ( y )2 = 1 54
(4)
z −1 = z +1
(x −1)2 + y2 (x +1)2 + y2
≤1
x2 − 2x +1+ y2 ≤ x2 + 2x +1+ y2

将①式与②式相除,易见 c 3 = 1,即 c = 1,由此得证。
8.试利用 Re z = x ≤ x2 + y2 = z 证明 z1 + z2 ≥ z1 + z2 , z1 − z2 ≥ z1 − z2
证 将第一个不等式两边平方,则不等式右边的式子为
z1 + z 2 2 = ( z1 + z 2 )( z1 + z 2 )∗ = z1 z1∗ + z 2 z 2∗ + z1 z 2∗ + z1∗ z 2
= 2sinα 2
iπ −α
e2
= 2sin α 2
⎡π ⎢⎣cos
−α 2
+
i
sin
⎛ ⎜⎝
π
−α 2
⎞⎤ ⎟⎠⎥⎦
(6) (
3 + i)−3 = (
( 3 − i)3
=
−1i
=
1
e
−i
π 2
=
− 1 i sin π
3 + i)3( 3 − i)3 8 8
82
(7)
2i −1 +
i

数学物理方法知识点归纳

数学物理方法知识点归纳

第一章 复述和复变函数 1.5连续若函数)(x f 在0z 的领域内(包括0z 本身)已经单值确定,并且)()(0lim 0zf z f z z =→,则称f(z)在0z 点连续。

1.6导数若函数在一点的导数存在,则称函数在该点可导。

f(z)=u(x,y)+iv(x,y)的导数存在的条件 (i)x u ∂∂、y u ∂∂、x v ∂∂、yv ∂∂在点不仅存在而且连续。

(ii)C-R 条件在该点成立。

C-R 条件为⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂y y x u xy x v y y x v x y x u ),(),(),(),( 1.7解析若函数不仅在一点是可导的,而且在该点的领域内点点是可导的,则称该点是解析的。

解析的必要条件:函数f(z)=u+iv 在点z 的领域内(i)x u ∂∂、y u ∂∂、x v ∂∂、yv ∂∂存在。

(ii)C-R 条件在该点成立。

解析的充分条件:函数f(z)=u+iv 在领域内(i)x u ∂∂、y u ∂∂、x v ∂∂、yv∂∂不仅存在而且连续。

(ii)C-R 条件在该点成立。

1.8解析函数和调和函数的关系 拉普拉斯方程的解都是调和函数:22x u ∂∂+22y u∂∂=0 ①由此可见解析函数的实部和虚部都是调和函数。

但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足C —R 条件。

②当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)?通过C —R 条件列微分方程 第二章 复变函数的积分 2.2解析函数的积分柯西定理:若函数f(z)在单连区域D 内是解析的,则对于所有在这个区域内而且在两个公共端点A 与B 的那些曲线来讲,积分⎰BAdz z f )(的值均相等。

柯西定理推论:若函数f(z)在单连区域D 内解析,则它沿D 内任一围线的积分都等于零。

⎰=Cdz z f 0)(二连区域的柯西定理:若f(z)在二连区域D 解析,边界连续,则f(z)沿外境界线(逆时针方向)的积分等于f(z)沿内境界线(逆时针方向)的积分。

数学物理方法第一章..实用教案

数学物理方法第一章..实用教案

iy0
iy
二者1i [相uy等( xi iāyvnC]g-dRě条ng件) (tiáojuuxiàn)yvv
y x
类似在极坐标系中
沿径向不变z ei 二比值极限相等
沿横向不变z
iei
C-R条件.
第1第十6六页页,/共共383页8。 页
充要条件
ux , u y , vx , vy 存在、连续(可微)且满足(mǎnzú)C-R条件
(c1 cos z c2 z 2 ) c1 sin z 2c2 z
2)实变函数导数:比值的左、右极限存在且相等; 复变函数导数:比值极限应与△z→0的方式无关,或△z沿 一切可能方式→0的极限都存在且相等。
显然复变函数导数存在的条件比实变函数严格的多。
2021/11/8
14
第第1十4四页页,/共共383页8。页
微分的逆运算
2)曲线积分:全微分的曲线积分仅与起、止点有关,与具体路径
无关,选取路径尽可能使积分简单,且有意义.
3)不定积分法:
先保持(bǎochí)y不变v x
dx
u y
dx
c( y)
F ( x,
y)
c( y)
再对y求偏导 v F dc( y) u c( y)
y y dy x
或先保持(bǎochí)x不变再对x求偏导.若在极坐标系中可作类似处理.
P24:例题1
2021/11/8
21
第第二2十1一页页/,共共3388页页。
(三)保角映射 (yìngshè)
设w=f(z)是区域上D内的解析(jiě xī)函数,且满足
f (z0 ) 0
(1)
2021/11/8
2 2 1 1

数学物理方法 复变函数 第一章 解析函数

数学物理方法 复变函数 第一章 解析函数

7
复数的表示
三角表示
指数表示
z =r (cosφ + i sinφ)
r = |z|(模), φ= Arg(z)(辐角)
z =r exp(iφ)
exp(iφ) = cosφ + i sinφ
代数表示
z = x + iy
x = Re(z), y = Im (z)
8
共轭复数
实部相同而虚部绝对值相等符号相反的两个复数称 为共轭复数.
18
复平面上的点集
z z0 z0 定义 由不等式 (δ为任意的正数)所确定的复平面点集(以后平面点 集均简称点集),就是以z0为中心的δ邻域或邻域。而 称由不等式 0 zz
0
δ
所确定的点集为z0的去心δ邻域或去心邻域。
19
内点,外点,边界点 开集 定义 设D为点集,z0为D中的一点。如果存在z0的 一个邻域,该邻域内的所有点都属于D,则称z0为D的 内点;点z0的某一个邻域内的点都不属于D ,则称 点z0为D的外点。若在点z0的任意一个邻域内,既有属 于D的点,也有不属于D的点,则称点z0为D的边界点, 点集D的全部边界点称为D的边界。
z1 z 2 z1 z 2
- z2
复数加减法满足 平行四边形法则
z1 +(- z2)
13
乘法运算
z1 z2 ( x1 x2 y1 y2 ) i( x1 y2 x2 y1 ) 1 2 exp[i(1 2 )] 1 2 cos(1 2 ) i sin(1 2 )
除法运算
z1 x1 x2 y1 y2 x1 y2 x2 y1 i 2 2 2 z2 x2 y2 x2 y22

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数
成绩:
平时考勤:5%; 平时作业:10%; 期中考试:15% (第一篇的教学考核成绩) 期终考试:70% (期末考试成绩)
本课程的考试均以闭卷方式进行 。
2021/1/14
4
教材与参考书
教材:汪德新,《数学物理方法》,第三版,科学出
版社,2006年8月
参考书:
[1]吴崇试,数学物理方法,北京大学出版社 2003-12-26出版
zz1 (x1iy1) (x1iy1)(x2iy2) z2 (x2iy2) (x2iy2)(x2iy2)
x1xx222
y1y2 y22
i
x2y1x1y2 x22 y22
同样,利用复数的指数表示式将更方便.
z
z1 z2
1ei1 2ei2
e 1 i(12)
2
35
(6)开方 复数的开方是乘方的逆运算。
为共轭复数。 常用z* 表示z的共扼复数。 (z* )* =z 例: z1=2+3i与z2=2-3i 称z1与z2互为共轭复数。
17
复数能不能比较大小?!
18
§1.1.2 复数的几何表示
复数可以用平面上的点来表示,称为复 数的平面表示法;
球面上的点来表示,称为球面表示法。
19
1. 复数平面表示法
利用复数的指数表示式计算复数的乘积,往往更为
方便 z z 1 z 2 1 e i 12 e i 2 12 e i( 1 2 )
两复数乘积的几何意义是将两复数的模相乘而辐角
相加.
30
(4)乘方 乘方可由乘法规则得到,用n个z相乘
zn nein
31
【例1.1.1-A】试证明棣莫弗(De Moivre)公式
9

《数学物理方法》答案

《数学物理方法》答案

z 4 + a4 = 0 ( a > 0) 。
4
⎛z⎞ ⎜ ⎟ = −1 ( a > 0 ) 4 4 ; 解:由题意 z = − a ,所以有 ⎝ a ⎠
θ + 2 kπ i ⎛z⎞ z iπ = cos π + sin π = i e = e 4 (k = 0,1, 2,3) ⎜ ⎟ ⎝a⎠ ;所以 a ;
k = 0, ±1, ±2, ⋅⋅⋅
π
+ i 2kπ = ln 2 + i ( + 2kπ ) 4 4
π
3i = eiLn 3 = ei (ln 3+ 2 kπ ) = cos ln 3 + i sin ln 3 e 2+i = e 2 ei = e 2 (cos1 + i sin1) sin z lim =1 z →0 z 22,求证 sin z sin( x + iy ) lim = lim z →∞ x , y →∞ z x + iy 证: z = x + iy (x,y,均为实数),所以
z = z2 = z3 = 1; 试证明 z1 , z2 , z3 是一 11.设 z1 , z2 , z3 三点适合条件 z1 + z2 + z3 = 0 及 1
个内接于单位圆
z =1 的正三角形的顶点。
∴ z1 = − z2 − z3 ; z2 = − z3 − z1; z3 = − z1 − z2 ; 证明: z1 + z2 + z3 = 0;
∂v ∂u = e x cos y − y sin ye x + x cos ye x = e x ( x cos y − y sin y ) + e x cos y ∂ y ∂x ; ∂u ∂v = −e x ( x sin y + sin y + y cos y ) = e x ( y cos y + x sin y + sin y ) ∂y ; ∂x ∂u ∂v ∂u ∂v = ; =− ∂x 。 满足 ∂x ∂y ∂y x, y ) 可微且满足 C − R 条件,故函数在 z 平面上解析。 即函数在 z 平面上 (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在复数平面中可以引入笛卡尔 直角坐标,也可以引人平面极坐标
在使用直角坐标时,用平面上的 点 (x,y) 表示复数
z = x + iy
平面上的一点(x,y) 就与一个复数 z = x+iy 相对应,而 平面上所有的点就与全体复数一一对应, xoy平面就
称为复平面.
每一复数还可以用一个矢量来表示.矢量由坐标原点
7
第一篇 复变函数导论
自变量为复数的函数称为复变函数. 本篇讨论复变函数论的基本概念、基
本定理和基本方法,以及若干实际运 用.解析函数是本篇研究的重点。 复变函数导论是本书其后三篇的基础.
第1章介绍复变函数的微分理论.着重讨论 解析函数的微分性质及其应用.
第2章介绍复变函数的积分理论.着重讨论 解析函数的积分性质及其应用.
数学物理方法-教学内容与进度表-11级.doc
教学基本要求
以教师课堂讲授为主,精讲;学生课前预习,多练! 布置习题或讨论题,学生自学部分例题和部分章节;
因公式推导过多,部分(或全部)课时采用电子教案, 便于学生理解全过程;
2019/5/20
3
教学方式与过程
教学方式:课堂讲授
《数学物理方法》
《数学物理方法》的性质和目的
性质
为信息工程与技术专业开设的专业基础 必修课,在教学培养计划中列为主干课程。
目的
通过本课程的学习,掌握数学物理中的 常用方法,为学习理论物理课程与专业基础 理论课程提供基础。
教学内容与基本要求
教学内容
本课程主要讲述复幂级数展开、路径积分、积分变换、 特殊函数与线性数学物理方程的定解方法
版社,2006年8月
参考书:
[1]吴崇试,数学物理方法,北京大学出版社 2003-12-26出版
[2]胡嗣柱、倪光炯,《数学物理方法》,第二版, 高等教育出版社,复旦大学出版社,2002;
[3]梁昆森,《数学物理方法》,第三版,高等教 育出版社,1998;
[4]郭敦仁,《数学物理方法》,第二版,人民教
x=Rez, y=Imz
* i 为瑞士著名数学家和物理学家欧拉(Euler) 1777年首次采用 记号,称为虚数单位.
16
实数和纯虚数是复数的特殊情形
如 2=z=2+i0 实部为2,虚部为0,是纯实数 4i=z=0+i4 实部为0,虚部为4,是纯虚数
当x1=x2,y1=y2时,则称z1=x1+iy1与z2=x2+iy2相等。 当x1=x2,y1= - y2时,则称z1=x1+iy1与z2=x2解析函数
本章首先介绍复数与复变函数的基本概念 着重讨论解析函数的定义、充要条件,解 析函数的共扼性、调和性和保角性,以及 常用的解析函数的性质. 解析函数是本篇各章研究的主要对象.
思考:复变函数和实变函数的区别和 联系。 实变函数:实变量的函数。例:x,y— 实变量;
f (x,y) —实变函数 复变函数:复变量的函数,实变函数的推广。 实数→实变量→实变函数 复数→复变量→复变函数
指向点(x,y),如图1.1所示,称为复矢量
2019/5/20
6
作业:请介绍你有关学习本课程的数学基础情况; 你对本课程教学的建议与期望。
1. 高等数学掌握程度自我评价。 2. 高等数学中:
1. 向量代数与空间解析几何学过吗? 2. 常微分方程的解学过吗? 3. 三重积分、曲线积分、曲面积分学过吗? 4. 无穷级数学过吗?其中包括傅里叶级数吗? 5. 线性代数学过吗? 3. 你对本课程教学的建议与期望。
为共轭复数。 常用z* 表示z的共扼复数。 (z* )* =z 例: z1=2+3i与z2=2-3i 称z1与z2互为共轭复数。
17
复数能不能比较大小?!
18
§1.1.2 复数的几何表示
复数可以用平面上的点来表示,称为复 数的平面表示法;
球面上的点来表示,称为球面表示法。
19
1. 复数平面表示法
教与学互动,要求课前必须预习; 标有*的章节为自学内容 。
成绩:
平时考勤:5%; 平时作业:10%; 期中考试:15% (第一篇的教学考核成绩) 期终考试:70% (期末考试成绩)
本课程的考试均以闭卷方式进行 。
2019/5/20
4
教材与参考书
教材:汪德新,《数学物理方法》,第三版,科学出
第3章介绍复变函数的级数理论.着重讨论 解析函数与泰勒(Taylor)级数、洛朗 (Laurent)级数的关系及其应用.
9
第4章介绍留数理论,它是复变函数积分理 论与级数理论相结合的产物.本章利用留数 定理进行实变积分计算,整数与半整数级数 和的计算.
第5章介绍解析延拓与多值函数的一些基本 概念.着重讨论扩大解析函数的定义域,以 及将多值函数转化为黎曼(Riemann)面上的 单值解析函数的问题.
15
§1.1.1 复数的定义和基本概念
在实数范围内,代数方程 z2+1=0 没有解. 如果把数域扩大,则可得到两个根,z 1
我们把 i 1 * 称为虚数单位,并规定它 与实数在一起可进行通常的四则运算. 这样,形如 z=x+iy 的数(其中x,y为实数)称为复数 x与y分别称为复数的实部与虚部,记作
育出版社,1991。
2019/5/20
5
习题参考书
[5]钟毓澍 ,数学物理方法习题指导 , 北京大学出版社 2004-09-01 出版
[6]姚端正,《数学物理方法 学习指导》, 第一版,科学出版社,2001;
[7]胡嗣柱,数学物理方法解题指导,高 等教育出版社1998年
[8]李惜雯,《数学物理方法 典型题 解 法.技巧.注释》,西安交通大学出版社, 2001;
12
第1章 复变函数与解析函数
内容
1.1 复数 1.2 复变函数 复变函数的极限与连续 1.3 复变函数的导数柯西一黎曼条件 1.4 解析函数
13
§1.1 复数
本节讨论复数的基本概念,复数的几何 表示法,复数的代数运算和复数序列的 极限.
§1.1.1 复数的定义和基本概念 §1.1.2 复数的几何表示 §1.1.3 复数的运算规则
相关文档
最新文档