活性自由基聚合的新进展_原子转移自由基聚合
原子转移自由基聚合
具有活性特征的自由基聚合体系简介
•
年代, 从60年代到90年代,世界各地的高分 子合成化学家陆续开发出一些具有“ 子合成化学家陆续开发出一些具有“活 特征的自由基聚合体系, 性”特征的自由基聚合体系,它们都是 通过前面所提及的前三种可逆钝化平衡 来控制聚合反应的。 来控制聚合反应的。 • 下面我们就分别对这三种方法举例说明。 下面我们就分别对这三种方法举例说明。
2.3 增长自由基与转移剂之间的可逆退化转移
•
•
P• + P1-X •
P1• + P-X
增长自由基(P·)与转移剂(P1-X)反应, ) )反应, • 形成休眠种 P-X 和具有链增长能力的新自由基 P1·, - , P1· 的结构和性质与 P· 相似。 相似。 • 转移剂可以是有机磷化物,烷氧基胺碘代烷等。 转移剂可以是有机磷化物,烷氧基胺碘代烷等。
Molecular Weight
• 分子链越短([I]0越大),分子量分布越宽。 分子量分布越宽。 • 由于自由基浓度[P·]远远低于增长链的总浓度: 远远低于增长链的总浓度:
[P·]<< <<([I]0=[P-R]+[P·]) <<
• 为使所有的链同时增长,活性种和休眠种的转变必 为使所有的链同时增长, 须是快速的,才可以控制聚合物的分子量。 须是快速的,才可以控制聚合物的分子量。 • (kp/kdeact)是控制分子量分布宽度的重要因素, 是控制分子量分布宽度的重要因素, 比值越低,分子量分布越窄。 比值越低,分子量分布越窄。 • 如果自由基失活很慢或不发生,就变成通常的自由 如果自由基失活很慢或不发生, 基聚合。如果引发和转变足够快, 基聚合。如果引发和转变足够快,就可预测聚合度
活性自由基聚合
活性自由基聚合摘要:阐述了活性自由基聚合的产生背景和基本概念,介绍了活性自由基聚合的分类,描述了原子转移自由基聚合的研究进展。
关键词:活性自由基聚合1.活性自由基聚合的基本思想活性自由基聚合的核心思想是抑制增长自由基浓度,减少双基终止的发生。
由高分子化学知识可知,链终止速率与链增长速率之比可用下式表示:[1]通常kt/kp为104~105,假定体系中单体浓度为1mol/L,则:当然,自由基活性种浓度不可能无限制地降低,一般来说,[P*]在10-8mol/L左右,聚合反应的速率仍很可观。
在这样的自由基浓度下,Rt /Rp≈10-4~10-3,Rt相对于Rp就可忽略不计,所谓的活性自由基聚合的“活性”就在这里。
自由基浓度的下降必然降低聚合反应速度,但由于链增长反应活化能高于链终止反应活化能,因此提高聚合反应温度不仅能提高聚合速率(因为能提高kp ),而且能有效降低kt/kp比值,从而抑制链终止反应的进行。
这里需要解决两个问题:一是如何从聚合反应开始直到反应结束始终控制如此低的反应活性种浓度;二是在如此低的反应活性种浓度下,如何避免聚合物的聚合度过大(DPn =[M]/[P*]=1/10-8=108)。
解决这两个问题的方法是在聚合体系中加入数量可人为控制的反应物X,此反应物X不能引发单体聚合,但可与自由基P*迅速作用而发生钝化反应,生成一种不会引发单体聚合的“休眠种”P-X。
而此休眠种在聚合反应条件下又可均裂成增长自由基P*及X,如下式表示:[2]这样体系中存在的自由基活性种的浓度将取决于3个参数:反应物X的浓度、钝化速率常数kd 和活化速率常数ka,其中反应物X的浓度是人为可控的,所谓的可控活性自由基聚合的“可控”就在这里。
另外研究表明,如果钝化反应和活化反应的转化速率足够快(不小于链增长速率),则在活性种浓度很低的情况下,聚合物的分子量将不由P*而由P-X的浓度决定。
其中d为单体转化率,[P-X]可控。
原子转移自由基聚合的研究新进展_AGETATRP
技术进展原子转移自由基聚合的研究新进展)))AGET ATRP王银豪,蒋 学,黄 丹(江南大学生态纺织教育部重点实验室,江苏无锡214122)摘要:原子转移自由基聚合(ATRP)是目前高分子化学领域的研究重点之一,AGET A TR P 又是在传统A TRP 基础上衍生出的一种摒弃ATRP 一些缺点的新型活性/可控聚合方法。
重点介绍了AGET ATRP 反应的机理、引发体系、催化体系、还原剂、反应介质及反应条件,以及对AGET ATRP 技术的前景与展望。
关键词:原子转移自由基聚合;AGET A TRP;还原剂;研究进展中图分类号:TQ316.322文献标识码:A文章编号:0253-4320(2010)01-0015-05Latest advances in research of atom transfer radical polymerization:Activators generated by electron transfer ATRPWANG Yin -hao ,JIANG Xue,H U ANG Dan(Key Laboratory of Eco -Textiles of M inistry of Education,Jiangnan University,Wuxi 214122,China)Abstract :Atom Transfer Radical Polymerization(ATRP)is one of the most active fields in p olymer science,and AGE T ATRP is derived on the basis of ATRP,having taken away some shortcomings of ATRP.In this paper,the mechanism,initiators,catalyst systems,reduci ng agents,polymerization mediums and conditi ons of AGE T ATRP are introduced,the prospect of AGE TATRP is also discussed.Key w ords :ATRP;AGE T ATRP;reducing agent;research progress收稿日期:2009-09-08基金项目:江南大学自主科研项目(J USRP10902)作者简介:王银豪(1985-),男,硕士生;蒋学(1976-),男,副教授,硕士生导师,主要从事功能高分子材料与高分子助剂的研究,通讯联系人,xue.jiang@ 。
原子转移自由基聚合概述
原子转移自由基聚合概述1.引言“活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。
它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。
这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。
目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。
在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。
2.原子转移自由基聚合概述原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。
原子转移自由基聚合研究进展
原子转移自由基聚合研究进展柴云;宋一凡;任艳蓉;周慧【摘要】原子转移自由基聚合(Atom transfer radical polymerization,ATRP)是一种发展较快的可控/活性聚合技术,现已广泛应用于聚合物分子结构设计及众多功能高分子材料的合成.本文在综述了ATRP的反应机理的基础上,介绍了引发剂、催化剂、配体、单体等对ATRP的影响,同时综述了降低(或去除)金属盐含量的绿色、高效ATRP聚合体系,如引发剂持续再生活化ATRP,电子转移生成(再生)活化剂ATRP,铁催化体系,光催化体系等.近年来发展的无金属光诱导的有机催化ATRP聚合体系也做了综述.%Atom transfer radical polymerization ( ATRP ) , as a new type of controllable/living polymer-ization reaction has been developed rapidly. This polymerization technology has been widely used in the molecular structure design of polymers and the synthesis of many functional polymer materials. In this paper, the basis of the reaction mechanism of ATRP is reviewed. The influence of initiator, catalyst, ligand, monomer on ATRP was introduced. The green and efficient reduction of metal salt content were reviewed, such as initiators for continuous activator regeneration ATRP, activators (re)generated by e-lectron transfer for ATRP, ATRP catalysted by iron compond, photo, etc. The highlight of recent de-velopment of metal free organic catalyzed ATRP polymerization system were also reviewed.【期刊名称】《化学研究》【年(卷),期】2017(028)003【总页数】20页(P269-288)【关键词】原子转移自由基聚合(ATRP);有机催化ATRP;光诱导;活性聚合【作者】柴云;宋一凡;任艳蓉;周慧【作者单位】河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封475004;河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封475004;河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封475004;河南大学化学化工学院,精细化学与工程研究所,河南省阻燃与功能材料工程实验室,河南开封475004【正文语种】中文【中图分类】O63传统的自由基聚合反应是一个符合概率统计的随机过程,很难精准控制所得聚合物的组成和结构. 随着高分子研究的不断深入和发展,如高分子应用于自组装及作为光、电、磁功能材料和生物医用材料等,合成具有指定组成和结构的高分子成为高分子合成化学的重要研究领域. SZWARC在无水、无氧等条件下,以萘钠引发苯乙烯聚合,发现不存在链转移和链终止. 于1956年首次提出了“活性聚合物”(Living Polymer)的概念,并确立了活性聚合的技术和方法[1-2]. 其特征在于:1) 聚合动力学呈现一级动力学行为,即聚合速率与体系中的单体浓度呈线性关系,ln[M]0/[M]对时间t作图应是直线关系,一般来讲链引发速率大于链增长速率;2) 具有预期的聚合度,即所得聚合物的数均相对分子质量与单体转化率呈线性关系;3) 所得聚合物的相对分子质量分布符合泊松分布即分布窄,接近于1;4) 所得聚合物保持活性,即具有再引发单体聚合的能力.这一聚合技术提供了传统聚合反应所无法提供的手段,使得高分子的分子设计成为现实:1) 通过控制单体和引发剂之间的物质的量之比可以精准合成不同相对分子质量的聚合物;2) 通过顺序加料法可以合成指定结构的多嵌段聚合物;3) 通过合理的结构设计可以得到末端功能化聚合物以及复杂拓扑结构的聚合物(如星形、刷状、超支化、环状聚合物等). 此后人们发展了活性阳离子聚合[3-4],活性开环聚合[5],基团转移聚合[6],极性单体(如甲基丙烯酸甲酯、丙烯酸丁酯)的活性阴离子聚合[7]等. 但上述活性聚合方法存在有聚合反应条件苛刻、聚合工艺流程复杂、难以工业化应用等不足. 同时,上述活性聚合技术的单体覆盖面较窄,主要为苯乙烯、(甲基)丙烯酸酯类等单体,使得分子结构的可设计性较差,除了由阴离子聚合制备的苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)和溶液丁苯橡胶实现了工业化以外,其他活性聚合方法很少有工业化应用.自由基聚合具有单体来源广泛、合成工艺多样、操作简便、容易实现工业化等优点,因此活性/可控自由基聚合的研究与开发更具有实际应用意义. 但自由基聚合的慢引发、快增长、速终止的聚合反应机理决定了聚合产物呈现宽相对分子质量分布,相对分子质量和结构不可控,有时甚至会发生支化、交联等,从而严重影响了聚合物的性能. 因此,如何使自由基聚合具有活性聚合的特征成为当今高分子化学工作者的研究兴趣之一,从活性聚合特征和自由基聚合的机理来分析,实现活性自由基聚合的关键是如何防止聚合过程中因链转移和链终止反应而产生无活性(死)聚合物链. 人们发现通过可逆的链转移或链终止,使活性种(具有链增长活性)和休眠种(暂时无链增长活性)进行快速的可逆转换,可使得聚合体系中自由基浓度控制的很低,便可抑制双基终止,使自由基聚合具有活性聚合的特征. 但这种聚合并不存在真正的无终止,所以不是真正的活性聚合,人们又称这种“活性”自由基聚合为可控自由基聚合. 2010 年国际纯粹与应用化学联合会(IUPAC)推荐将以前的“可控”自由基聚合(“controlled” radical polymerization)或“活性”自由基聚合(“living” radical polymerization)统一称作可逆钝化自由基聚合 (reversible-deactivation radical polymerization (RDRP) or controlled reversible-deactivation radical polymerization)[8].自从1982年日本学者OTSU等开发了具有引发-转移-终止功能于一身的INIFERTER引发剂,并将其成功地运用到自由基聚合,活性/可控自由基聚合进入一个全新的历史发展时期. 陆续开发出了引发转移终止剂法[9],稳定自由基聚合法或氮氧自由基调控聚合法[10]、原子转移自由基聚合[11-12]、可逆加成-断裂链转移聚合[13]等. INIFERTER方法对聚合过程控制的不是很好,聚合后期动力学行为明显偏离线性关系;相对分子质量分布较宽,限制了在实际中的应用. TEMPO引发体系只适合于苯乙烯及其衍生物的活性聚合,因此工业价值不大. 其中以1995年MATYJASZEWSKI等开发的原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)适用单体广泛、反应灵活、反应条件温和等优点成为高分子合成领域最为活跃的前沿课题.ATRP研究的第一阶段从1995年MATYJASZEWSKI和SAWAMOTO两个课题组几乎同时发表过渡金属催化的活性自由基聚合开始,到致力于开发降低过渡金属含量的绿色聚合方法为止. 这十年的相关研究已有国际顶级学者发表了多篇综述[14-23],现简要总结如下:1.1 聚合机理的确立ATRP的聚合机理可以由持续自由基效应(persistent radical effect, PRE)解释,当持续自由基和瞬时自由基在体系中以相同的速率产生的时候,自由基双基终止的产物总是以两种不同自由基交叉形成的交叉产物为优先产物. 过渡金属离子及其卤化合物具有持续性,链自由基作为瞬时自由基,在持续效应作用下,优先与过渡金属化合物作用转移卤素原子,而不是发生双基终止反应[24]. 如图1所示. 在引发阶段,处于低价态的金属配合物 Mtn从有机卤化物 R-X 中夺取卤原子 X,生成自由基R·和高价态的金属卤化物 Mtn+1-X. 自由基R·可引发单体聚合,形成链自由基P·. 而且链自由基P·又可从高价态的金属卤化物 Mtn+1-X 中重新夺取卤原子 X 钝化反应生成形成 R-P-X,并将高价态的金属卤化物还原为低价态配合物 Mtn. 如果P-X 与 R-X 一样可与 Mtn发生活化反应生成相应的P·和 Mtn+1-X,同时若P·与Mtn+1-X 又可反过来发生钝化反应生成 P-X 和 Mtn,则在自由基聚合反应进行的同时,始终伴随着一个自由基活性种与有机大分子卤化物休眠种之间的可逆转移平衡反应. 从本质上看,原子转移自由基聚合实际是一个可逆的催化过程,催化剂Mtn及 Mtn+1-X 的可逆转换控制着聚合体系自由基浓度,使之维持在一个很低的水平.ATRP 的控制很大程度上依赖于活化过程(产生自由基,kact)与失活过程(形成卤代烃,kdeact)之间恰当的平衡. 其活化速率和失活化速率及平衡常数(KATRP =kact/kdeact)决定了体系中自由基的浓度因此也影响了聚合速率和终止速率,最终影响了聚合物的相对分子质量分布(式1和式2)[25-26]. KATRP,kact和 kdeact受催化剂、引发剂、单体结构、溶剂的种类以及反应条件等因素的影响. 从机理上探讨这些因素是怎样对三个参数的影响会最终发现更高效的 ATRP 催化体系. 在一个典型的 ATRP 反应中,足够小的 KATRP常数会保持体系中的自由基浓度维持在很低的水平,从而降低发生终反应的概率. 另一方面,尽管kdeact远远大于kact,kact和 kdeact两个常数都应该足够的大,以用来在一定聚合速度下保持足够小的聚合物相对分子质量分布.1.2 ATRP体系组成1.2.1 引发剂ATRP 引发剂(R-X)在低价金属络合物的活化下均裂产生自由基(R·)并引发单体聚合,同时引发剂中离去基团 X 与低价金属络合物结合形成高价金属络合物失活剂. 引发单体后形成的增长自由基会夺取失活剂上的离去基团 X 形成休眠种,休眠种会在活化剂作用下再次形成增长自由基. 该反复进行的可逆活化/失活过程构成 ATRP 平衡. 因此引发剂必须慎重选择以保证引发过程是定量和快速的,休眠种在聚合体系中是稳定的. 在 ATRP 引发体系中,引发剂的用量和类型,决定着最终产物的相对分子质量及其分布. 因此,选用引发速率快的引发剂可以获得结构规整、相对分子质量分布窄的聚合物. 一般来说,所有α 位上含有诱导共轭基团的卤代化合物都能引发 ATRP 反应. 已报道的引发剂有烷基卤化物和苄基卤化物,α-溴代酯, α-卤代酮,α-卤代腈,α-卤酰胺,磺酰卤类化合物等. 通过系统的研究发现:1) 在相同的离去基团 X 下,平衡常数KATRP随着引发剂结构从小到大的顺序为卤代伯碳烷烃 < 卤代仲碳烷烃 < 卤代叔碳烷烃; 2) 对于相同的碳链结构 R 而言,不同卤代化合物的键能是R-Cl > R-Br > R-I,活化速率随着离去基团不同的顺序为I > Br > Cl,因此氯代化合物引发剂率最低,碘代化合物的引发效率最高. 但碘代化合物对光敏感且易与金属形成铬合物,所以,最常见的是溴代化合物作为ATRP的常用引发剂; 3) 在相同级数的碳链结构,相同离去基团情况下,不同取代基结构对引发剂的活性有明显的影响,引发剂活性按取代基结构从大到小的顺序为苯基乙酯基>氰基>苄基>酯基. 根据实验数据和上述的基本结论,MATYJASZEWSKI 课题组对不同的引发剂的平衡常数KATRP进行了排序,α-溴苯乙酸乙酯(Ethyl α-bromophenylacetate, EBPA) 是活性最高的引发剂,其活性比苯乙基溴(Phenylethyl bromide, PEBr)高10 000倍,比α-溴丙酸甲酯(Methyl α-bromopropionate, MBrP)高100 000倍,如图2所示.在烷基卤化物中,四氯化碳是最早被用来作为 ATRP 引发剂[11]. SAWAMOTO 采用CCl4/RuCl2(PPh3)3/MeAl(ODBP)2组成的引发体系首次报道了甲基丙烯酸甲酯(MMA)的 ATRP. 聚合物的相对分子质量随单体的转化率的提高而线性增长,且由 MMA 和 CCl4的投料比来决定,符合一个 CCl4分子产生一个活性聚合物链的假设. 但存在引发效率低,自由基转移等问题.苄基卤化物由于其产生的苄基自由基具有和苯乙烯类单体增长链自由基相类似的结构,故而被广泛用作苯乙烯类单体的引发剂. 氯化苄和溴化苄(产生的一级碳自由基)由于具有较强的 C-X(X = Cl, Br)键,其引发速率相对较慢. 而 1-苯基卤乙烷由于形成二级碳自由基(和苯乙烯类单体增长链自由基一致),特别适合作为苯乙烯类单体的 ATRP 引发剂. 例如,MATYJASZEWSKI 等采用 1-苯基氯乙烷/CuCl/2,2′-联吡啶(2,2′-bipyridine, bpy)组成的引发体系首次报道了苯乙烯的 ATRP[12]. 所得到的聚苯乙烯相对分子质量在 10 万以内的范围内和理论相对分子质量符合很好,但 PDI 较宽(~1.4). 但当采用1-苯基溴乙烷/CuBr/4,4′-二(1-丁基戊基)-2,2′-联吡啶(4,4′-di(5-nonyl)-2,2′-dipyridyl, dNbpy)取代上述引发体系后,聚苯乙烯的PDI可降至1.1左右. α-卤代酮一般用于Ru催化或者Ni催化的 ATRP. 由于α-卤代酮形成的自由基在反应过程中可能会被 Cu 还原成负离子,导致聚合失控而不太适合作为 Cu 催化的 ATRP 引发剂. 用 N,N-二烷基取代的α-溴酰胺对丙烯酰胺类单体相对来说是一个比较好的引发剂. 例如,SAWAMOTO 等采用 N,N-二甲基-α-溴丙酰胺为引发剂,在 RuCl2(PPh3)3/Al(OiPr)3存在下催化 N,N-二甲基-丙烯酰胺聚合,所得到得聚合物相对分子质量分布较宽(PDI~1.6)但相对分子质量可控;而采用N,N-二甲基-α-氯丙酰胺为引发剂时则聚合物的相对分子质量不可控[27]. MANDAL 等采用没有被烷基取代的α-溴丙酰胺和α-氯丙酰胺为引发剂,在CuX(X = Br, Cl)/bpy 存在下催化丙烯酰胺聚合,所得到得聚合物相对分子质量分布较宽(PDI>1.6),但聚合物的相对分子质量随转化率的提高而增长,也能进行扩连反应,说明该引发体系对丙烯酰胺还是具有一定的控制性[28].相对以上几类引发剂而言,α-溴代酯由于其结构中的酯基的吸电子能力中等,使得所产生的自由基的亲电子性能不是太强,故其适合的单体种类广泛,包括苯乙烯类、丙烯酸酯类、甲基丙烯酸酯类等. 其中,由于 2-溴异丁酸乙酯(Ethyl 2-bromoisobutyrate, EBriB)简单易得,引发效率高,适用单体面广,目前已经成为应用最为广泛的 ATRP 引发剂. 例如以 EBriB为引发剂,MMA 为单体,分别采用Ru,Fe,Cu,Ni等金属盐为催化剂都能得到可控性好的 PMMA. 同时 EBriB 也适合用作 Ru,Fe,Cu,Ni等催化苯乙烯和丙烯酸酯类的引发剂. 另外,自从Percec 等首次将不同对位取代基 Y (Y = OCH3, H, Cl, NO2, F, CH3)的苯磺酰氯引发苯乙烯的 ATRP 以来[29],发现苯磺酰氯类引发剂和 EBriB 一样,也是一种通用的 ATRP 引发剂,它同样适合苯乙烯类、丙烯酸酯类以及甲基丙烯酸酯类单体的可控聚合[30]. PERCEC 课题组将磺酰氯类引发剂拓展到了芳基磺酰溴、碘类化合物,并成功引发了苯乙烯、丙烯酸甲酯(MA)和甲基丙烯酸甲酯(MMA)的ATRP 聚合[31-32]. 随着研究的进一步深入,还有一些非常规的 ATRP 引发剂被发现. 例如,ZHANG等[33]发现 N-溴代琥珀酰亚胺(NBS)在 CuBr/bpy 的存在下,可以成功引发甲基丙烯酸甲酯和苯乙烯的ATRP 聚合,得到窄相对分子质量分布的聚合物,但是由于氢消除反应的存在,聚合反应的表观引发效率比较低. PERCEC 课题组将含有 N-Cl 键的化合物产生 N 为活性中心的自由基用于 ATRP 也获得了成功[34].1.2.2 ATRP 配体原子转移自由基聚合的催化剂由金属离子和相对应的配体组成. 配体在 ATRP 催化体系中有两个方面的作用:1) 增加过渡金属盐在有机介质中的溶解度; 2) 通过调节催化金属中心原子的氧化还原电势使其具有合适的原子转移活性. 目前报道较多的配体主要有以下三类:1) 含 N 的配体 (吡啶类和胺类),2) 含磷的配体,3) 其他类配体等,常见含氮配体的平衡常数如图3所示.其中含 N 类配体用得最多,自从第一例 ATRP 报道时采用2,2′-联吡啶(bpy)用作配体以来,发展到各种不同结构的胺类,包括直链胺类和环状胺类等. MATYJASZEWSKI 等为增进卤化亚铜在聚合体系中的溶解性,在配体 bpy 的4,4′-位上引入可溶性的侧链(至少含有 4 个碳的烷基链才能满足这一要求). 他们利用4,4′-二-特丁基-2,2′-联吡啶(dT-bpy)、4,4′-二-正庚基-2,2′-联吡啶(dHbpy)、4,4′-二(5-壬基)-2,2′-联吡啶(dNbpy)代替联吡啶,实现了均相的 ATRP,所得的PS 和聚(甲基)丙烯酸酯聚合物的 PDI 值明显降低. AMASS[35]通过改变 N-烷基-2-吡啶基亚甲胺配位剂上烷基取代基的长度,使反应体系均相化,提出均相化的体系比非均相化的可控性好,且在极性大的体系比在极性小的体系中要好. ZHANG 等[36]采用 N-己基-2-吡啶基亚甲胺为配位剂成功地进行了 MMA 的均相 ATRP. 含 P 类配体对 Cu 体系效果不好,但可用于其它金属如 Ni、Fe、Rh、Ru和 Re等为催化中心金属原子的配体. 一般来说,配体结构上烷基链越长,其油溶性就越强,越容易使催化体系在油溶性单体里更好地均相化. 还有一些有机酸,如均苯四甲酸,亚氨基二乙酸,丁二酸,异酞酸等适合作为 Fe 盐的配体,能比较好地催化苯乙烯、甲基丙烯酸甲酯和丙烯腈等单体的 ATRP. 另外,还有一些嗡盐也可用作铁盐的高效配体[37-38].1.2.3 ATRP催化剂催化剂的作用往往是在配体的作用下形成金属盐配合物,通过金属盐配合物之间的氧化还原反应,决定原子转移自由基聚合中休眠种和活性种之间的可逆动态交换,从而控制 ATRP 反应体系中的自由基浓度. 一个高效的催化剂要满足以下几个必要条件:1) 金属中心必须至少有两个易达到的稳定氧化态;2) 金属离子应该对(假)卤素有一定的亲和力;3) 金属周围的配位空间在氧化反应时能够扩充从而选择性地容纳一个(假)卤素;4) 配体与金属离子之间的络合作用相对较强.到目前为止,已经成功开发出许多高效的 ATRP 催化剂, 包括了铜、钌、铁、镍、铑、钴、钼和铼等金属盐.1.2.3.1 铜催化剂自从MATYJASZEWSKI等在1995年报道首例采用CuCl作为催化剂的ATRP以来,在 ATRP 的所有金属催化剂中,铜盐由于具有很好的催化活性、价廉并且易处理等特点,一直是应用最为广泛的催化剂. 适合于铜盐的配体大多为含 N 配体.主要使用的配体种类有2,2′-联吡啶及其衍生物,吡啶亚胺以及其衍生物,三齿、四齿和六齿的线性胺类或环形胺类等. 这些配体的活性次序为联吡啶 < 吡啶亚胺 < 多齿胺 < 三脚架胺 < 环状胺. 邻二氮菲据报道也是铜催化体系的有效配体[39]. BRAR 等[40]报道使用四甲基胍基-三(2-乙基胺)胺(tetramethylguanidino-tris(2-aminoethyl)amine, TMG3-TREN)作为配体与溴化亚铜组成了 ATRP 的催化剂,并用于催化甲基丙烯酸甲酯、丙烯酸正丁酯、苯乙烯和丙烯腈的聚合,并能较好控制上述单体的聚合. DING 等[41]合成了 N,N-二(吡啶基-2-甲基-3-庚氧代基-3-氧代丙基)乙烷-1,2-二胺 (BPED),并把它作为铜体系的配体催化了丙烯酸甲酯、苯乙烯和甲基丙烯酸甲酯的 ATRP 聚合. 结果发现,BPED 与其他线性多齿胺配体相比能够显著提高活化反应的活性. 到目前为止,已经发现了一些高效的含 N 配体.例如,CuBr/三[2-(二甲胺)乙基]胺 (Tris(2-(dimethylamino)ethyl) amine,Me6TREN) 是一个比较有效的催化剂,它能使丙烯酸酯类单体的聚合反应在室温进行[42]. MATYJASZEWSKI 等合成了一个桥联含 N 配体 Dimethyl cross-bridged cyclam(DMCBCy)[43]和 CuCl 组成的催化体系,其平衡常数是CuCl/Me6TREN的30 倍,是至今发现的最有效的配体之一,它甚至可以在30 ℃快速催化丙烯酸正丁酯的可控聚合. 另外发现的一个六齿含 N 配体(TPEN),它甚至在 CuBr/引发剂=0.005 时可以很好地催化苯乙烯、丙烯酸甲酯和甲基丙烯酸甲酯,是一个极为高效的配体[44].而在铜盐催化剂中常用的为 CuCl 或者 CuBr,采用 Cu(OAc)为催化剂时,聚合反应速度相比卤化亚铜时较慢,但当在反应体系中加入少量卤化亚铜时则在提高聚合反应速度的同时反应的控制性也加强[45]. CuSCN 和 CuY (Y=O, S, Se)也用作催化剂用于苯乙烯、丙烯酸甲酯和甲基丙烯酸甲酯的 ATRP,也取得了不错的效果[46].1.2.3.2 钌催化剂SAWAMOTO 课题组围绕钌催化剂作了大量的研究工作,并就此进行了很好的综述[18]. Ru(Ⅱ)由于具有较大的配位空间能和多种配体配位催化 ATRP. 在 1995 年的第一例钌催化的 ATRP采用 CCl4/RuCl2/PPh3形成的配合物引发 MMA 的聚合时,需有 MeAl (ODBP)2(ODBP = 2,6-二-叔丁基苯酚盐)作为助催化剂,且催化剂的用量较大,所以该引发体系的活性不高. 随后他们把亲水性的苯磺酸钠基团取代 PPh3中的一个苯基可以很好地催化 MMA 以及亲水性单体如甲基丙烯酸羟乙酯(HEMA)的聚合,同时催化剂也很容易除去. TAKAHASHI[47]报道了一种“半茂金属”催化剂Ru(Ind)Cl(PPh3)2(Ind = 茚基), 在 ATRP 反应中对相对分子质量分布控制相对较好. 后来,TAKAHASHI 又报道了另一种钌催化剂RuH2(PPh3)4,这种催化剂的反应速率较快,如果加入一定的添加剂如 n-Bu2NH 则会显著加快反应速率. SIMAL 等则采用含有p-cymene(4-异丙基甲苯)的 RuCl2(p-cymene)的催化剂催化 ATRP,并研究了不同的配体对聚合的影响[48].1.2.3.3 铁催化剂铁盐具有价格低、毒性小、生物相容性好等特点,使之在催化合成生物医用高分子材料方面具有特别的吸引力. 所以铁离子与合适的配体络合形成金属络合物催化ATRP 聚合的研究得到了各国学者广泛的关注. 铁催化体系也是目前研究得较多的一种体系. SAWAMOTO 课题组于 1997 年首次报道以卤代羰基化合物为引发剂,FeCl2/PPh3催化的甲基丙烯酸甲酯的可控自由基聚合[49]. 随后,其他学者们又相继开发出了更多高效铁催化剂. 用于铁催化体系的配体主要有三苯基膦及其衍生物,三烷基胺,半茂金属羧基,α-二亚胺,嗡盐,有机羧酸类等. GIBSON等[50]报道了一种高效的配体-三齿水杨酰亚胺(SML). 该配体与氯化亚铁配位后可以形成高效的铁催化剂. 用该催化剂进行苯乙烯的原子转移自由基聚合,得到的聚苯乙烯相对分子质量分布窄至 1.07,这是迄今为止所发现的铁催化剂中最为有效的一种. SCHUBERT 等首次将原来用于铜催化体系的吡啶亚胺类配体用于铁催化体系并取得了成功. 经过优化后,用溴(氯)化亚铁/N-烷基-2-吡啶基-甲酰亚胺催化的甲基丙烯酸甲酯得到的聚甲基丙烯酸甲酯相对分子质量分布保持在 1.35 左右,但实验相对分子质量高于理论值,说明引发效率较低[51]. IBRAHIM 等报道用含喹啉基的四齿配体与氯化亚铁络合形成的铁催化剂可以催化甲基丙烯酸甲酯的原子转移自由基溶液聚合,聚合物相对分子质量分布在 1.27~1.89 之间[52].1.2.3.4 其他催化剂实际上,除了铜、钌、铁催化剂外,其他许多过渡金属络合物都可以用作 ATRP的催化剂,如镍、钼、锰、钴、铑和钯催化剂. 镍催化剂能与膦配位,如Ni(PPh3)Br2或 Ni(PBu3)Br2可用于甲基丙烯酸甲酯和甲基丙烯酸正丁酯的ATRP 反应. 前者由于热稳定性和溶解性好,可以在低催化剂浓度下控制聚合反应得到高相对分子质量的聚合物. 铑络合物易溶于水,但价格昂贵,所以在ATRP 反应中没有广泛使用. 钯催化剂只能用于甲基丙烯酸甲酯的 ATRP 反应,得到的聚合物相对分子质量分布基本在1.8 左右,但是它不能用于苯乙烯和丙烯酸酯的聚合,应用单体面太窄. 除了以上的催化体系,原位生成的钼酸(V)锂也可用于苯乙烯的ATRP反应,可能由于络合物对空气太敏感,所以聚合反应的可控性较差. 选用三价钼盐CpMo(PMe3)2Cl2为催化剂可以得到相对较好的聚合效果. 二茂钴可以较好控制甲基丙烯酸甲酯的 ATRP 聚合,聚合物相对分子质量分布窄,不过聚合反应的引发效率不高,可能是由于二茂钴在催化聚合反应的同时也与自由基发生了副反应. KOUMURA 等发现双核羰基锰 Mn(CO)10是一个光敏感性的催化剂,它不但可以用于丙烯酸甲酯和苯乙烯的聚合,而且还可以得到与醋酸乙烯酯的共聚物。
原子转移自由基聚合ppt课件
聚合单体
目前已经报道旳可进行ATRP聚合旳单体有: (1)苯乙 烯及取代苯乙烯,如对氟苯乙烯,对氯苯乙烯,对
星状聚合物旳制备
采用多官能团化合物作为引起剂制备星状聚合物
p(BPEM)-star-(pnBA)n
接枝和梳状聚合物旳制备
(1)大分子单体技术:用ATRP制得旳带乙酸乙烯基旳 聚苯乙烯大分子单体,进行自由基聚合,即可得到 相应旳梳状聚合物。
(2)大分子引起剂技术:具有多种ATRP引起侧基旳均 聚物作为ATRP引起剂,进行ATRP聚合即可得到 侧基长度基本一致均一旳梳状聚合物。
PDI 1.17 1.17 1.22 1.14
含末端官能团旳聚合物制备
末端带有卤原子旳聚合物:
根据原子转移自由基聚合原理,用有机卤化物RX作为 引起剂时,产物旳末端带有卤原子,而卤原子本身就 是一种官能团。如用1-苯基氯乙烷或1-苯基溴乙烷作引 发剂进行旳苯乙烯旳聚合,产物为末端带有卤原子旳 聚苯乙烯。如引起剂为1,4-二氯(溴)甲基苯,产物 分子链两端均为卤原子旳聚苯乙烯。
利。
反向原子转移自由基聚合(RATRP)
特点:使用老式旳自由基引起剂如过氧化苯甲酰(BPO), 用高价态旳过渡金属配合物作催化剂。
ATRP技术旳应用
1.制备窄分子量分布聚合物 2.制备末端官能团聚合物 3.制备嵌段共聚物 4.制备星状聚合物 5.制备接枝和梳状聚合物 6.制备梯度共聚物 7. 固体表面接枝嵌段共聚物制备
高分子合成新技术---------
“活性”可控自由基聚合
“活性”/可控自由基聚合熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。
本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。
关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。
自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。
鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。
就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。
所以实现可控自由基聚合要基于以下三个原则:1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。
这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。
2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。
原子转移_活性_可控自由基聚合引发体系的研究进展
原子转移“活性”可控自由基聚合引发体系的研究进展汪存东1,2,乔 波1(11中北大学化工学院,山西太原 030051;21北京理工大学材料学院,北京 100081) 摘 要:原子转移自由基聚合反应(A TRP)是实现活性聚合的一种颇为有效的途径,可以合成分子量可控、分子量分布窄的各种形状的聚合物。
本文介绍了“活性”可控A TRP的研究进展,包括RA TRP、SR&N I A TRP、A GET A TRP、假卤素转移自由基聚合以及一些新催化剂体系下的新型A TRP,并说明了各种引发体系A TRP的反应机理。
关键词:原子转移自由基聚合;“活性”可控自由基聚合;引发体系;研究进展 中图分类号:TQ3161322 文献标识码:A 文章编号:167129905(2009)1220019204 活性聚合可以得到分子质量分布极窄的聚合物,是控制聚合物分子质量和分子质量分布最理想的方法[1]。
其中原子转移自由基聚合(A TRP)是20世纪90年代新发展的活性自由基聚合技术,该技术作为一种有效的大分子设计工具已用于许多烯烃单体的聚合,并已成功地合成出了结构确定的均聚物、共聚物、交替共聚物、梯形共聚物、嵌段/接枝共聚物和新型的聚合物刷,星形、树枝状大分子及有机/无机杂化材料。
该聚合方法集自由基聚合和活性聚合优点于一体,具有传统自由基聚合的诸多优点,如适用单体范围广(如丙烯酸及其酯、丙烯酰胺、苯乙烯及二烯类,聚合方法多样化(本体、溶液和乳液聚合),聚合条件温和等,可合成各种结构可控、相对分子质量分布窄、分子末端带特定功能基团的聚合物[2]。
由于A TRP存在着诱人的工业化前景,自发现以来在这方面的研究很活跃,并产生了多种引发体系,本文将着重介绍原子转移自由基聚合方法的最近研究进展。
1 原子转移自由基聚合研究进展111 正向原子转移自由基聚合(A TRP) 原子转移自由基聚合是1995年由Wang, Matyjaszewski研究小组报道的一种活性自由基聚合(A TRP)[3]也称金属催化自由基聚合[4]。
原子转移自由基聚合-ATRP ppt课件
或
ppt课件
6
2. 活性聚合
2.1 活性聚合概念 不存在链转移和链终止的聚合,称为活性聚合。 自由基聚合的链增长对自由基浓度呈一级反应,而链终止则
成二级反应,如能降低自由基的浓度[M·]或活性,就可减弱双基 终止,有望成为可控/“活性”聚合。
实现可控/“活性”聚合的基本思想:在自由基聚合体系中 引入一个可以和增长自由基之间存在偶合-解离可逆反应的物 种,抑制增长自由基的浓度,减少双基终止和转移反应的发生。
络合反应 (Complexation, Formation of Catalyst)
Mtn + L
MtnL
引发反应 (Intiation Reaction)
R-X + MtnL
R + XMtn+1L
+M
ki + M
R-M-X + MtnL 增长反应 (Propagation)
R-Mn-X + MtnL
如果用带有另一种官能团Z(如-OH、-COOH 、-CH= CH2)的有机卤化物作为引发剂,则100%的聚合物末端带上官能 团Z。
如用2-氯醋酸乙烯作为引发剂引发苯乙烯聚合,得到的聚 合物末端带有醋酸乙烯单元,这是一种大分子单体,可用于制 备接枝共聚物。 如果Z是标记基团的话,可很方便地制备出各 种标记聚合物,供物理化学研究使用。
ppt课件
放热反应,所需活化能低
3
1. 自由基聚合
(2)链增长:快增长 引发阶段形成的单体自由基迅速、不断地和单体分子加成, 其加成产物称做链自由基,每加成一次,链自由基就增长一个 链 节,增长着的链自由基也称为大分子活性链。链增长反应可 简写 为:
放出大量聚合热; 反应所需活化能低
原子转移自由基聚合基本原理及最新进展
此被称为 “可逆的 A TRP”或 “反向的 ATRP”[ 12 ] ;
其二是不用过渡金属络合物 (盐 ) 作催化剂 , 自
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
系 , [ y22, 23 ] 也是研究与应用较多的 A TRP 体系 。其
动力学研究可概括为 :
Rp
=
-
d [M ] / dt = kp [ P˙
] [M ]
=
kapp p
[M ]
-
dln [M
]
/dt
=
kapp p
其中
kapp p
是表观增长速率常数
。稳定自由基浓
度 [ P· ]可由表观增长速率常数和自由基增长速率
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
第 3期
曹健等 : 原子转移自由基聚合基本原理及最新进展
93
B r) ,
M
n t
为过渡金属络合物=k[RX ]o a[ CuX ]o b
[L ]o c
[ CuX2 ]o d
在均相催化体系中 ,
表观增长速率常数
kapp p
与
引发剂 、卤化亚铜和配位体的浓度成正比 , 而与卤
化铜的浓度成反比. 对 St、MA、MMA、BA 等多
种单体的动力学研究表明 : 当转化率达到 90%时 ,
由于自引发 、不可逆转移和终止反应形成的链少于
基 , 所以称为原子转移自由基聚合 。由于已有实验 证明某些基团也可发生类似的转移自由基反应 , 故 王锦山等把这样一种反应称为 “原子 (基团 ) 转
原子转移自由基聚合
在利用ATRP 合成嵌段共聚物方面, 已成功的合成了油溶性嵌段共聚物、两 亲性嵌段共聚物,含功能单体单元的嵌 段共聚物、含氟嵌段共聚物、含硅嵌段 共聚物和热塑性弹性体等。
两亲性嵌段共聚物:聚苯乙烯-b-聚甲基丙烯酸叔丁酯(PS-b-PMAA)的合成
接枝共聚物
接枝共聚物往往可以用作乳化剂、 增容剂、表面活性剂、相转移催化剂、 抗静电剂及生物医学材料等, 其性能往 往优于同类型的嵌段共聚物.
ATRP 仍存在一些问题。目前的ATRP 体 系还不能有效地用于一些低活性单体,如乙 烯、α-烯烃、氯乙烯和醋酸乙烯酯等。由于 丙烯羧类单体中的羧基能与ATRP 体系中的催 化剂——过渡金属卤化物(CuBr, CuCl)反应, 并且使胺类配体质子化,导致催化剂中毒,因 此无法直接用ATRP 合成此类聚合物。
采用原子转移自由基引发体系引发带卤原子的双官能团单体, 可以得到超支化聚合物. 利用对氯甲基苯乙烯在CuCl和bpy存在下的自引 发均聚反应合成相对分子质量可达150 000的高支化聚苯乙烯
其它类型聚合物
此外, 还可用ATRP 技术制备出聚合物刷 子、有机/无机杂化材料等高分子功能材料。
如M arcHusseman等用带有原子转移自由 基引发基团的硅烷在硅表面发生ATRP, 制得烯 类单体的均聚物刷及嵌段或无规聚合物刷子, 用于控制聚合物的表面性质.
ATRP技术展望
ATRP 技术的出现开辟了活性聚合的新 领域。 ATRP 技术集自由基聚合与活性聚合 的优点于一体,既可像自由基聚合那样进行 本体、溶液、悬浮和乳液聚合,又可合成具 有预定结构的聚合物,此外还有一个非常有 用的特点,即不需要经过复杂的合成路线, 因此具有十分广阔的应用前景。
但也必须指出
我们可以可以预知
活性自由基聚合,ATRP 研究进展
适宜进行 ATRP的单体:
?
碘代化合物引发,机理复 杂,有些副反应 丙烯酸和甲基丙烯酸单体不适合: 与过渡金属配位 使配体质子化
用能转变成丙烯酸的单体!盐 和酯!
不适用于ATRP的单体:
ATRP的引发剂:
alkyl, allyl, & benzyl halides, α-haloesters, αhaloketones, α-halonitriles, sulfonylhalides•
优点:对氧不敏感 缺点:制备blockcopolymer 时会有均聚物
嵌段共聚物合成中的嵌段顺序问题:
模型化合物研究:
溴-氯原子交换:
嵌段共聚物的合成:
Br CuBr/dNbipy, 110oC
CH2 CH n Br
COOR CuBr/dNbipy, 110oC
CH2 CH
n
CH2 CH m Br COOR
01initiatorsforcontinuousactivatorregenerationicaratrpcu和xcu之比不变即使把体系中的一价铜盐催化剂的绝对量下降至之比不变即使把体系中的一价铜盐催化剂的绝对量下降至ppm甚至ppb级也不会影响聚合反应速率一定量的失活剂浓度总是需要的级也不会影响聚合反应速率
対氧不敏感,催化剂少 ,会有均聚物
Initiators for continuous activator regeneration (ICAR) ATRP
[CuⅠ]和[X-CuⅡ ]之比不变,即使把体系中 的一价铜盐催化剂的绝对量下降至ppm 甚至ppb 级也不会影响聚合反应速率。
一定量的失活剂浓度总是需要的
Keq的影响因素: 配体 过渡金属 温度 单体
非共轭单体的活性自由基聚合进展
高
分
子
通
报
33
非共轭单体的活性自由基聚合进展
万德成 , 周
*
青
200092)
( 同济大学材料学院功能高分子研究所, 上海
摘要 : 活性自由基聚合经过十多年的发展 , 已成为一种有效的高分子设计手段。代表性 的活性自由 基聚合 技术包括氮氧调控自由基聚合 ( NMP) , 原子转移自由基聚合 ( ATRP) 和可逆加成 断裂链转移 ( RAFT) 聚合 或通过 黄原酸酯交换法设计大分子 ( MADIX) 。这些技 术已成 功应用 到多数 共轭单体 上 , 但对非 共轭单 体的聚合 控制 还不太成功。本文总结 了几 类适合 非共 轭单 体的活 性自 由基 ( 共 ) 聚 合方法 , 主 要有 RAFT MADIX 体 系 , 某些 ATRP 体系 , 碘退化转移体系及近 年新出现的 有机碲 调控自 由基聚 合 ( TERP) 和有 机锑调 控自由 基聚合 ( SBRP) 体系 , 其中 , TERP 和 SBRP 的独特性值得关注。 关键词 : 非共轭单体 ; 活性自由基聚合 ; 聚合物
基金项目 : 同济大学 985 工程 ( 0502144002) ; 作者简介 : 万德成 , 副教授 , 研 究 方向 为聚 合 物合 成和 纳 米复 合材 料 , T el: 021 65982461, E mail: wandecheng @ mail. tongji. edu. cn.
[ 9]
[ 11]
,
采用黄原酸酯类化合物作为链转移剂, 机理上与 RAFT 方法一致, 由法国科学家
[ 29]
[31]
于
1998 年首先提出 , 澳大利亚的科学家随后作了类似报道
。二硫代氨基甲酸酯类
原子转移自由基共聚(ATRP)反应的实例及研究进展
原子转移自由基共聚(ATRP)反应的研究进展摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一。
原子转移自由基聚合(A TRP)反应是实现活性聚台的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。
ATRP的独特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基双基终止的反应。
ATRP可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高分子化合物。
可实现众多单体的活性/可控自由基聚合。
介绍了ATRP的研究进展,包括ATRP反应的特点、聚合反应机理、应用、研究现状及前景展望。
关键词:原子转移自由基聚合,机理,反应体系,共聚,研究进展活性聚合是高分子化学的重要技术,是实现分子设计,合成一系列结构不同、性能特异的聚合物材料,如嵌段、接枝、星状、梯状、超支化等特殊结构的聚合物的重要手段.活性聚合可分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、活性自由基聚合等.迄今为止发展最完善的是阴离子活性聚合,然而,阴离子活性聚合对反应条件要求苛刻、可聚合的单体也较少,应用范围很有限.与其它类型聚合反应相比,活性自由基聚合集活性聚合与自由基聚合的优点为一身,不但可得到相对分子量分布极窄,相对分子量可控,结构明晰的聚合物,而且可聚合的单体多,反应条件温和易控制,容易实现工业化生产.所以,活性自由基聚合具有极高的实用价值,受到了高分子化学家们的重视.但是,自由基聚合存在与活性聚合相矛盾的基元反应或副反应,使聚合过程难以控制。
因此,自由基的活性聚合或可控聚合一直是人们努力探索的课题。
受有机合成中利用过渡金属催化原子转移自由基加成合成新的c—c键方法的启发,1995年,王锦山博士在卡内基一梅隆大学首次提出了原子转移自由基聚合(ATRP)的概念,并成功地将其应用于合成结构可控的聚合物,从而实现了活性自由基聚合领域的历史性突破,引起了世界各国高分子学家的极大兴趣。
原子转移自由基聚合
• 拓展功能性聚合物的合成与应用:随着科技的不断发展,对功能性聚合物的需 求不断增加。未来研究可进一步探索利用原子转移自由基聚合技术合成具有特 殊功能和性能的功能性聚合物,并拓展其在生物医学、光电子等领域的应用。
功能性聚合物的合成与应用
利用原子转移自由基聚合技术,成功合成了一系列具有特殊功能和性能的功能性聚合物, 如生物相容性聚合物、光响应性聚合物等,拓展了聚合物的应用领域。
对未来研究的建议
• 深入研究反应机理和动力学:尽管对原子转移自由基聚合反应机理已有一定了 解,但仍需深入研究反应过程中的详细步骤、影响因素以及动力学行为,以更 好地指导聚合反应的设计和优化。
ABCD
催化剂残留问题
在聚合过程中,催化剂可能残留在聚合物中,影 响聚合物的性能和稳定性。
难以实现高分子量聚合物的合成
由于ATRP的链转移反应,难以实现高分子量聚 合物的合成。
改进方向探索
开发高效催化剂
研究新型高效、低残留的催化剂,降低催化剂用 量和成本,同时提高聚合效率和聚合物性能。
提高聚合物的功能性
生物探针与传感器
利用原子转移自由基聚合技术,可以合成具有生 物探针和传感器功能的聚合物材料,用于生物分 子检测和成像分析。
原子转移自由基聚合
05
的优缺点及改进方向
优点分析
活性聚合
适用单体范围广
原子转移自由基聚合(ATRP)是一种活性聚 合方法,可以合成具有预定分子量和窄分子 量分布的聚合物。
ATRP适用于多种类型的单体,包括乙烯基 单体、丙烯酸酯、甲基丙烯酸酯等,为合 成不同性能的聚合物提供了灵活性。
原子转移自由基聚合
1.2 原子转移自由基的应用1.2.1合成新的高分子材料ATRP技术作为一种新颖的精密聚合反应, 是大分子设计的有效工具。
许多烯烃单体已成功地用ATRP合成出结构确定的均聚物、无规共聚物、交替共聚物、梯形共聚物、嵌段/接枝共聚物和新型的聚合物刷, 星型、树枝状大分子及有机/无机杂化材料[6]。
1.2.2合成窄分子量分布聚合物ATRP已使多种不同单体及其衍生物实行有效的可控聚合,其中分子量分布已有低至 1.04的报道, 而商业上用活性阴离子聚合得到的GPC标样一般为l.03-1.05。
许多有机卤化物/CuX (X为Cl,Br) /2, 2’- bpy引发体系均可得到分子量分布为1.1-1.2的均聚物。
最近Matytjaszewski等采用ATRP方法, 获得了许多窄分布的均聚物, 分子量分布Mw/Mn<1.1。
他们所用的单体包括苯乙烯、(甲基)丙烯酸烷基酯、丙烯腈、氟化丙烯酸酯等[7]。
1.2.3合成末端官能团聚合物用有机卤化物作为引发剂的ATRP的产物末端分别为引发剂残基和卤原子, 而卤原子本身就是一种官能团, 由此还可以演变成其他官能团, 例如胺基、羧基、叠氮基、烯丙基等如果用带有另一种官能团Z (如—OH,—COOH,—CH=CH2)的有机卤化物作为引发剂, 则100%的聚合物末端带上官能团Z。
如用2-氯-醋酸乙烯作为引发剂引发苯乙烯聚合, 得到的聚合物末端带有醋酸乙烯单元, 这是一种大分子单体, 可用于制备接枝共聚物。
如果Z是标记基团的话, 可很方便地制备出各种标记聚合物, 供物理化学研究使用。
1.2.4合成无规及梯度共聚物梯度共聚物的分子结构可以用下图形象地表示:●●●●O●●●OO●●OOO●OOOO●MonomerA O MonomerB张兆斌利用ATRP技术, 首次实现了含氟单体与不含氟单体的可控无规共聚,得到了组成和分子量可设计、窄分布的甲基丙烯酸含氟酯与苯乙烯的无规共聚物[8]。
化学技术中常见聚合反应的新方法
化学技术中常见聚合反应的新方法新方法在化学技术中经常被引入,以改善常见的聚合反应过程。
聚合反应是一种将多个单体分子结合成长链或支链聚合物的化学过程。
传统的聚合反应方法包括自由基聚合、阴离子聚合和阳离子聚合等。
然而,随着科技的发展,越来越多创新的聚合反应方法被提出。
本文将探讨其中几种新方法。
一种新方法是原子转移自由基聚合(ATRP)。
ATRP利用了自由基反应的特点,并引入了转移剂,实现对聚合物长度和分子量的精确控制。
通过ATRP,可以合成多种具有特定结构和性质的聚合物。
这种方法在合成高分子电子器件和纳米材料方面具有重要应用。
另一种新方法是点击聚合反应。
点击聚合反应是一种高度选择性和高效率的反应,可以在常温下发生,并得到具有良好结构顺序的聚合物。
这种方法的优点在于它的可逆性和可编程性,可以用于合成复杂结构的聚合物。
点击聚合反应在生物医学领域、纳米材料制备等方面具有广泛应用。
此外,还有一种新方法是活性自由基聚合(RAFT)。
RAFT是在自由基聚合基础上改进而得的一种聚合反应方法。
通过添加RAFT试剂,可以调节聚合反应的聚合度和分子量分布,并实现聚合物链的控制。
这种方法在合成精确结构聚合物和功能性聚合物方面有广泛应用,如合成可溶性电子材料和智能聚合物。
除了上述提到的新方法,还有一些其他新兴的聚合反应方法值得关注。
例如,活性烯烃聚合反应是一种高效的聚合方法,通过活性烯烃与其他单体的反应,可以得到具有多样化结构的聚合物。
这种方法在医药领域和材料科学领域有重要应用。
另外,还有一种名为碳碳键活化的聚合反应方法。
该方法通过活化碳碳键,使聚合反应能够在温和条件下进行,并得到所需的聚合物。
碳碳键活化聚合反应的研究在有机合成和材料科学领域具有潜在应用价值。
综上所述,化学技术中常见的聚合反应常常通过引入新的反应方法来改进。
这些新方法包括原子转移自由基聚合、点击聚合反应、活性自由基聚合等。
通过这些新方法,可以实现对聚合物结构、性质和功能的精确控制。
活性自由基聚合的新进展_原子转移自由基聚合
第24卷第1期山 西 化 工Vo l.24 N o.1 2004年2月SHA N XI CHEM ICA L IN DU ST R Y F eb.2004活性自由基聚合的新进展——原子转移自由基聚合谭英杰, 梁玉蓉(华北工学院分院材料工程系,山西 太原 030008)摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一,原子转移自由基聚合(A T R P)反应是实现活性聚合的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。
A T R P的独特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基双基终止的反应。
A T R P可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高分子化合物。
可实现众多单体的活性/可控自由基聚合。
介绍了AT RP的研究进展,包括A T RP反应的特点、聚合反应机理、应用、研究现状及前景展望。
关键词:活性聚合反应;原子转移聚合反应;自由基双基终止;进展;特点;机理;应用;前景中图分类号:T Q316 文献标识码:A 文章编号:1004-7050(2004)01-0011-05引 言聚合物合成的控制主要是指聚合物结构的控制和聚合物分子量的控制。
活性聚合可以得到分子量分布极窄的聚合物,是控制聚合物分子量最理想的方法。
通过活性聚合还能容易地获得预定结构和序列的嵌段共聚物和接枝共聚物。
因此,活性聚合的研究受到高度的重视。
活性聚合的概念是1956年Szware提出的,即无终止、无转移、引发速率远大于增长速率的聚合反应。
活性聚合中依引发机理的不同,分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、自由基活性聚合等。
至今为止发展最完善的是阴离子活性聚合,由此成功地获得了单分散聚合物、预定结构和序列的嵌段共聚物、接枝共聚物。
然而,阴离子活性聚合对反应条件要求苛刻,可聚合的单体也比较少,应用范围很有限。
与其他类型聚合反应相比,自由基聚合可聚合收稿日期:2003-10-21作者简介:谭英杰,男,1971年出生,学士学位,讲师,主要从事高分子材料共混改性研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24卷第1期山 西 化 工Vo l.24 N o.1 2004年2月SHA N XI CHEM ICA L IN DU ST R Y F eb.2004活性自由基聚合的新进展——原子转移自由基聚合谭英杰, 梁玉蓉(华北工学院分院材料工程系,山西 太原 030008)摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一,原子转移自由基聚合(A T R P)反应是实现活性聚合的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。
A T R P的独特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基双基终止的反应。
A T R P可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高分子化合物。
可实现众多单体的活性/可控自由基聚合。
介绍了AT RP的研究进展,包括A T RP反应的特点、聚合反应机理、应用、研究现状及前景展望。
关键词:活性聚合反应;原子转移聚合反应;自由基双基终止;进展;特点;机理;应用;前景中图分类号:T Q316 文献标识码:A 文章编号:1004-7050(2004)01-0011-05引 言聚合物合成的控制主要是指聚合物结构的控制和聚合物分子量的控制。
活性聚合可以得到分子量分布极窄的聚合物,是控制聚合物分子量最理想的方法。
通过活性聚合还能容易地获得预定结构和序列的嵌段共聚物和接枝共聚物。
因此,活性聚合的研究受到高度的重视。
活性聚合的概念是1956年Szware提出的,即无终止、无转移、引发速率远大于增长速率的聚合反应。
活性聚合中依引发机理的不同,分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、自由基活性聚合等。
至今为止发展最完善的是阴离子活性聚合,由此成功地获得了单分散聚合物、预定结构和序列的嵌段共聚物、接枝共聚物。
然而,阴离子活性聚合对反应条件要求苛刻,可聚合的单体也比较少,应用范围很有限。
与其他类型聚合反应相比,自由基聚合可聚合收稿日期:2003-10-21作者简介:谭英杰,男,1971年出生,学士学位,讲师,主要从事高分子材料共混改性研究。
的单体多、反应条件温和、易控制,实现工业化生产容易。
当今市场上60%以上的合成聚合物产品是由自由基聚合工艺制备的。
所以,活性自由基聚合具有极高的实用价值。
但是,自由基不稳定,极易发生双自由基终止反应,难以实现自由基活性聚合。
从20世纪70年代开始,人们就努力寻找获得自由基活性聚合的途径[1]。
1 原子转移自由基聚合(AT RP)的特点新材料的合成技术是21世纪优先发展的三大产业之一。
高分子合成化学技术的发展促进了能满足各种要求的新材料不断问世,成为合成材料技术取得日新月异进展的重要基础之一。
20世纪50年代配位聚合技术的出现,开辟了立构规整聚合的新纪元;而各种活性聚合技术的发展为合成出结构和组成可控的聚合物材料提供了可能性。
自由基聚合产品占了所有聚合物产品的一半以上,因此,发展“可控、活性自由基聚合”成为人们梦寐以求的目标。
自1995年中国旅美学者王绵山等首先发明原子转移自由基聚合(AT RP)技术后,立即引起世界各国高分子界专家学者和工业界的极大兴趣。
原子转移自由基聚合技术是近几年迅速发展并有着重要应用价值的一种活性聚合技术,可有效地对聚合物的分子结构进行设计,制备出各种不同性能、不同功能的新型聚合物材料,即所谓的“量体裁衣”[2]。
它可以通过分子设计制得多种具有不同拓扑结构(线型、梳状、网状、星形、树枝状大分子等)、不同组成和不同功能化的结构确定的聚合物及有机/无机杂化材料。
与离子聚合等传统活性聚合技术相比,它具有单体覆盖面广,聚合条件温和,易于实现工业化等显著优点,将成为合成新型高分子材料的一个新方向。
其产品在高性能粘合剂、分散剂、表面活性剂、高分子合金增溶剂和加工助剂、热塑性弹性体、绿色化学品、电子信息材料及新型含氟材料等高技术领域都具有广泛的应用前景[3]。
从20世纪90年代开始,高分子化学家着重于研究通过化学方法实现对自由基聚合的控制,这些方法具有广泛的适用性。
ATRP的独特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了双基终止反应。
由于动力学原因,在自由基聚合中完全消除终止反应是不可能的。
准确地说,原子转移自由基聚合方法应称为活性或受控自由基聚合。
虽然不同活性自由基聚合采用的引发体系不同,但基本特征都是由活性种与某种媒介物可逆反应生成比较稳定的休眠种。
两者之间存在动态平衡,此平衡必须大大倾向于休眠种一端,使自由基平衡浓度很低,大大抑制了双基终止反应。
活性种和休眠种之间相互转变速率和增长速率之比是控制分子量分布的重要因素,这一比值越高,分子量分布越窄[4]。
与传统的活性聚合如阴(或阳)离子聚合和基团转移聚合(GTP)相比,AT RP可以同时适用于非极性和极性单体,如苯乙烯(St)、二烯烃类和(甲基)丙烯酸酯类单体,可以制备包括无官能团的均聚物及无规、嵌段、星形和梯度共聚物与超支化物(hyper-br ench)、树枝状物(dentrimer)在内的诸多结构清晰的高分子化合物,其相对分子质量可以控制在103~105、M W/M n在1.05~1.5。
2 原子转移自由基聚合的基本原理自由基是一种十分活泼的活性种,在自由基聚合中极易发生链转移和链终止,所以要抑制副反应,聚合体系中必须有相对恒定的自由基浓度,才能维持可观的反应速度(自由基浓度不能太低)。
为解决这个问题,高分子化学家受活性正离子聚合体系的启发,将可逆链转移和链终止的概念引入自由基聚合,通过在活性种和休眠种之间建立一个快速交换反应,成功地实现了矛盾的对立统一。
自由基聚合与阴离子、阳离子聚合中的情况不同,具体表现在:自由基能够以接近扩散控制极限的终止速率常数(K t)进行歧化和(或)偶合反应,即K t=108±1mo l-1・s-1。
K t比相应的增长速率常数(K p)要高得多,K p=103±1m ol-1・s-1。
同时由于常规引发剂(如偶氮二异丁腈AIBN、过氧化苯甲酰BPO等)的分解速度较慢,引发速率常数K d= 10-5±1m ol-1・s-1,所以引发不完全。
这就是为什么用传统的自由基聚合制备的聚合物的相对分子质量分布和结构可控性不佳的动力学原因。
因此,为了精确起见,M aty jaszew ski教授和王绵山博士提出了用可控的或活性(living)自由基聚合这个术语来描述断链(终止)反应不显著的几个最终的结构参数,如分子尺寸、相对分子质量分布、组成、拓扑形式、官能度及可以被控制到某种程度的自由基聚合体系。
用活性自由基聚合制备可控的聚合物,要求链增长自由基M n・的稳态浓度低,同时M n・与“休眠种”M n X处于一种快速动态平衡之中:M n X←→M n・+X・对于增长自由基而言,终止是二级反应,而增长是一级反应,因此自由基浓度低就使终止的机会下降。
如果M n・与M n X之间的可逆交换是一个快速的过程,就可以用已消耗单体的浓度与休眠链浓度的比值预测聚合度。
AT RP的发明就是应用以上原理,在已成功运用的有机小分子合成方法——原子转移自由基加成反应(AT RA)的基础上发展起来的。
ATRA与AT RP的主要区别在于:在正常的AT RA如降级转移条件下,大多数的转移反应是不可逆的。
而在AT RP中,为了达到具有预测相对分子质量、分散性小和结构清晰的聚合物的目的,则要求具有快速而可逆的原子转移[5]。
以RX/CuX/BPY体系(其中RX为卤代烷烃、BPY为2,2′-联二吡啶、CuX为卤化亚铜)引发AT RP反应为例,典型的原子(基团)转移自由基聚合的基本原理如下:引发阶段:R-X+CuX/BPY→R・+CuX2/BPY(X=Cl、Br)R・+单体→P1・增长阶段:P n-X+CuX/BPY→P n・+CuX2/BPY(X=Cl、Br)P n・+单体→P n+1・终止阶段:・12・山 西 化 工2004年2月P n・+P m・→P n+m或(P2n+P m H)由于这种聚合反应中的可逆转移包含着卤原子从卤化物到金属络合物,再从金属络合物转移到自由基的原子转移过程,所以称之为原子转移聚合;同时,由于其反应活性种为自由基,所以称之为原子转移自由基聚合[6]。
3 原子转移自由基聚合的类型3.1 过渡金属催化的AT RP3.1.1 RX/CuCl/BPY引发剂(A-1体系)尽管氯代烷和溴代烷(RX)中引发剂量的卤原子X很难被抽提形成自由基,但RX很容易与一般过渡金属物质M t,如CuCl反应形成自由基,同时产生氧化态的过渡金属物质M n+1t X如CuCl2。
如果有机卤代烷与M n+1t X的反应转化可以快速定量地进行,则可以得到受控的原子转移聚合。
从这个角度来看,过渡金属物质在M n t/M n+1t的氧化还原过程中是作为卤原子X的载体。
ATRP的另一个重要特征是人们同时可以用热力学和动力学两种手段调节休眠活性种与增长自由基之间的平衡,这是控制活性自由基聚合的关键因素。
在热力学上,可以使用不同的过渡金属物质M n t、配位体L x和转移原子X影响AT RP的活性进程。
另一方面,由于催化剂量的M n t/L x足以促进AT RP,所以也能通过改变催化剂量控制ATRP的活性进程。
3.1.2 I-I/CuCl2BPY引发剂(A-2体系)这个体系的特点在于虽然不使用卤代烷作引发剂,但通过传统的引发剂,如AIBN与高氧化态的过渡金属卤化物CuCl2配合,同样可以实现休眠活性种M n X与增长M n・自由基之间的快速平衡。
如:用AIBN作引发剂,CuCl2(10m ol)/BPY(20mol)在130℃催化St聚合,M n随单体转化率的增加呈线性增加,M w/M n低至1.30,也得到了一个线性的半对数动力学曲线,这些结果表明实现了“活”的ATRP过程。
3.1.3 I-I/RX/CuCl2/BPY引发剂(A-B)体系与A-1体系相比,由于由I-I产生的自由基浓度较高,A-2体系通常要求有较大量的M n+1t L x催化剂。
为了在常规的自由基聚合之前得到“活”的AT RP过程,自由基P・对于M n+1t的反应和M n+1t/L x物质的溶解度是关键性的因素。
例如:尽管在10mo l CuCl2和20mo l BPY存在下用AIBN作为引发剂时,St 的本体ATRP可以得到预计的相对分子质量和M W/M n≈1.3,但是丙烯酸甲酯(M A)在相同条件下却不可控制,在转化率大于40%以后甚至凝胶化, GPC测定其四氢呋喃的可溶部分表现为双峰曲线, M w/M n=3.0。
这是由于对CuCl2/BPY而言,PMA・的反应活性较PSt・的低和反应体系中存在高浓度增长自由基的缘故。