纺织复合材料工艺

合集下载

纺织复合材料在航空航天工业上的应用

纺织复合材料在航空航天工业上的应用

纺织复合材料在航空航天⼯业上的应⽤在现代材料科学与技术的发展历程中,航空航天⽤材料⼀直扮演着先导性的⾓⾊,材料的进步不仅推动飞⾏器本⾝的发展,也带动了地⾯交通⼯具的进步,⽽发动机材料的发展则推动着动⼒产业的推陈出新。

可以说,航空航天材料反映了结构材料发展的前沿,代表着⼀个国家结构材料的最⾼⽔平。

复合材料是由两种或两种以上的材料按要求组合成的⼀种具有成份中任何单⼀材料所不具备的特性的新材料。

先进复合材料(AdvancedComposite Materials)是指可⽤于主承⼒结构或次承⼒结构。

刚度和强度性能相当于或超过铝合⾦的复合材料。

航空航天⼯业对复合材料的发展提供了最初的驱动⼒,先进复合材料在航空、航天中的位置已经获得认可。

尤其是对于军⽤飞机,先进复合材料⽤量的多少在很⼤程度上决定了该机的先进性。

先进复合材料按照基体可分为:树脂基复合材料(Resin Matrix Composites,简称RMC):⾦属基复合材料(Metal Matrix Composites,简称MMC):陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)。

⽽按照复合材料中增强体的形态,先进复合材料可分为:颗粒增强复合材料(Particulate Reinforced Materials);纤维增强复合材料(Fiber Reinforced Materials);纺织结构复合材料(Textile Structural Composites,简称TSC)等。

其中,纺织结构复合材料将纺织技术和现代复合材料成形技术相结合,有效地克服传统单向和层合复合材料的⾯内⼒学性能不均匀、损伤容限低等缺点。

纺织复合材料(Textile Composites)的概念从应⽤上来讲应是由机织、针织、编织、缝纫等纺织技术制造增强材料预成形体,再经树脂传递模塑(RTM)等复合材料液体成形⼯艺制造的⼀类复合材料,⽽纤维增强复合材料是传统的复合材料,通常不在纺织复合材料讨论的范围内。

纺织复合材料在化工领域中的应用浅析

纺织复合材料在化工领域中的应用浅析

纺织结构 复合材料 的思想 必然被人们接受 用来 种种预成型构造是经过现代纺织技 术织造成形 将成 型后的纤 维束网络 骨架充填以基 体材 消除复合材料的 “ 。 层” 在常规复合材 料成熟的 的。 经固化制成纺织结构复合材料。 设计分析方法 、 织造 工艺以及高 效的纺 织织造 料, 技 术的前提下, 现代纺织结构复合材料以惊人的 纺 织结 构复合材料 的另一个组 分就 是基体 主要有树 脂基 、 金属基、陶瓷基和 碳碳基 速度蓬勃发展, 已波及美国、 国、 国、 法 英 德国、 材 料。 类基 体材料。 在复合材 料 中, 俸起着 传递载 基 俄罗斯、 脱维 亚、 拉 芬兰、 中国、 本、 比币 日 南 4 均衡 载荷和固箝支持纤维的作用。 只有纤维 朝鲜等国。 其重要原因之一, 就是纺织构造的优 荷、 越的力学性能, 别是不同的织造技术所形成 的 和基体 两者 有机地 匹配协调 , 特 才能 充分发挥 整 即通常估算力学性能的混 纤维 束的微观构 型, 应十分广泛的载 荷环境 体作用和各自的性 能, 适 合律方可成立 。 值得指出, 混合律还只是 一个工 作用下的工程结构的要求。 程处理模式. 勿从混合律 各组分所占的比例来 切 材 料、 能源和 食品既是人类赖 以生存的三 =. 纺织结构复合材料应用 1 . 按当代历史观点, 纺织结构复合材料的出 判定各个组 分所起 的作用。这是因为纺织 结构 大要素, 又是人类与自 然界作斗争所追求的三大 而 复合材 料的工艺性 、 力学性能中的压缩、 弯曲、 剪 目标, 由它们组成的某个时代的物质世界就是人 现是 近世纪 材料科学 发展的 重大进步之一。 扭转强度、 环境的温 度、 对 介质相容性 以及 类 历史演进的标 志。 纺织结 构复合材 料是 纺织 按纺织结构复合材料的定义, 可以追溯 到中国古 切、 传热 等物 理或 化学性能主要取 决于基 j 唪 这 技 术和现代复合材料技术结合的产物, 它与通常 代用编成排的秫 桔混 合粘土做成的墙 体, 是 导 电、 材料。 研究表 明, 两组分 固化后组分之 间受4 种 的纤维复合材料具有较大的区别。 纤维复合材料 纺织结构复合材料在 建筑领域 的最早应 用。 其一, 两组分本身 2用铜丝编织成的陶瓷基容器。 . 可以考证 , 力的相互作用而固结成整体 : 是通过把纤维 束按 一定 的角度和一定 的顺序进 其二, 在纤 维表面的微孔隙被基体大 行 铺层或缠绕而制 成的, 基体 材料和纤 维材料 早在 中国明朝( 6 年~14 年) 1 8 3 6 4 就可精 制此类景 的内聚力; 钉牢” 所产生的机械作用力; 其 干铺层或缠绕时 同时组合, 形成 层状结 构, 因此 泰蓝。 由此可知 , 人类很早就熟 知纺织结构 复合 分子渗透扩散而 “ 包括氢键和范德华力在内的吸附力t 其四, 基 材料 的优点 : 织造的纤维网络具有优越 的整体增 三, 也称 层合( 复合材料。 压) 强作用。 因而纺织结构复合材料的出现和发展是 体的化学基 团与纤维 表面化学基团起化学反应 纺织 复合材料的发展 所形成的 化学键的 作用力。 这是组 分选择 和工 在2 年代 , 0 波音公司就 已经使用纺 织结构 个悠久的历史过程。 来增强飞机的机翼。 0 5 年代, 美国通用 电器公司 3 在航 空航 天领域 , . 高温、 蚀 和高速 冲 艺方法选择的第二个应考虑的因素。 烧 基体的类型繁多, 在选择基体材料N , 必 - 还 也选择 纺织结 构作为碳/ 碳复合材料鼻锥的 增 刷的 导弹 头 锥 、火 箭发 动机 的喉 衬采 用三 维 例如环氧类、 聚酯类和酚 醛 强形式。 0 代初 , 7年 在缠绕 工艺的影 响下, 二维 整体编 织结构复合材料。 发动机 裙和导 弹弹体 须考虑固化收缩率 。 %~ %、 %- % % 编织 工艺被引入 复合材 料领域 。 随着 复合材料 ( 火箭箭体) 或 以及飞机 机身则采用 二维编 织或 类树脂的收缩率分别在 1 2 4 6 和8 ~ 0 范围内。 收缩率越大意味 着固化后产生 的缩 的发展, 二维编织工艺也得到了迅速的发展, 并 机 织结 构 复合材 料 。 目前对 空 间飞行 器, 别 1% 特 结果会 降低纺织结 构复合 为制造复杂形状复合材料开辟了 一条成功之路。 是对那 些长时 间在 轨道运 行的空间站 、 空间实 孔和微 裂纹 就越 多, 近年来, 材料科学研究致 力于 8年代, O 通过纺织界与复合材 料界 的合作 , 编织 验室和 重复使用的太空 运输系统 , 正在进 行一 材料的力学性能 。 这 通常的做法是 在热固性树 技 术 由二维 发展到三维 , 从而为 制造高性能 复 类 智 能型 纺 织结 构 复合材 料 的研 究 。 类结 减小基 体的收缩 率。 这样既改善聚收状态又 合材料提 供了新 的途径 。 三维 编织结 构复合材 构 是将 诸如 光纤 ( 传感 ) 压电( 动) 元件 埋 脂中填入热塑性 大分子, 、 驱 等 以监 控制造过 程中的质量和运 行 提高结构材 料的韧性 。 料 由于其增强体为三维整体结构, 大大提高了其 入材 料 内部 , 总之 , 在纺织结构复合材料设计中, 首先 就 厚度方 向的 强度 和抗冲 击损伤的性 能 , 因而倍 中结构 的健康 状况或控 制结 构的动 力学行 为; 选择的依据是 基于: 受重视并 获得迅 速发展 。 创造不补充加 油而连 4 在 交 通运 输 领 域 , 自行车 到 汽车 、 是选 择纤 维和基体的材料。 . 从 温度、 湿度、 腐蚀和其 续环球飞行 一周记录的 “ 航行者” 飞机与美国比 舰 艇 、高速 火 车 和 军 用 战 车 , 可 以 找 出 产品所经受的载荷和环境( 都 ; 采 部 奇公司的 “ 星舟” 号公务机 , l 都采用了一些编织 用 纺 织 结 构 复 合材 料 制 成 的 零 、 件 和 主 它化学作用等)产品结构特点及其功能要求 , 成本限制等因素。 体 只 结构件。 英国道蒂公司的复合材料螺旋浆, 其浆 J 构 架 的 例 子 , 是 不 同 部 件 采 用 不 同 类 用的预成 型和固化技术, 叶为编织结构 , 获得19年英 国女王技术成果大 型 的 纺 织 结 构 而 已 。如 形 状 复 杂 的 螺 旋 91 奖。 美国航空航天局( A大力开展三维编织 桨 、曲 轴 就 采 用 整 体 编 织 结 构 复 合 材 料 ; NAs ) 结构复合材料研究 工作。 计划中包括开发编织技 5在建 筑领 域, . 可分为两类 : 一类是刚性 复 如梁 、 、 柱 骨架等; 一类则是柔性复 术和自动化加 工. 开发热 塑性树脂等重要内容。 合材料构件 , 由此可见, 现代纺织结构复合材料 是在常规 合材料构件, 如体育馆 、 停车 场和车站的屋顶、

碳纤维的生产制造工艺

碳纤维的生产制造工艺

碳纤维的生产制造工艺碳纤维是一种具有优异性能的复合材料,由于其高强度、高模量、低密度、耐腐蚀等特点,被广泛应用于航空航天、汽车、体育器材等领域。

而碳纤维的生产制造工艺对于产品质量和性能起着至关重要的作用。

碳纤维的生产制造工艺主要包括原料处理、纤维制备、预浸料制备、纺纱、织造、热解碳化、碳化烧结、表面处理等多个步骤。

在碳纤维的生产制造过程中,原料的处理是非常关键的。

碳纤维的原材料主要是聚丙烯腈纤维,该纤维经过预处理、拉伸等工序,去除杂质和不稳定成分,提高纤维的拉伸性能和稳定性。

接下来,纤维制备是制造碳纤维的核心环节。

聚丙烯腈纤维在高温下进行氧化处理,生成聚丙烯腈纤维的氧化纤维。

氧化纤维经过拉伸、碳化等工序,形成具有高强度的碳纤维。

在纤维制备之后,需要进行预浸料的制备。

预浸料是将碳纤维与树脂进行浸渍,以提高碳纤维的密实性和粘结性。

预浸料的制备过程中需要控制树脂的浓度和浸渍时间,确保碳纤维与树脂的均匀分布。

纺纱是将预浸料纤维进行纺织,形成碳纤维纱线。

纺纱工艺中需要控制纱线的细度和强度,以及纺织机的工作速度和张力,确保纱线的质量和均匀性。

织造是将碳纤维纱线进行编织,形成碳纤维织物。

织造工艺中需要控制编织机的编织方式和密度,以及纱线的张力,确保织物的均匀性和强度。

热解碳化是将织物进行高温处理,使其发生热解反应,生成碳纤维的主要成分——碳。

热解碳化工艺中需要控制温度和处理时间,以及气氛的控制,确保碳纤维的高纯度和高结晶度。

碳化烧结是将热解碳化后的织物进行烧结,使其形成致密的碳纤维。

碳化烧结工艺中需要控制烧结温度、压力和时间,以及烧结介质的选择,确保碳纤维的致密性和结构完整性。

进行表面处理是为了改善碳纤维的表面性能。

表面处理工艺可以包括氧化剂处理、表面活性剂处理、防腐涂层等,以提高碳纤维的耐腐蚀性和粘接性。

碳纤维的生产制造工艺包括原料处理、纤维制备、预浸料制备、纺纱、织造、热解碳化、碳化烧结、表面处理等多个环节。

纺织品材料的先进制造技术

纺织品材料的先进制造技术

纺织品材料的先进制造技术1. 前言纺织品作为人类生活中不可或缺的一部分,其制造技术的发展历史悠久,而随着科技的不断进步,纺织品材料的先进制造技术也在不断地更新和发展。

本文将详细介绍纺织品材料的先进制造技术,并探讨其未来的发展趋势。

2. 纺织品材料的分类及特点纺织品材料主要分为天然纤维和化学纤维两大类。

天然纤维包括棉、麻、毛、丝等,其特点是具有良好的透气性、吸湿性和保暖性。

化学纤维则包括聚酯、尼龙、棉纶等,其特点是具有较好的强度、耐磨性和化学稳定性。

3. 先进制造技术在纺织品材料中的应用3.1 自动化和智能化生产随着计算机技术和机器人技术的发展,纺织品制造过程中的自动化和智能化程度不断提高。

例如,使用计算机控制的经纬机、自动化铺布机、自动化裁床等设备,可以大大提高生产效率和产品质量。

3.2 纳米技术纳米技术在纺织品材料制造中的应用也越来越广泛。

通过纳米技术可以制造出具有特殊性能的纺织品,如纳米抗菌纺织品、纳米防紫外线纺织品等。

3.3 生物技术和基因工程生物技术在纺织品材料制造中的应用主要体现在纤维的生产过程中。

例如,利用转基因技术培养出具有特殊性能的棉花,或者通过基因工程改造微生物,使其能够生产出特定的纤维。

3.4 新能源技术新能源技术在纺织品材料制造中的应用主要体现在纤维的生产和加工过程中。

例如,利用太阳能、风能等可再生能源替代传统的化石能源,以减少对环境的影响。

4. 发展趋势随着科技的不断进步,纺织品材料的先进制造技术也在不断地更新和发展。

未来的发展趋势主要包括:1.绿色制造:环保意识的不断提高,使得纺织品制造企业越来越注重绿色生产,减少对环境的影响。

2.个性化定制:消费者对纺织品的需求越来越多样化,个性化定制将成为纺织品制造的重要趋势。

3.智能化生产:随着技术的发展,纺织品制造过程中的智能化程度将进一步提高。

4.可持续发展:纺织品制造企业将更加注重可持续发展,通过技术创新和产业升级,实现经济、社会和环境的协调发展。

纺织结构复合材料铺层顺序设计与力学性能分析

纺织结构复合材料铺层顺序设计与力学性能分析


要 :为研 究铺层顺序对 纺织结构复合材料力 学性 能的影 响, 将玻璃 纤维平纹织物与玻璃纤维双轴 向缝编毡
按照 5种不 同的铺层方案铺 叠, 并用真 空辅助成 型方式制备 成复合材料 。利 用落锤 冲击试验机与万能试验机对具有 不 同铺层顺序 的 5种复合材料进行 抗冲击性与抗拉强度测试 。结果表 明 : 合理设计铺 层顺序可 以改善纺 织结构复合 材料 的力学性 能; 其 中将 两种 不 同结构的增强织物进行 交替排 列, 可以获得具 有较 高单位 吸收 能量和优 良经纬 向抗
风力 发 电 、 建筑 、 汽 车 等行 业 均有 较 好 的应 用 前 景 。 通 过铺 层设计 , 不 仅 可 以增加 复合 材料 的厚 度 , 满足
1 原料 准备与复合材料 的制备
1 . 1 纺 织增 强 材料 用 于制 备纺 织结 构复 合材 料 的纺织 结构 主要有
机织 物 、 轴 向经编织物、 三维编织物 、 非 织造布等。 机织 结 构在 经纬 纱 方 向均具 有 良好 的力 学 性 能 , 可 以形 成 较高 的纱 线堆 积 密 度 , 尺 寸稳 定 性 好 。轴 向
文章编号 :1 6 7 3 — 3 8 5 1( 2 0 1 3 ) 0 1 — 0 0 2 7 — 0 4
纺 织 结 构 复 合 材 料 铺 层 顺 序 设 计 与 力 学 性 能分 析
孙佳英 ,李艳清 ,章斐燕 , 江雅 芬 ,祝成炎
( 浙 江 理 工 大 学先 进 纺 织材 料 与 制 备 技 术 教 育部 重 点 实验 室 , 杭州 3 1 O 0 1 8 )
拉 强度 的 复合 材 料 。
关 键 词 :纺 织 结 构 ;复 合 材 料 ; 铺层 顺序 ; 抗 冲击性 ; 抗 拉 强度

纳米材料在纺织品中的应用方法与技巧

纳米材料在纺织品中的应用方法与技巧

纳米材料在纺织品中的应用方法与技巧纳米材料是指其尺寸在1-100纳米之间的材料,具有特殊的物理、化学和生物学性质。

纳米材料在纺织品中的应用已经取得了许多重要的进展,为纺织品赋予了新的功能和性能。

本文将介绍纳米材料在纺织品中的应用方法与技巧。

1. 纳米涂层技术纳米涂层技术是将纳米颗粒分散在液体中,通过喷涂、浸渍或喷雾等方法将纳米液体均匀地涂覆在纺织品表面。

这种方法可以改善纺织品的性能,比如增加防水、防污、防菌、抗紫外线等功能。

例如,通过将纳米二氧化钛涂覆在纺织品表面,可以增加纺织品的抗紫外线能力,降低紫外线对皮肤的伤害。

2. 纳米复合材料制备技术纳米复合材料是将纳米材料与纺织品的纤维进行混合,通过微观结构的改变来改善纺织品的性能。

常用的纳米复合材料制备技术包括溶胶-凝胶法、溶液法和电纺法等。

这些方法可以将纳米材料均匀地分散在纺织品中,使纺织品具有抗菌、吸湿、抗静电等功能。

例如,通过将纳米银颗粒与纤维进行混合,可以制备出具有抗菌功能的纺织品。

3. 纳米纤维技术纳米纤维技术是通过特殊的纺织方法制备纤维直径在纳米尺度范围内的纤维。

这种纳米纤维具有较大的比表面积和较好的透气性,能够提高纺织品的透气性、舒适度和耐久性。

目前常用的纳米纤维技术包括静电纺丝法和模板法等。

通过这些方法制备的纳米纤维可以用于制备防尘、抗菌、吸水速度快等功能的纺织品。

4. 纳米印花技术纳米印花技术是将纳米颗粒直接印刷在纺织品上,从而实现纺织品的功能化。

这种技术可以在纺织品表面形成纳米颗粒的一层薄膜,使纺织品具有抗菌、防臭、防紫外线等功能。

纳米印花技术具有高效、低成本和易操作等优点。

例如,通过将含有纳米锌氧颗粒的墨水印刷在纺织品上,可以实现纺织品的抗菌功能。

5. 纳米改性技术纳米改性技术是将纳米颗粒与纺织品进行物理或化学上的改性。

这种方法可以改善纺织品的柔软性、耐磨性、抗皱性等,提高纺织品的舒适度和耐用性。

纳米改性技术包括纳米溶胶浸渍、纳米粉末共混和纳米交联等方法。

先进复合材料三维织物的织造

先进复合材料三维织物的织造

先进复合材料三维织物的织造N.Khokar;贺春霞【摘要】作为先进复合材料增强材料的3D织物的工业发展仍较缓慢,原因是工程预型件的形状可靠性、快速开发和交付及低成本这3个关键性需求大都没有得到解决.这些需求很难通过2D织造实现.2D织造工艺主要用于制备2D或片状织物,它也能制备3D织物,并常被误认为是3D织造工艺.Biteam AB公司成功研发并证实了2D织造和3D织造的差异.3D工艺中双向开口系统的开发,实现了独特的垂直和水平方向的织造,这是2D织造工艺所不能达到的.这项新技术可满足3D织物技术和经济方面的需求.3D织造工艺的开发完全符合现有的织造基本原理,从而使得3D织造工艺技术得以实现.3D织造工艺可直接用于制备夹心、实心和管状的异形截面3D织物.提请注意某些相关方面,以促进织造工艺的进一步演变.%The industrial growth of 3Dfabrics as reinforcements for advanced composite materials remains slowly because 3key demands remain mostly unaddressed:engineering pre-forms with shapeperformance reliability, development and deliverying them in short time, and making them affordable.These demands are difficult to realize through 2D weaving process which is basically devised for manufacturing 2D or sheet-like materials.Strangely, its ability to produce 3D fabrics has been incorrectly assumed to be the 3Dweaving process.This discrepancy has been overcome by Biteam AB by following a fundamentally different path from the rest.Through development of the first ever weaving device incorporating the dual-directional shedding system, weaving is uniquely performed vertically and horizontally, which is not possible by the2Dweaving process.By means of this novel method, the various technical and economic demands are achieved.This development fully complies with the established principles of weaving, and hence enables the technical realization of the 3D weaving process.The proprietary 3D weaving process uniquely produces profiled cross-section 3D fabrics directly in shell, solid and tubular types.Attention is drawn here to certain relevant aspects to enable further evolution of the timeless weaving process.【期刊名称】《国际纺织导报》【年(卷),期】2018(046)011【总页数】4页(P42-44,46)【关键词】3D织造工艺;2D织造工艺;先进复合材料;3D织物【作者】N.Khokar;贺春霞【作者单位】Biteam AB公司(瑞典);Biteam AB公司(瑞典)【正文语种】中文3D织物的应用已有100多年的历史,较为人熟知的应用包括矿产行业的运输带、纸浆行业的造纸毡、装饰用的双层布等。

《纺织复合材料》课程思政优秀教学案例(一等奖)

《纺织复合材料》课程思政优秀教学案例(一等奖)

《纺织复合材料》课程思政优秀教学案例(一等奖)一、课程特点与现状纺织复合材料课程是本校纺织工程专业学生的一门专业选修课,课程内容从高性能纤维到聚合物基体,以及两者之间的界面属性与成型工艺,涵盖了纺织科学与材料科学等诸多领域知识。

但由于课时少,内容覆盖面广,往往会造成教师在主干内容之外较难加入与思政教育有关的内容。

学生在学习和掌握课程知识之余,对于其他知识的额外吸收也力有不逮。

此外,近年来传统专业因宣传力度以及人们的固有思想掣肘在生源上表现出来的问题也日趋严峻,传统专业往往需要通过校内调剂,甚至因招不到学生而不得不被撤销。

纺织工程专业目前就面临着招生难,调剂率高等严峻问题,学生们在入学之后因为对专业本质的不了解,存在着轻视甚至是抵触等情绪。

纺织复合材料课程因其应用性强,学生对材料制备与实际应用缺乏感性认知,这就造成课程“无用论”观点的蔓延,这些都对课程思政的开展带来了困难。

相关思政元素:爱国热情、信任、归属感、立德树人、创新创业、价值观、信任感、专业信心、民族信心、学习积极性二、课程思政的开展1.以人为本,加强师生与学校之间信任感思政教育工作在传统模式教学下较难展开,一是当前国家与社会条件的日益改善,学生受家庭溺爱的程度也逐步增加,在进入到大学后对于自身意志的把控不足,造成以自我为中心、言行过激与冲动、易受他人影响而不能明辨是非等现象。

另外一点是有些学校与学生和老师之间缺乏必要的信任,认为对方是“别有用心”,这对于处理好校方和师生之间的关系就很不利。

作为一名纺织复合材料课程的任课教师,在处理学生对教师与学校信任感的问题上,主要是从以下几个方面展开:(1)首先在课程教授过程中,可以跟学生阐明“信任”的重要性。

例如:纺织结构复合材料的产业化程度高,信任关系作为相关企业生存的“社会资本”,起着极其重要的作用。

在课程内容之外,结合具体案例,让学生了解信任的含义和作用,突出信任的重要性。

(2)抓住学生对于创新学分的需求,结合课程内容讲解创新学分获得的途径,着重对学校关注的大学生创新创业项目、“互联网+”大学生创新创业大赛等项目进行宣传,让学生体会到学校对于该类项目的支持,培育学生对教师和学校的信任。

最新-浅议纺织复合材料的技术及应用分析 精品

最新-浅议纺织复合材料的技术及应用分析 精品

浅议纺织复合材料的技术及应用分析篇一:纺织复合材料技术的发展和应用纺织复合材料论文(题目:纺织复合材料技术的发展和应用姓名:学院:轻工与纺织学院班级:纺织工程08-2班学号:二〇一零年零六月摘要纺织复合材料涉及日常生活方方面面,研究其发展和应用有极其重要的社会价值和现实意义。

本文是纺织复合材料从十九世纪开始发展历经二百余年的发展过程的缩影包括19世纪的纤维素化学和碳纤维20世纪的煤炭化学、玻璃纤维和复合材料、合成纤维和复合材料、太空时代的先进复合材料;纺织复合材料的应用领域包括、航天航空领域飞行器的重量、降落伞、个体防护装备、弹射座椅、等其它航空装备中复合材料的应用,船舶工业,汽车工业,军事工业和其他行业。

关键词:纺织复合材料、发展、应用、玻璃纤维、航空、军事、船舶,,、、、、、目录引言4第一章纺织复合材料的发展51119世纪的纤维素化学和碳纤维51220世纪的煤碳化学和复合材料5121玻璃纤维和复合材料6122合成纤维和复合材料6123太空时代和先进复合材料613纤维和复合材料的现状7第二章纺织复合材料的应用921航天航空领域9211飞行器的重量10212降落伞11???213个体防护装备12214弹射座椅12215其它航空装备1222船舶工业13?23汽车工业1324军事工业1425其他行业14引言纺织复合材料的自十九世纪开始发展,现在它已涉及人类生活的方方面面,研究其发展历程和在发展过程中出现的问题以及取得的应用成果对我们促进社会发展、改善生活、保护环境有重要意义。

篇二:浅议新材料技术在纺织面料中的发展和应用浅议新材料技术在纺织面料中的发展和应用【摘要】加入后,国内纺织工业受到了严重的冲击,一是由于传统产品品种缺乏新面貌和新功能,逐渐淡出国际市场;二是因为国内传统纺织设备效率低下,适应性较弱,产生高成本,这样的设备无法适应现代社会发展。

虽然从纺织业的用工成本来看,我国在国际市场上仍然占有一定优势,但是产品在材料技术的制约下,失去了竞争优势。

纺织复合材料工艺专业介绍

纺织复合材料工艺专业介绍

纺织复合材料工艺专业介绍
专业名称:纺织复合材料工艺 (0559)
培养目标:本专业培养纺织复合材料工艺设计和生产操作人员。

建议修业年限:3年
业务范围:
本专业毕业生主要面向高分子材料复合加工企业,从事生产工艺设计和实施,原料、半成品、成品质量检验,生产操作和设备维护等工作。

毕业生应掌握的知识和应具备的技能、能力:
1.掌握化学、高分子化学的基础知识;
2.了解纺织材料的基本性能,熟悉高分子材料加工的基本工艺;
3.掌握非织造布的生产工艺及层压技术;
4.掌握产品质量分析的基本知识及常规试验和化验的方法;
5.熟悉非织造布生产主要设备的性能和结构;
6.具有对一般非织造布材料选择和生产工艺设计与调整的能力;
7.具有生产操作和一般维护生产设备的能力;
8.具有车间生产和技术管理的初步能力。

专业教学的主要内容:
有机化学、分析化学、高分子物理与化学、粘合技术、非织造技术原理及设备、复合材料应用与开发、纺织复合材料后整理加工、非织材料性能测试分析。

制图测绘、金工实习、高分子材料加工生产实习、市场调研、毕业综合实习。

纺织复合材料预制件概述

纺织复合材料预制件概述

纺织复合材料预制件概述一、纺织复合材料预制件航空和航天业的发展促进了纺织复合材料的研究,使纺织技术在先进材料领域的应用潜能逐渐被挖掘出来。

通过纺织加工方法如机织(Weaving)、编织(Braiding)、针织(Knitting)和非织造(Non-woven)等,将纤维束按照一定的交织规律加工成二维或三维形式的纺织结构,使之成为柔性的、具有一定外形和内部结构的纤维集合体,称之为纺织复合材料预制件。

根据不同的纺织加工方法,纺织复合材料预制件中的纤维取向和交织方式将具有完全不同的特征,并且这些特征会导致纺织复合材料的性能存在明显的差异。

为此,采用不同纺织复合材料预制件增强所得的纺织复合材料,通常在其名称前标以纺织方法,以示区别,如机织复合材料、针织复合材料、编织复合材料、非织造复合材料等。

二、纺织复合材料预制件的特征(一)几何特征根据纺织结构的几何特征,纺织复合材料预制件有二维纺织复合材料预制件和三维纺织复合材料预制件两种形式。

对于二维纺织复合材料预制件而言,纺织结构在面内的两个正交方向上(如矩形的长度和宽度方向)的尺寸远大于其在厚度方向上的尺寸。

根据不同的纺织加工方法,增强纤维在平面内的取向和交织方式存在着多种形式。

对于机织结构,取向分别为0和90°的经纬两组纱线相互交织,形成稳定的二维结构,构成机织物;对于编织结构,纱线之间按照与织物轴向偏移一定角度的取向相互编结交织而成,构成编织物;对于针织结构,纱线之间在经向或纬向以成圈的方式相互嵌套,构成针织物;而对于非织造结构,纤维通常以散纤维的状态分布在平面内的各个方向上,通过机械或黏结的方法固结成非织造织物。

对于三维纺织复合材料预制件而言,厚度方向(z向)上的尺寸和纤维交织形式不可忽略。

三维纺织结构的特点是在厚度方向上引入纱线而形成立体的纤维交织结构,从而获得优良的结构整体性。

类似于二维纺织结构,不同纺织加工方法使纤维在立体方向上的取向和交织方式也存在着多种形式。

纺织复合材料的应用优势与发展前景

纺织复合材料的应用优势与发展前景

纺织复合材料的应用优势与发展前景摘要:随着时代的进步,国家的发展越来越好,各行各业在当前的发展进程中都发生了重大转变。

纺织业作为社会结构的重要组成部分,承担着拉动全球经济发展、提高人民平均生活质量的重任。

因此,纺织企业也必须根据实际情况进行纺织转型。

与传统纺织品相比,纺织复合材料应用范围更广,功能更强,因此在现阶段得到广泛应用。

纺织复合材料技术在国家发展中发挥了重要作用。

近年来,各国政府有关部门对纺织行业的重视程度越来越高,加大了资金投入和政策扶持力度。

通过相关研发人员的不断努力,现阶段纺织复合材料相关技术越来越先进,应用效率越来越高。

关键词:纺织复合材料;应用;发展前景引言纺织结构复合材料,是一种以纺织结构作为增强体的复合材料,其存在的意义即为,在现实过程中我们往往需要根据实际情况选择一些可以承受,高速冲击拉伸,冲击压缩到作用的纺织材料。

因为纺织材料的结构和复合材料的优点,使其具有一定的冲击力,分层能力以及高损伤容限性能。

通过对复合材料冲击性能的预测和优化,选择性的加强纺织结构复合材料的设计。

1纺织复合材料的应用优势纺织复合材料具有显着的应用优势,主要体现在以下几个方面。

(1)纺织复合材料具有高强度、高模量的特点,特别是在材料的横向和厚度上,使纺织复合材料的结构优势更加明显,具有以下优点:抗损伤极限更高,比较耐冲击性、韧性、不易断裂、开裂、分层等。

因此,纺织复合材料被用于各个领域。

(2)纺织复合材料的设计性良好。

在实际生产中可通过对纤维束数的增加或减少来改变实际需要加载的方向和曲度,也可以根据实际需求来编织所需要的元件或一次性完成所需组合部件,例如开孔结构的设计制造。

由于纺织复合材料的设计性良好,因此常被应用于其他行业的仪器设备的零部件改进方面,使得仪器设备在使用及操作的过程中更加顺利,舒适度得到提升。

(3)纺织复合材料具有效率高、生产周期短、经济性好的特点。

由于纺织复合材料无须人工处理,能实现自动化生产,并且产出与实际所需产品的形状几乎完全接近的产品,因此减少了生产过程中的人力损耗,使得纺织复合材料的成本损耗控制在一个较低的范围。

柔性纺织复合材料实施方案

柔性纺织复合材料实施方案

柔性纺织复合材料实施方案以高质量发展为主题,供给侧结构性改革为主线,科技创新为动力,满足国民经济各领域需求为重点,统筹发展和安全,加快产业用纺织品高端化、数字化、绿色化、服务化转型升级。

一、基本原则坚持创新引领。

强化科技创新对产业发展的引领作用,加强产业基础、共性技术、高端替代应用创新,加大新技术应用力度,推动业态变革、价值创造和结构升级。

坚持需求导向。

以适应医疗健康、安全防护、海洋经济、环境保护等领域需求为重点,加强产品开发设计,增强质量保障能力,提升工程化服务水平,拓展多元化市场。

坚持结构优化。

营造公平竞争发展环境,运用市场机制淘汰落后产能,加大行业高端化、数字化、绿色化转型力度,培育优质品牌和“专精特新”中小企业。

坚持合作共赢。

鼓励产业用纺织品企业与基础材料及终端应用企业加强产业链上下游衔接,完善覆盖生产与应用的标准检测评价体系,建立诚信共赢产业链供应链。

二、加快产业结构升级,推进产业高端化加强技术迭代升级。

支持企业加快技术改造,开拓产品在医疗健康、海洋工程、高效过滤、安全防护等领域的高端化应用。

充分应用质量、能耗、安全生产、环保等技术标准、法律法规淘汰落后产能。

梯度培育优质企业。

支持优势企业兼并重组,培育创新能力突出、具有生态主导权和核心竞争力的龙头企业。

引导企业深耕细分领域,培育专精特新“小巨人”企业。

加强大中小企业多维度协作,形成良好产业生态。

推进先进产业集群建设。

推动产业集群建设高水平公共服务平台,加快要素资源引进力度和更新速度,完善产业链条,升级制造能力,优化产品结构。

推进非织造布、防护用纺织品、高温过滤用纺织品产业集群建设,提高集群产业链配套能力和核心竞争能力。

三、坚持标准引领,完善质量保障能力加强标准体系协同建设。

推进上下游企业标准协同研究发布,推进医疗卫生、安全防护、土工、过滤、海洋等应用领域重点产品标准与应用规范的制修订。

积极参与国际标准制修订工作,加大国际标准转化力度,提高标准国际化水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纺织复合材料工艺
专业名称:纺织复合材料工艺 (0559)
培养目标:本专业培养纺织复合材料工艺设计和生产操作人员。

建议修业年限:3年
业务范围:
本专业毕业生主要面向高分子材料复合加工企业,从事生产工艺设计和实施,原料、半成品、成品质量检验,生产操作和设备维护等工作。

毕业生应掌握的知识和应具备的技能、能力:
1. 掌握化学、高分子化学的基础知识;
2. 了解纺织材料的基本性能,熟悉高分子材料加工的基本工艺;
3. 掌握非织造布的生产工艺及层压技术;
4. 掌握产品质量分析的基本知识及常规试验和化验的方法;
5. 熟悉非织造布生产主要设备的性能和结构;
6. 具有对一般非织造布材料选择和生产工艺设计与调整的能力;
7. 具有生产操作和一般维护生产设备的能力;
8. 具有车间生产和技术管理的初步能力。

专业教学的主要内容:
有机化学、分析化学、高分子物理与化学、粘合技术、非织造技术原理及设备、复合材料应用与开发、纺织复合材料后整理加工、非织材料性能测试分析。

制图测绘、金工实习、高分子材料加工生产实习、市场调研、毕业综合实习。

相关文档
最新文档