初中数学知识点总结:实数_1
实数——初中数学知识点 第一章数与式 第一节
初中代数知识点第一节实数一、实数的分类1.有理数(1)有理数总可以用整数、有限小数或无限循环小数表示.的形式,其中,m,n均为整数,且n≠0.(2)所有有理数都可以表示为mn2.无理数(较难,以下是常见形式)(1)最简结果中含有π的式子;(2)根号内含有开方开不尽的数;(3)无限不循环小数;(4)某些三角函数式:sin35°.二、实数的相关概念(必考)1.数轴(1)三要素:规定了原点、正方向和单位长度的直线.(2)实数与数轴上的点是一一对应的.(3)数轴上两个点表示的数,右边的总比左边的大.2.相反数(1)数a的相反数是−a,0的相反数是0(相反数等于它本身的数是0).(2)a,b互为相反数⇔a+b=0⇔a=−b(3)几何意义:在数轴上,互为相反数的两个数对应的点在原点的两侧,并且到原点的距离相等.3.倒数(1)乘积是1的两个数互为倒数:a,b互为倒数⇔ab=1(2)非零实数a的倒数是1;0没有倒数;倒数等于它本身的数是±1。
a4.绝对值(1)|a|={a a>00 a=0−a a<0(2)|a|≥0(非负性)(3)若|a|=|b|,则a=±b(4)几何意义:在数轴上,一个数a的绝对值就是表示数a的点到原点的距离.(5)|a−b|表示点a到点b的距离.5.科学记数法(必考)把一个数用科学记数法表示成a×10n的形式,其中1≤|a|<10,n为整数.万(四个0):0000 亿(八个0):00000000例:123000=1.23×1050.00123=1.23×10-3123万=123×10000=1.23×106123亿=123×100000000=1.23×1010 6.近似数一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.例:0.315精确到0.1为0.3,精确到0.01为0.32三、平方根、算术平方根、立方根四、实数的大小比较1.数轴法:将两数分别表示在数轴上,右边的点表示的数总比左边的点表示的数大。
初中数学实数知识点归纳
有理数 自然数初中数学实数知识点归纳一 实数的分类正整数(1、2、3…)整数负整数(-1、-2、-3)正分数(433221、、…)分数(小数)有限小数、无限循环小数实数负分数(3221--、…) 正无理数(532、、、π…) 无理数无限不循环小数、π、开不尽的方根负无理数(32--、、-π…) 实数与数轴上点的关系:实数与数轴上的点一一对应有理数:任何有理数都可以写成qp(q≠0,p 、q 是互质的整数)的形式 无理数:特定意义的数(π)、化简后开不尽的方根(332、)、特定结构无限不循环小数(0.10110111…)二 实数中的几个概念1相反数:只有符号不同的两个数叫做互为相反数 (1)a 的相反数是-a ,0的相反数是0(2)a 、b 互为相反数 a+b=02倒数(1)a (a≠0)的倒数是a1,0没有倒数 (2)a 、b 互为倒数 a·b=13绝对值aa>0 a -b a>b |a|=a=0|a -b|= 0a=b -a a<0b -aa<b(1)实数的绝对值是一个非负数,在数轴上表示这个数到原点的距离(2)去掉绝对值符号(化简)必须要对绝对值符号内的实数进行正负性确认4 二次根式平方根:x 2=a ,x 叫做a 的平方根,记作x=±a 或x=±21a ,a (a≥0)叫做a 的算术平方根 (1)正数的平方根有2个,且互为相反数;0的平方根是0;负数没有平方根 (2)开平方与平方互为逆运算aa<0a -b a>b(3)(2a )=|a|= 0a=0;(2b )( a =|a -b|= 0 a=b -a a>0b -aa<b(4)(2a )=(a )2=a (a≥0)-aaa<a 0<a<1(5)a 和a (a≥0)大小比较:a=a a=0或a=1a>a a>1(6)a ·b =ab (a≥0,b≥0);ba =b a (a≥0,b>0);x 变化n 倍(n≥1),a 变化n 2倍,即n·x=a n 2=n·a(7)x=aa 变化n 倍(n≥1),x 变化n 倍,即n ·x=na(8)20以内二次根式的近似值:11=、 1.4142≈、 1.7323≈、24=、 2.2365≈、 2.4496≈、 2.6467≈、2.8288≈、39=、3.16210≈、 3.31711≈、 3.46412≈、 3.60613≈、 3.74214≈、3.87315≈、416=、4.12317≈、 4.24318≈、 4.35919≈、 4.47220≈5三次根式立方根:x 3=a ,x 叫做a 的立方根,记作x=3a 或x=31a(1)实数只有一个立方根。
实数初中数学知识点总结
实数初中数学知识点总结一、实数的定义与分类实数是数学中最基本的数系之一,包括有理数和无理数两大类。
有理数可以表示为两个整数的比值,形式为a/b,其中a和b为整数,b不为零。
无理数则不能表示为有理数的形式,例如圆周率π和黄金比例φ。
1.1 有理数有理数包括整数和分数。
整数包括正整数、负整数和零,分数则是整数的比值形式。
有理数可以表示为有限小数或无限循环小数。
1.2 无理数无理数是无限不循环小数,常见的无理数有圆周率π、自然对数的底数e等。
无理数不能表示为分数形式。
二、实数的性质实数具有以下性质:- 封闭性:实数的加法、减法、乘法和除法(除数不为零)都是封闭的。
- 有序性:实数集是一个有序集,任何两个实数都可以比较大小。
- 完备性:实数集中的任何有界数列都有一个极限,这个极限也是实数集中的数。
三、实数的运算3.1 加法实数的加法满足交换律和结合律。
两个实数相加,和的符号由绝对值大的数决定,同号相加取原来的符号,异号相加取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值。
3.2 减法实数的减法可以转化为加法,即a - b = a + (-b)。
减法的顺序改变会改变结果的符号。
3.3 乘法实数的乘法满足交换律、结合律和分配律。
两个正实数相乘得正,两个负实数相乘得正,正实数与负实数相乘得负。
3.4 除法实数的除法可以转化为乘法,即a ÷ b = a × (1/b)。
除以一个非零实数,相当于乘以它的倒数。
四、实数的比较实数的大小比较遵循以下规则:- 正实数都大于零。
- 零大于所有的负实数。
- 负实数都小于零。
- 两个负实数比较大小,其绝对值大的反而小。
五、实数的平方根与立方根5.1 平方根实数a的平方根是一个数b,使得b² = a。
正实数有两个平方根,一个正数和一个负数;零的平方根是零;负数没有实数平方根。
5.2 立方根实数a的立方根是一个数b,使得b³ = a。
实数知识点总结概括初中
实数知识点总结概括初中一、实数的基本概念1. 实数的定义实数是包括有理数和无理数的数的集合,记作R。
有理数包括整数和分数,而无理数是那些无法写成有理数形式的数,如π和√2等。
实数的概念是对数的一个总称,它是数学研究和运用的基础。
2. 实数的表示实数可以用小数表示,小数可以是有限的,也可以是无限的循环小数。
有理数可以表示为有限小数或无限循环小数,而无理数通常用无限不循环小数表示。
3. 实数的分布实数可以用数轴表示,数轴上的点对应着实数。
实数在数轴上是连续的,任意两个实数之间都存在着无穷多个实数。
这种连续的性质是实数的重要特点之一。
二、实数的性质1. 实数的比较实数之间可以比较大小,可以用不等式表达实数的大小关系。
对于任意两个实数a和b,有a<b、a=b或a>b三种可能的关系。
2. 实数的绝对值实数的绝对值是这个实数到原点的距离,记作|a|,其中a是实数。
绝对值有以下性质:(1)若a>0,则|a|=a;(2)若a<0,则|a|=-a;(3)|a|=0的充分必要条件是a=0。
3. 实数的有序性实数集合是有序的,即实数集合中的每个实数都可以和实数集合中的其他实数相比较大小。
这种有序性是实数与数学中其他集合的一个重要区别。
4. 实数的密度实数在数轴上是连续分布的,任意两个实数之间都存在着无穷多个实数。
这种性质体现了实数的密度,也是实数在数学中的重要性质之一。
三、实数的运算1. 实数的加法和减法实数的加法和减法是最基本的运算,可以利用数轴对实数的加法和减法进行图形化表示,以便更直观地理解实数的运算。
2. 实数的乘法和除法实数的乘法和除法是对实数进行组合和分解的运算,可以用数轴对实数的乘法和除法进行图形化表示,以便更直观地理解实数的运算。
3. 实数的乘方和开方实数的乘方和开方是对实数进行多次相乘或多次开方的运算,可以用数轴对实数的乘方和开方进行图形化表示,以便更直观地理解实数的运算。
4. 实数的混合运算实数的混合运算是实数运算的综合应用,包括加减乘除、乘方开方等多种运算的组合和应用。
初中数学实数知识点总结
初中数学实数知识点总结一、实数的分类实数是由整数、分数、无理数和有理数四种数构成的。
整数是不含小数部分的正整数、负整数和0。
例如,-3、-2、-1、0、1、2、3等都是整数。
分数是由整数和非零整数构成的比值。
例如,1/2、3/4、-2/3等都是分数。
无理数是指不能表示为有理数的数,通常是无限不循环小数。
如π、根号2、根号3等都是无理数。
有理数是整数和分数的集合,是可以表示为整数比整数的分数的数。
有理数包括整数和分数,例如-3、-2、-1、0、1、2、3、1/2、3/4等都是有理数。
二、实数的加法和减法实数的加法和减法是我们在日常生活中经常用到的运算方式。
对于整数和分数的加法和减法,我们可以按照它们的正负号和大小进行相应的运算。
例如,对于同号的整数,其加法就是两个数的绝对值相加,并且结果的符号与原来的符号相同;对于异号的整数,其加法就是两个数的绝对值相减,并且结果的符号取绝对值大的数的符号。
对于分数的加法和减法,我们可以先找到它们的公共分母,然后按照相同的公共分母进行运算。
三、实数的乘法和除法实数的乘法和除法也是我们在日常生活中经常用到的运算方式。
对于整数和分数的乘法和除法,我们可以按照相应的规则进行运算。
例如,对于整数的乘法和除法,我们可以按照同号和异号的规则进行运算。
对于分数的乘法和除法,我们可以把乘法转化为乘以倒数的形式进行运算。
四、实数的比较大小在日常生活中,我们经常需要比较不同的数的大小。
对于实数的比较大小,我们可以按照它们的绝对值和符号进行比较。
例如,比较两个正数的大小时,我们可以直接比较它们的绝对值大小;比较一个正数和一个负数的大小时,我们可以直接判断正数的大小。
对于分数的比较大小,我们可以将它们转化为相同的分母后再进行比较。
五、实数的混合运算在实际应用中,我们经常需要对不同类型的实数进行混合运算。
例如,我们需要计算一个整数与一个分数的乘积,或者一个整数与一个无理数的和。
对于这种情况,我们可以根据它们的类型进行相应的转化,然后再进行运算。
初中数学知识点汇总
初中数学知识点总结第一章:实数及代数式第一节:实数倒数:①定义:如果两个数的乘积为1.那么这两个数互为倒数.相反数:如果两个数的和为0.那么这两个数互为相反数.绝对值:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。
科学记数法:N=na10⨯(1≤a<10,n是整数)。
当N是大于1的数时,n=N的整数位数减去1。
当N是小于1的数时,n=N的第一个有效数字前0的个数。
有效数字:在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。
如:0.004015,有效数字是4,0,1,5.一共四个.又如:0.00401500,有效数字是4,0,1,5,0,0,一共六个.第二节:代数式运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
有根a、22a b+。
整式和分式统称为有理式。
必用公式:2222)(bababa+±=±(a+b)(a-b)=22ba-2a=a;)0()(2≥=aaa;baab⋅=(a≥0,b≥0);baba=(a≥0,b>0)同底数幂相乘:ma·n a=nma+;②同底数幂相除:m a÷n a=nma-;③幂的乘方:nma)(=mna;④积的乘方:nab)(=n a n b;⑤分式乘方:nnnbaba=)(第二章:方程组及其应用实数无理数(无限不循环小数)有理数正分数负分数正整数负整数(有限或无限循环小数)整数分数正无理数负无理数实数正数一、解方程的依据—等式性质1.a=b ←→a+c=b+c 2.a=b ←→ac=bc (c ≠0)二、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。
2.二元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加减法一元二次方程:⑴配方法(注意步骤和推导求根公式)(2)公式法:)04(24222,1≥--±-=ac b aac b b x (3)因式分解法(特征:左边=0)十字相乘法: 十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
初中数学实数知识点(1)
初中数学实数知识点(1)一、选择题1.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .2.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡⎦=⎤⎣=按照此规定, 101⎡⎤⎣⎦的值为( )A 101B 103C 104D 101+ 【答案】B【解析】【分析】根据310<410的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由3104,得410+1<5. 1010103-,故选:B .【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.3.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1B .x 2+1C 1xD 21x +【答案】D【解析】一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是.故选D.4.在-3.5,227,0,2π,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.5.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±16=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D.6.如图,数轴上的点P表示的数可能是()-A5B.5C.-3.8 D.10【答案】B【解析】【分析】【详解】-5 2.2≈,所以P点表示的数是57.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a-=﹣3a;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;3a-3a④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.16的算术平方根是()A.±4 B.-4 C.4 D.±8【解析】【分析】根据算术平方根的定义求解即可求得答案.【详解】24=16Q,∴的算术平方根是4.16所以C选项是正确的.【点睛】此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.9.的值应在()A.2.5和3之间B.3和3.5之间C.3.5和4之间D.4和4.5之间【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】==∵3.52=12.25,42=16,12.25<13.5<16,∴3.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵34,∴41<5.故选C .本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出34是解题的关键,又利用了不等式的性质.14.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可.【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系17.估计262值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】 解:226122=∵91216<< 91216<<∴3124<<∴估计226⨯值应在3到4之间. 故选:A【点睛】 本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.14的算术平方根为( ) A .116 B .12± C .12- D .12【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12, 故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A.B.C.D.【答案】A【解析】【分析】由于A,B两点表示的数分别为-1OC的长度,根据C在原点的左侧,进而可求出C的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB,,∴C点在原点左侧,∴C表示的数为:故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.。
初中数学知识点讲解实数
初中数学知识点讲解:实数1. 实数的定义实数是指能够用带有小数的数来表示的数,它包括正数、零和负数三种类型。
实数可以表示为有理数或无理数的形式,也可以是这两种数的混合形式。
通常用R表示实数集合。
以下是各种实数的表示方式:•1/3、-2、0.666、3.1415926…… 是实数•√2、π、e等无限不循环小数也是实数•-∞、+∞ 不是实数2. 实数的分类实数可以分为有理数和无理数两类,下面分别介绍它们的定义和性质。
2.1 有理数有理数是指能够表示为两个整数之比的数,可以写成分数的形式。
有理数包括正有理数、零和负有理数三种类型。
有理数通常用Q表示。
以下是一些有理数的例子:•正有理数:1/2、3/4、2、3、999等•零:0•负有理数:-1/2、-3/4、-2、-3、-999等有理数的性质:1.有理数的加、减、乘、除仍为有理数。
2.有理数可以化为最简分数形式。
3.任意两个不等于零的有理数的和、差、积、商仍为有理数。
4.有理数的大小可以用数轴表示。
2.2 无理数无理数是指不能表示为两个整数之比的数,无限不循环小数或无法写成分数形式的数。
无理数包括代数无理数和超越无理数两种类型。
以下是一些无理数的例子:•代数无理数:√2、√5、√7等•超越无理数:π、e等无理数的性质:1.无理数的加、减、乘、除可能得到有限小数或无限不循环小数。
2.任意一个无理数都可以用有限小数或无限不循环小数表示。
3.无理数不能化为最简分数形式。
4.无理数之间不存在大小关系。
3. 实数的运算实数的运算包括加、减、乘、除四种,下面分别介绍其运算规则和性质。
3.1 加法运算两个实数相加,可以按有理数的加法和无理数的加法进行。
•有理数相加:先化为相同的分母,再将分子相加即可。
•无理数相加:直接将两个无理数相加。
例如:• 1.5 + 2 = 3.5•√2 + √3 = √2 + √3 (无法化简)加法的性质:1.交换律:a+b=b+a2.结合律:(a+b)+c=a+(b+c)3.同一元素:a+0=a4.相反元素:a+(-a)=03.2 减法运算两个实数相减,可以根据加法的性质转化为加法运算。
数学实数知识点总结
数学实数知识点总结数学实数是数学中的一种数系,包括有理数和无理数。
实数是一种可以表示在数轴上的点的数,它们可以精确地描述和计算连续和无限的数量。
实数是数学中的基础,无论是在初中数学还是高中数学中都有很重要的地位。
下面是对数学实数知识点的总结。
1. 实数的分类:实数可以分为有理数和无理数两大类。
有理数是可以表示为两个整数的比例的数,如正整数、负整数、分数和小数等。
无理数是不能表示为两个整数的比例的数,如根号2、圆周率π和自然对数的底数e等。
2. 实数的表示方法:实数可以用十进制、分数、小数、百分数等形式来表示。
在十进制表示中,无论整数部分是正整数、负整数还是0,小数部分均可以是有限的或者无限的循环小数。
3. 实数的性质:实数具有传递性、相容性、反对称性、存在性等基本性质。
传递性指的是如果a<b,并且b<c,则a<c;相容性指的是对于任意的a≠b,要么a<b,要么a>b;反对称性指的是对于任意的a≠b,要么a<b,要么b<a;存在性指的是在实数中,存在一个最小的正数(0不是最小的正数)以及一个最大的负数(0不是最大的负数)。
4. 实数的运算:实数的四则运算包括加法、减法、乘法和除法。
在实数的加法和乘法中,满足交换律、结合律和分配律。
在实数的减法和除法中,减法可以转化为加法,除法可以转化为乘法。
5. 实数的大小比较:在实数中,可以通过比较大小符号(<、>、≤、≥)来比较两个实数的大小。
当a<b时,称a小于b,记作a<b;当a>b时,称a大于b,记作a>b;当a≤b时,称a小于等于b,记作a≤b;当a≥b时,称a大于等于b,记作a≥b。
6. 实数的绝对值:实数的绝对值是该实数到0的距离,用|a|表示。
实数a的绝对值的定义如下:当a≥0时,|a|=a;当a<0时,|a|=-a。
7. 实数的相反数和倒数:实数a的相反数为-b,满足a+b=0;实数a的倒数为1/a,满足a*(1/a)=1。
初中数学实数知识点
初中数学实数知识点一、引言实数是初中数学教学中的重要组成部分,它为学生提供了解决各种数学问题的基础工具。
本文旨在概述初中数学中实数的关键知识点,以帮助学生建立扎实的数学基础。
二、实数的定义实数是可以在数轴上表示的任何数。
它们包括所有的整数、分数(有理数)和无限不循环小数(无理数)。
三、实数的分类1. 有理数a. 整数:包括正整数、负整数和零。
b. 分数:表示为两个整数的比,其中分母不为零。
2. 无理数a. 不可表示为分数的无限不循环小数。
b. 常见的无理数包括π和e。
四、实数的性质1. 有序性:实数具有大小顺序,可以比较大小。
2. 封闭性:实数集合在加法、减法、乘法和除法(除以非零数)下是封闭的。
3. 完备性:任何实数序列都有极限。
五、实数的运算1. 加法a. 同号相加:取相同的符号,绝对值相加。
b. 异号相加:取绝对值较大的数的符号,绝对值相减。
2. 减法a. 减去一个数等于加上它的相反数。
3. 乘法a. 正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。
b. 任何数乘以零得零。
4. 除法a. 除以一个非零实数,等于乘以它的倒数。
b. 零除以任何非零数得零。
六、实数的应用1. 解方程:利用实数的运算性质解一元一次方程、一元二次方程等。
2. 几何计算:在几何图形中,实数用于计算长度、面积和体积。
3. 统计与概率:实数在数据分析、概率计算中有广泛应用。
七、实数的近似表示1. 四舍五入法:根据给定的精度要求,对实数进行近似处理。
2. 有效数字:表示实数的精确度,通常保留到一定的位数。
八、结论掌握实数的知识点对于初中生来说至关重要,它不仅是数学学习的基础,也是解决日常生活中实际问题的重要工具。
通过理解和练习实数的性质和运算,学生可以提高自己的数学能力和逻辑思维。
九、附录1. 常见实数运算表2. 实数近似计算的实例3. 实数在方程和几何中的应用例题请注意,本文仅为实数知识点的概述,具体的教学和学习应结合实际的教材和习题进行。
八年级上册数学各章知识点总结
《实数》知识点梳理及题型解析一、知识归纳(一)平方根与开平方1. 平方根的含义如果一个数的平方等于 , 那么这个数就叫做 的平方根。
即 , 叫做 的平方根。
2.平方根的性质与表示⑴表示: 正数 的平方根用 表示, 叫做正平方根, 也称为算术平方根, 叫做 的负平方根。
⑵一个正数有两个平方根: (根指数2省略) 0有一个平方根, 为0, 记作 , 负数没有平方根 ⑶平方与开平方互为逆运算⑷a 的双重非负性例: 得知⑸如果正数的小数点向右或者向左移动两位, 它的正的平方根的小数点就相应地向右或向左移动一位。
区分:4的平方根为 的平方根为 4开平方后, 得 3.计算a 的方法⎪⎪⎪⎩⎪⎪⎪⎨⎧精确到某位小数 =非完全平方类 =完全平方类 773294 *若 , 则(二)立方根和开立方1. 立方根的定义如果一个数的立方等于 , 呢么这个数叫做 的立方根, 记作 2.立方根的性质任何实数都有唯一确定的立方根。
正数的立方根是一个正数。
负数的立方根是一个负数。
0的立方根是0. 3.开立方与立方开立方: 求一个数的立方根的运算。
()a a =33a a =3333a a -=- (a 取任何数)这说明三次根号内的负号可以移到根号外面。
*0的平方根和立方根都是0本身。
(三)推广: 次方根1.如果一个数的 次方( 是大于1的整数)等于 ,这个数就叫做 的 次方根。
当为奇数时, 这个数叫做的奇次方根。
当为偶数时, 这个数叫做的偶次方根。
2.正数的偶次方根有两个:;0的偶次方根为0:;负数没有偶次方根。
正数的奇次方根为正。
0的奇次方根为0。
负数的奇次方根为负。
(四)实数1.实数: 有理数和无理数统称为实数实数的分类:①按属性分类: ②按符号分类2.实数和数轴上的点的对应关系:实数和数轴上的点一一对应, 即每一个实数都可以用数轴上的一个点表示.数轴上的每一个点都可以表示一个实数.的画法: 画边长为1的正方形的对角线在数轴上表示无理数通常有两种情况:①尺规可作的无理数, 如②尺规不可作的无理数 , 只能近似地表示, 如π, 1.010010001……思考:(1)-a2一定是负数吗?-a一定是正数吗?(2)大家都知道是一个无理数, 那么-1在哪两个整数之间?(3)的整数部分为a,小数部分为b, 则a= , b= 。
初中数学实数知识点
初中数学实数知识点实数是数学中的一个重要的概念,它包括有理数和无理数。
在初中数学中,我们学习了很多与实数相关的知识点,下面我将介绍一些常见的实数知识点。
首先是实数的概念。
实数是可以用数轴上的点表示的数,包括所有的有理数和无理数。
有理数是可以表示为两个整数的比值的数,可以是正数、负数或零。
无理数是不能表示为两个整数的比值的数,其小数部分是无限不循环的。
接下来是实数的四则运算。
实数的加法、减法、乘法和除法都是封闭的,即两个实数的运算结果仍然是一个实数。
例如,两个有理数的和、差、积和商仍然是有理数;两个有理数的和、差、积和商都可能是无理数。
无理数之间的加法、减法、乘法和除法的结果也是无理数。
实数还有一个重要的性质,即实数的排序性。
对于不同的实数,可以通过比较它们的大小来确定它们的相对位置。
我们可以通过数轴上的点的位置来进行比较。
例如,对于两个实数a和b,当a小于b时,可以写作a<b;当a大于b时,可以写作a>b。
实数的排序性在解决数学问题和实际生活中的比较大小时起到了重要的作用。
实数还有一个重要的性质,即实数的稠密性。
在任意两个不相等的实数之间,总是存在一个有理数和一个无理数。
这说明了实数的密集性,也可以用来解决一些近似问题。
例如,对于一个无理数,我们可以用有理数去逼近它,以便更方便地处理它。
另外,实数还有无穷定义和有界性的概念。
实数的无穷定义是指实数集合没有最大或最小的元素。
例如,对于任意一个实数,总存在比它更大或更小的实数。
实数的有界性是指实数集合存在上界或下界。
例如,对于有理数,它的上界可以是无理数。
最后,实数还有二次根式和平方根的概念。
二次根式是指形如√n的数,其中n是一个正数。
平方根是指一个数的二次根。
例如,16的平方根是4 ,因为4 × 4 = 16。
在初中数学中,我们学习了如何计算平方根和解决与平方根相关的问题。
总而言之,实数是数学中一个重要的概念,包括有理数和无理数。
人教版初中数学《实数》知识点总结
实数一、平方根1、平方根:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做a 的二次方根)。
正数a 的平方根记作a ±,通常记作:x =a ±一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
求一个数a 的平方根的运算叫做开平方,其中,a 称为被开方数.2、算术平方根:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,记作a ,读作“根号a ”。
正数和零的算术平方根都只有一个,0的算术平方根是0。
算术平方根具有双重非负性,即:0≥a (a ≥0)算术平方根是非负数、被开方数为非负数, 算术平方根是平方根中正的一个值。
性质公式:0(a ≥0)2(0)a a =≥|a |; 二、立方根立方根:如果一个数x 的立方等于a ,即3x a =,那么这个数x 就叫做a 的立方根(也叫做a 的三次方根)a ”(注意:这里的3表示的是开根的次数,也叫根指数。
一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略.)一个正数的立方根是一个正数,一个负数的立方根是一个负数,0的立方根是0。
求一个数a 的立方根的运算叫做开立方,其中,a 称为被开方数。
性质公式: 33a a -=-a =3a =三、实数1、无理数:无限不循环小数叫做无理数。
2、实数:有理数与无理数统称为实数。
实数和数轴上的点一一对应。
3、实数的分类:一是分类是:正实数、负实数、0;另一种分类是:有理数、无理数。
整数、分数统称为有理数。
整数包括正整数、零、负整数。
分数包括正分数、负分数。
自然数包括零和正整数。
4、有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数不能写成分数形式。
≈1.414 3≈1.732 ≈2.236 6≈≈3.162⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎭⎩⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数和无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=62523=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729。
初中数学知识点之实数
初中数学知识点之实数中考中的数学考试是拉分项目。
学好数学,第一要抱着浓厚的爱好去学习数学。
下面是作者给大家带来的初中数学知识点之实数,欢迎大家浏览参考,我们一起来看看吧!初中数学知识点:实数无理数:无穷不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范畴内,相反数,倒数,绝对值的意义和有理数范畴内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
中考数学知识点:实数的运算1、加法交换律2、加法结合律3、乘法交换律4、乘法结合律5、乘法对加法的分配律6、实数的运算顺序1.先算乘方开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
2.(同级运算)从左到右(如55);(有括号时)由小到中到大。
实数大小的比较知识1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌控数形结合的思想,知道实数与数轴的点是一一对应的,并能灵活运用。
知识2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,(3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。
(5)平方法:设a、b是两负实数,则。
中考数学知识点:实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
认识实数及其运算——初中数学知识点总结
认识实数及其运算——初中数学知识点总结2023年的初中数学中,认识实数以及实数的运算是非常重要的一部分。
在这篇文章中,我将总结实数的基本概念和运算法则,希望能对大家的学习有所帮助。
一、实数的基本概念在数学中,实数是指包括有理数和无理数在内的所有实数的集合。
简单来说,实数就是包括整数、小数和分数(不是整数)在内的所有数的集合。
其中,有理数是可以表示为两个整数之比的数,例如:1/2、3/4、6/5等;而无理数则无法表示为两个整数之比,例如:根号2、圆周率π等。
在实数中,需要注意以下一些重要的概念:1. 实数轴实数轴是一个用于表示所有实数的直线,其中0点表示原点,向右表示正数,向左表示负数,实数轴上每个点都可以表示为一个实数,例如2、-3.5等。
2. 数轴上的点在实数轴上,每个点都可以表示为一个实数,例如2、-3.5等。
同时,还可以定义一个区间,表示区间内的所有点的范围。
例如,(2,5)表示大于2小于5的所有实数;[0,1]表示0到1之间的所有实数。
3. 绝对值绝对值是一个数到原点的距离,用符号“| |”表示,例如,|2|表示2到原点的距离为2,|-3.5|表示-3.5到原点的距离为3.5。
二、实数的运算法则在实数中,有加法、减法、乘法和除法四种基本运算法则,下面将分别介绍它们的规则:1. 加法加法是指将两个数相加,得出它们的和。
例如,2+3=5,-2+5=3等。
加法的规则如下:同号相加,绝对值相加后符号不变;异号相加,绝对值相减后取与被减数相同的符号。
例如,2+3=5,-2+5=3,-5+2=-3等。
2. 减法减法是指将一个数减去另一个数,得出它们的差。
例如,3-2=1,-5-2=-7等。
减法的规则如下:a-b等价于a+(-b);同号相减,绝对值相减后取与被减数相同的符号;异号相减,绝对值相加后取与被减数相反的符号。
例如,3-2=1,-5-2=-7,2-5=-3等。
3. 乘法乘法是指将两个数相乘,得出它们的积。
初中数学“实数”知识点
初中数学“实数”知识点展开全文一、平方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x 就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.(6) <—>a是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式(x≥0)中,规定 x=。
(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小(5)(x≥0) <—>a是x的平方 x的平方是ax是a的算术平方根 a的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
二、立方根1、立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果,那么x叫做a的立方根。
求一个数的立方根的运算,叫做开立方。
2、一个数a的立方根,记作,读作:“三次根号a”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
初中数学实数知识点
初中数学实数知识点实数是数学中的一个基本概念,它包括有理数和无理数两部分。
初中数学中的实数知识点主要包括实数的基本性质、实数间的大小关系、实数的运算和实数的表示等。
下面我将为您详细介绍这些知识点。
1. 实数的基本性质(1)实数可以按照大小顺序排列,任意两个实数之间都可以比较大小。
(2)实数满足传递性,即若a≤b,b≤c,则a≤c。
(3)实数满足三角不等式,即对于任意实数a和b,有|a+b|≤|a|+|b|。
2. 实数间的大小关系(1)实数中有正数、零和负数三种,其中零是最小的数。
(2)对于两个正数,越大的数大;对于两个负数,越大的数小。
(3)对于一个正数和一个负数,正数大于负数。
(4)绝对值大的数更大。
3. 实数的运算(1)实数的加法运算:加法满足交换律、结合律和消去律。
即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c),a+0=a和a+(-a)=0。
(2)实数的减法运算:减法可以转换为加法,即a-b=a+(-b)。
(3)实数的乘法运算:乘法满足交换律、结合律和分配律。
即对于任意实数a、b和c,有a×b=b×a,(a×b)×c=a×(b×c),a×(b+c)=a×b+a×c。
(4)实数的除法运算:若b≠0,则a÷b=a×(1/b)。
4. 实数的表示(1)实数可以用小数表示,小数位是无线多的,可以是有限的也可以是无限循环的。
(2)实数可以用分数表示,分数可以是真分数、假分数和整数。
(3)实数可以用带根号形式表示,其中无理数是指不能写成两个整数比的形式,常见的无理数有π和√2等。
(4)实数可以用数字和字母的运算式表示,用代数式表示实数的运算过程。
以上是初中数学中关于实数的知识点。
实数是数学中的重要概念,不仅在初中数学中有重要的应用,还是后续高中数学和大学数学中的重要基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点总结:实数
知识点总结
了解无理数的概念,能根据要求用有理数估计一个无理数的范围。
了解实数的分类方法和原则,会进行简单的实数运算。
1.
2.无理数:无限不循环小数叫做无理数。
一个数是无理数应当满足三个条件:(1)是小数;(2)是无限小数;(3)是不循环小数。
3.实数的运算:(1)要掌握加、减、乘、除、乘方、开方的运算法则
(2)能灵活应用五个运算定律(加法交换律,加法结合律;乘法交换律,乘法结合律,乘法对加法的分配律)
(3)清楚实数混合运算的顺序:依然是从高级运算到低级运算,同级运算从左到右的顺序进行,有括号的先算括号里面的。
常见考法
实数的分类及无理数在段考,以及中考中均有出现,主要考查的是无理数的判别、实数的简单运算等。
单独考查时,题型以选择、填空为主。
误区提醒。