比例的意义1

合集下载

比和比例知识点总结

比和比例知识点总结

比和比例知识点总结在数学中,比和比例是两个非常重要的概念,它们贯穿了整个数学学习的过程。

比和比例不仅在日常生活和实际问题中有着广泛的应用,也是进一步学习数学和其他科学学科的基础。

本文将对比和比例的知识点进行总结。

一、比1、比的定义比是指两个量之间的关系,通常用冒号或斜线表示。

例如,A与B的比是3:2,或者A/B=3/2。

2、比的性质比的性质包括交换律、结合律和分配律。

交换律是指比的前项和后项交换位置,比值不变;结合律是指比的运算可以结合在一起,没有顺序之分;分配律是指比可以分配到其他数学运算中。

3、比的应用比在日常生活和实际问题中有着广泛的应用。

例如,我们在比较两个物体的长度、高度或重量时,都会使用到比的概念。

在化学中,物质的浓度、酸碱度等也使用比来表示。

二、比例1、比例的定义比例是指两个量之间的比例关系,通常用等号表示。

例如,A与B的比例是3:2,或者A:B=3:2。

2、比例的性质比例的性质包括交叉乘积相等、交叉加法相等和交叉减法相等。

交叉乘积相等是指交叉相乘的两个数乘积相等;交叉加法相等是指交叉相加的两个数加起来相等;交叉减法相等是指交叉相减的两个数差相等。

3、比例的应用比例在日常生活和实际问题中也有着广泛的应用。

例如,我们在计算两个数的比例时,可以使用比例的基本性质来进行计算。

在工程、设计和科学实验等领域中,比例的概念也经常被使用。

比和比例是数学中非常重要的概念,它们在日常生活和实际问题中有着广泛的应用。

理解和掌握这两个概念对于提高数学素养和解决实际问题都具有重要的意义。

比和按比例分配知识点在我们的日常生活中,比和按比例分配是一种常见的数学概念。

无论是在购物、分发物品还是规划生产中,比和按比例分配都是非常实用的工具。

下面我们将详细介绍这两个重要的数学概念。

一、比比是数学中的一个基本概念,通常用于描述两个数之间的关系。

比如说,我们可以说一辆汽车每小时行驶50公里,那么它每分钟行驶的距离就是50/60公里,这里的50和60就是两个比。

比例的意义1教案

比例的意义1教案
四、全课小结,提出希望
师:这节课,大家学得都非常的认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)
师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。
下课到老师这领取下节课的课前小研究。
每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
2、(写出其中的两个比),像这样表示两个比相等的式子叫做比例。那么判断两个比是否能够组成比例,关键是什么?
3、你知道比和比例有什么区别吗?举个例子。
师:四幅不同的场景,都有共同的标志——国旗,国旗是中华人民共和国的象征;这些国旗有大有小,你想不想知道这些国旗的长和宽是多少吗?
3、媒体出示国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。校园升旗仪式:长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。签约仪式:长15厘米,宽10厘米。
导学过程
反思与调整
仪式长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。签约仪式:长15厘米,宽10厘米。
每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?]
生展讲:大家发现它们的比值都相等,我国国旗法规定:任何一面国旗的长宽之比都是3:2。,这是对国旗的尊重。
⑵、其他同学补充、质疑、评价。
教学内容
教材32、33页例1
课型
重点导学课
第1课时




1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动

比例的意义

比例的意义

比例的意义引言比例是数学中的一个重要概念,贯穿于各个数学学科的教学中。

比例可以帮助我们进行数据的比较、分析和推断,具有广泛的应用价值。

本文将从不同角度探讨比例的意义及其重要性。

比例的基本概念比例是指两个或多个数值之间的关系。

在比例中,两个数值根据某种规律相互对应,它们的比值保持不变。

比例可以用多种方式表示,如a:b、a/b、a to b等。

比例的应用1. 百分比百分比是比例的一种常见形式,它以百分号(%)来表示。

百分比在各个领域都有很多应用,如商业、金融、统计学等。

在商业中,我们常常会听到销售额增长了多少百分比,或者市场份额占比多少百分比等。

百分比可以帮助我们将数据量化,并进行比较和分析。

2. 比例模型比例模型是将现实中的对象或事件与比例联系起来,以便进行分析和预测。

比例模型可以帮助我们理解和解决各种实际问题。

例如,在地图上绘制的比例尺可以将地理距离转化为图上的距离,以便更好地了解地理位置关系。

比例模型还可以用于金融投资分析,通过将投资金额与预期收益率的比例联系起来,来评估投资的风险和回报。

3. 比例推断比例推断是根据已知比例关系推断未知数值。

在统计学中,比例推断可以帮助我们根据样本数据估计总体参数。

例如,通过抽取一部分人口调查数据,我们可以推断整个人口的某种属性比例。

比例推断在社会科学研究和市场调查中有广泛的应用。

比例的重要性1. 数据分析工具比例是数据分析的基本工具之一。

在数据量化和比较中,比例可以帮助我们更好地理解和解释数据。

比例可以揭示出数据之间的关联和趋势,从而指导我们做出准确的判断和决策。

在商业运营中,比例可以帮助我们评估业务绩效和市场趋势,从而制定有效的战略和计划。

2. 逻辑思维训练比例问题需要进行逻辑推理和分析,可以锻炼我们的逻辑思维能力。

比例问题常常涉及到数据的推导和分析,需要我们进行逻辑推理、数据计算和问题解决。

通过解决比例问题,我们可以培养我们的逻辑思维,提高我们的问题解决能力。

《比例的意义》教案5篇

《比例的意义》教案5篇

《比例的意义》教案5篇《比例的意义》教案1教学要求:1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:一、复习铺垫1.说出下列每组数量之间的关系。

(1)速度时间路程(2)单价数量总价(3)工作效率工作时间工作总量2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。

当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。

今天,先认识正比例关系的意义。

(板书课题)二、自主探究:1.教学例1。

出示例l。

让学生计算,在课本上填表,并思考能发现什么。

指名口答,老师板书填表。

让学生观察表里两种量变化的数据,思考:(1)表里有哪两种数量,这两种数量是怎样变化?(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?引导学生进行讨论,得出:(1)表里的两种量是长方形的宽与面积(长与面积)。

宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。

(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。

提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)2.教学例2。

比例的意义性质和正反比例

比例的意义性质和正反比例

比例的意义性质和正反比例比例是指两个或多个量之间的关系,它们之间存在倍数关系。

比例具有广泛的应用,能够帮助我们理解和解决各种实际问题。

1.描述事物的量与数值关系:比例能够描述两个或多个事物之间的数量关系,通过比例可以清晰地了解它们的数量差异和相对大小。

2.便于比较和分析:比例可以将不同事物之间的数量关系转化为一个统一的比较标准,方便进行比较和分析。

3.预测和推测:通过已知的比例关系,可以预测或推测未知量的数值,比例可以提供一种有效的量化推测方法。

比例的性质:1.传递性:如果两个比例相等,那么它们的对应项也相等。

例如,如果a:b=c:d,且b:c=e:f,则根据传递性可得a:d=e:f。

2.反比例的倒数性质:如果两个量成反比例关系,那么它们的倒数也成反比例关系。

例如,如果a:b=c:d,则根据反比例的倒数性质可得1/a:1/b=1/c:1/d。

3.乘法性质:如果两个比例的对应项分别相等,那么它们的乘积也相等。

例如,如果a:b=c:d,且b:c=e:f,则根据乘法性质可得(a/b)×(b/c)=(c/d)×(e/f)。

正比例:正比例是指两个量之间的关系是正相关的,即随着一个量的增大,另一个量也相应地增大。

正比例可以用一个常数来表示,该常数称为比例系数。

正比例关系可以表示为a=k×b,其中a和b是两个量,k是比例系数。

例如,如果速度和时间成正比例关系,则速度的变化与时间的变化是成比例的。

反比例:反比例是指两个量之间的关系是反相关的,即随着一个量的增大,另一个量相应地减小。

反比例关系可以用一个常数来表示,该常数称为比例常数。

反比例关系可以表示为a=k/b,其中a和b是两个量,k是比例常数。

例如,如果光的强度和距离成反比例关系,则光的强度的变化与距离的变化是成反比的。

正比例和反比例的区别在于它们表示的数量关系不同。

正比例关系表示随着一个量的增大,另一个量也增大;而反比例关系表示随着一个量的增大,另一个量减小。

比例的意义和比例的基本性质

比例的意义和比例的基本性质
通过比例关系,可以计算 出物体运动的速度和加速 度。
确定力的关系
通过比例关系,可以确定 物体之间的作用力和反作 用力。
计算热量和能量
通过比例关系,可以计算 出物体吸收或释放的热量 和能量。
在经济学中的应用
确定成本和收益
比较市场占有率
通过比例关系,可以计算出生产或销 售的成本和收益。
通过比例关系,可以比较不同企业在 市场中的占有率。
THANKS
感谢观看
03
比例的应用
在几何学中的应用
01
02
03
确定物体位置
通过比例关系,可以确定 物体在平面或空间中的位 置。
计算面积和体积
利用比例关系,可以计算 出平面图形或立体图形的 面积和体积。
测量长度
通过比例尺,可以将实际 距离转化为图纸上的长度, 或者将图纸上的长度转化 为实际距离。
在物理学中的应用
计算速度和加速度
总结词
合比性质是指在一个比例中,如果两个数的比等于另外两个 数的和的比,则这个比例具有合比性质;分比性质是指在一 个比例中,如果两个数的比等于另外两个数的差的比,则这 个比例具有分比性质。
详细描述
合比性质和分比性质是比例的另外两个重要性质。如果 a:b=(a+c):(b+d),则这个比例具有合比性质。同样地,如果 a:b=(a-c):(b-d),则这个比例具有分比性质。这些性质在解决 数学问题时非常有用,可以帮助我们简化复杂的比例关系。
比例的乘法运算可以通过将比例的分子和分母分别相乘来实现。例如,如果有一个比例为2:3,另一个比 例为3:4,则它们的积为(2*3):(3*4)=6:12。
比例的除法运算
总结词
比例的除法运算是指用一个比例去除另一个 比例,以得到一个新的比例。

比例的意义 (1)

比例的意义 (1)
(1)两块水稻田的产量与面积之比,是否可以组成比例?
3.75:0.5=6:0.8
3.75×0.8=3
0.5×6=3
答:两块水稻田的产量与面积之比,可以组成比例。
绿色圃中小学教育网
1. 李叔叔承包了两块水稻田,面积分别是0.5公顷和0.8公顷。秋收时, 两块水稻田的产量分别为3.75吨和6吨。
比例的意义
1
你知道下面这些国旗的长
和宽是多少吗?
做一做
3 : 4 = 1.5 : 2 3 : 1.5 = 4 : 2 1.5 : 2 = 3 : 4 4 : 2 = 3 : 1.5
4 : 3 = 2 : 1.5 1.5 : 3 = 2 : 4 2 : 1.5 = 4 : 3 2 : 4 = 1.5 : 3
相同质量的水和冰的 体积之比是9:10.一块 体积是510立方分米的 冰,化成水后的体积 是多少?
汽车厂按1:20的比生 产了一批汽车模型。
(1)轿车模型24.3厘 米,轿车的实际长度是 多少?
汽车厂按1:20的比生 产了一批汽车模型。 (2)公共汽车长11.76 米,模型车的长度是多 少?
育新小区1号楼的实际 高度为35米,它的高度 与模型高度的比是500: 1.模型的高度是多少厘 米?
解:设加入水为xml,
100:x=1:150 x=100×150
x=15000
答:应加入水15000ml
下面是不是比例,为什么?
15:3
20:4
0.3:0.4=3:4
a:b=1:2
下面两个比能否组成比 例吗?为什么?
3.6∶1.8和0.5∶0.25
40∶80和1/2∶1/4 18:12和30:20
(二)例3
解比例 2.4 = 6 。

比与比例的知识点与练习题

比与比例的知识点与练习题

比与比例的知识点与练习题比例的意义和性质比的意义和性质1.比的意义:两个数相除叫做比。

冒号“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

比的前项相当于分子,后项相当于分母,比值相当于分数值。

2.比的性质:比的前项和后项同时乘上或者除以相同的数(除外),比值不变,这叫做比的基本性质。

比的化简可以根据比的基本性质进行,结果必须是一个最简比。

比例的意义和性质1.比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

2.比例的基本性质:在比例里,两个外项的积等于两个内项的积。

3.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

练比例的意义和性质练题1.填空。

1) 两个比相等的式子叫做比例。

2) 组成比例的四个数叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

3) 在比例里,两个外项的积等于两个内项的积。

4) 求比例中的未知项,叫做解比例。

5) 比值相等的两个比就相等。

2.按要求写比例。

1) 例如:1:2可以表示为2:4.2) 3:5=6:10.3) 1:2和2:1:10.4) 3:2:5:12.5) 17:3/5=68:12,所以比例为17:3/5=68:12.6) 2/3:6/2=4:9.3.按要求转化。

1) 6:8=3:4,8:6=4:3,24:6=4:1,2:3=8:12.2) 7:8=14:16,7:16=14:32,8:7=16:14,16:7=32:14.3) 7a=6b,a:b=6:7.4) 3/5a=4/9b,a:b=4:5/27.5.如果甲数的4/5与乙数的7/9相等,则甲数与乙数的比是多少?解:设甲数为4x,乙数为5y,则有:4x/(5y) = 7/9解得:x/y = 35/36因此甲数与乙数的比为4x/5y = 140/180 = 7/96.男生人数的5/8与女生人数的5/9相等,那么女生人数与男生人数的比是多少?解:设男生人数为5x,女生人数为8y,则有:5x/(8y) = 5/9解得:x/y = 8/9因此女生人数与男生人数的比为8y/5x = 72/25选择题:1.比例5:3=15:9的内项3增加6,要使比例成立,外项9应该增加多少?解:内项3增加6,变为9,比例变为5:3=15:9+6,即5:3=21:15因此,外项9应该增加6,变为15.答案:⑴62.把2千克盐加入15千克水中,盐与盐水重量的比是多少?解:盐水总重量为17千克,盐的重量为2千克,因此盐与盐水重量的比为2:17.答案:⑶2:173.下面的比中能与3:8组成比例的是多少?解:3:8的比值为0.375,只有1.5:4的比值也为0.375,因此1.5:4能与3:8组成比例。

比例的意义和基本性质

比例的意义和基本性质

03
CHAPTER
比例的应用
在数学中的应用
比例在数学中有着广泛的应用,它涉及到许多数学概念和问 题。例如,在几何学中,比例用于描述两个线段或两个平面 图形的相对大小和位置关系。在代数中,比例用于解决各种 数学问题,如线性方程、不等式和函数等。
比例也用于统计学中,用于描述数据分布和变化规律。例如 ,比例可以用来计算平均数、中位数、众数等统计指标,以 及进行数据分析和预测。
比例的意义和基本性质
目录
CONTENTS
• 比例的定义与意义 • 比例的基本性质 • 比例的应用 • 比例与百分数、比、函数的关系 • 比例的运算 • 比例在实际生活中的应用案例
01
CHAPTER
比例的定义与意义
比例的概念
比例是指两个比值相 等的关系,通常表示 为两个数的商。
在数学中,比例通常 用于解决各种问题, 如计算、建模和推理 等。
04
CHAPTER
比例与百分数、比、函数的 关系
比例与百分数的关系
总结词
比例和百分数都是表示相对数量的工具,但它们在数学和实际应用中有一些重要的区别。
详细描述
比例是一个数学表达方式,用于表示两个数量之间的相对大小,通常表示为两个数的比 值。而百分数是一种表达比例的方式,它表示一个数是另一个数的百分之几。例如,如 果一个数是另一个数的25%,那么这个数就是另一个数的四分之一,可以用比例来表示。
比例与比的关系
总结词
比例和比都是用来比较数量的工具,但 它们在定义和使用上有一些区别。
VS
详细描述
比通常用于表示两个数量之间的关系,通 常用于比较两个数的大小。例如,“苹果 和橙子的比是2:3”表示苹果的数量是橙 子数量的三分之二。而比例通常用于表示 两个数量之间的相对大小,通常表示为两 个数的比值。例如,“苹果和橙子的比例 是2/3”表示苹果的数量是橙子数量的三 分之二。

第1课时 比例的意义【教案】

第1课时 比例的意义【教案】

本单元是六年级下册的重点单元。

本单元的内容主要包括比例的意义和基本性质、正比例和反比例、比例的应用三个部分。

比例的知识是除法、分数、比、方程等知识的综合与提升,并为学生的进一步学习打下坚实的基础。

比例的意义和基本性质是整个单元的基础与核心,是后续学习的有效支持。

比例的意义是学习正比例、反比例知识和用比例解决问题的基础,必须让学生深刻理解,牢固掌握;比例的基本性质是解比例和进一步研究比例问题的基础,直接涉及解决问题的效率。

正比例和反比例是重要的数学模型,体现了基本的函数思想,对学生代数思维的发展十分有益。

比例的应用,是在更高水平上对一些特殊的实际问题以及原来遇到过的数学问题运用代数方法进行分析与解答,要求学生具备综合运用各方面知识的能力,在数学思想方法的层面上具有重要的教育教学价值。

教科书重视呈现真实的问题情境,体现数学与生活的密切联系,展示数学知识的抽象与建模过程,使学生经历知识的发现、抽象、表征、建模的过程,更好地理解知识的本质,促进学生对基础知识的建构。

教科书还重视用直观形象的图形或图象来揭示知识的本质属性,帮助学生更好地体会知识的内涵。

学生在学习比例这一单元时,已经学习了比、除法的意义和分数的意义,以及分数的基本性质、分数与除法的关系、分数乘除法的计算方法等,这些都是学习本单元内容的基础知识。

比例是小学阶段数与代数部分最后一单元学习的内容,这部分内容的特点是应用性强、综合性强、内容情境不新,但采用新的思维方式和数学模型,需要学生在较高水平层面上学习。

1.重视概念的理解,让学生经历概念的形成过程。

本单元有许多重要的基础性概念,如比例的意义、比例的基本性质、比例尺、正比例的意义、反比例的意义等。

这些概念揭示了数学中的重要规律或关系,并且与解比例等技能或用比例解决问题密切相关。

因此,教学中不仅仅需要记住概念,更重要的是要理解这些概念,并能正确地加以应用,同时提升对概念掌握的水平。

2.让学生充分经历和体会解决问题的全过程,积累基本的数学活动经验,获得基本的数学思想方法,提高能力。

六年级比例的知识点

六年级比例的知识点

六年级比例的知识点一、比例的意义。

1. 定义。

- 表示两个比相等的式子叫做比例。

例如:2∶3 = 4∶6,这里2∶3和4∶6这两个比的比值都是(2)/(3),所以它们可以组成比例。

2. 比例的各部分名称。

- 组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

在比例a:b = c:d(b、d≠0)中,a和d是外项,b和c是内项。

二、比例的基本性质。

1. 性质内容。

- 在比例里,两个外项的积等于两个内项的积。

即如果a:b = c:d(b、d≠0),那么ad = bc。

例如在比例3∶4 = 6∶8中,3×8 = 4×6 = 24。

2. 解比例。

- 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例如:解比例x:2 = 3:4,根据比例的基本性质4x = 2×3,即4x = 6,解得x=(6)/(4)=(3)/(2)。

三、正比例。

1. 正比例的意义。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

例如:汽车行驶的速度一定时,路程和时间成正比例关系。

因为速度=(路程)/(时间)(速度一定)。

2. 正比例关系的表达式。

- 如果用字母y和x表示两种相关联的量,用k表示它们的比值(k一定),正比例关系可以用式子y = kx表示。

例如:当y = 3x时,y和x成正比例关系,k = 3。

3. 正比例图象。

- 正比例关系的图象是一条经过原点的直线。

例如,当y = 2x时,我们可以通过列表(如x = 0时,y = 0;x = 1时,y = 2;x = 2时,y = 4等)、描点、连线得到一条经过原点的直线。

四、反比例。

1. 反比例的意义。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学1 比例的意义(课件)

人教版六年级下册数学1 比例的意义(课件)

第四单元 比例
1 比例的意义
1. 通过实际例子归纳比例的意义和发现组成比例的规律。 2. 能运用比例的意义判断两个比是否成比例。 3. 养成自主参与的意识和主动探究的良好习惯。
任务驱动一:观察下面由图1放大的3幅图,小组讨论说说你的发 现。
ห้องสมุดไป่ตู้图1
图2
图3
图4
任务驱动二:生活中还有很多按比例缩放的现象,观察书中情境图 的国旗,找到相对应的比,再把它写出来。 1. 写出图中操场上和教室里的两面国旗长和宽的比,并求出比值,你 能发现什么? 2. 归纳概念,理解比例的意义,小组讨论:符合什么条件的比才 是比例?
任务驱动三:在三面国旗的尺寸中,还有哪些比可以组成比例?请 你写出来。 1. 写出每两面国旗的宽与长的比,求出比值,根据比例的意义判断是 否可以组成比例。 2. 国旗的尺寸是按比例缩放的,那是不是国旗的尺寸中任意两个数据 组成的比都能组成比例,举例说明。
任务驱动四:应用比例的意义判断下面哪一组中的两个比可以组成
三、选择题。
1.
在下面各比中,能与
1 3

1 4
组成比例的是(
A
)。
A. 4∶3
B. 3∶4
C.
1 4

1 3
2.
在下面各比中,能与
3 4
∶6组成比例的是(
B
)。
A. 25∶16
B. 3∶24
C.
0.1∶
2 3
四、用5、40、8、1组成4个比例。 5∶1=40∶8 1∶5=8∶40 40∶5=8∶1 1∶8=5∶40 (答案不唯一)
三、如图,在线段 AF 中, AB = BC = CD = DE = EF ,可以组成比 例 AB ∶ BC = AC ∶ BD 。还能组成哪些比例?至少写两个。( 拓 展类作业)

《比例的意义》评课稿(通用7篇)

《比例的意义》评课稿(通用7篇)

《比例的意义》评课稿(通用7篇)《比例的意义》评课稿(通用7篇)《比例的意义》评课稿1一、引入新课干净利落。

上课伊始,教师提问什么叫“比”,并举例,然后出示几组比,提生算出比值,观察这两个比,你有什么发现?生:比值一样,可以用等号连接。

在数学教学中,知识的引入时机不同,得到的教学效果也不同。

引入得过早可能使教学显得过于急促、突兀,过晚又可能使教学显得过于拖拉、罗嗦。

这节课教师通过几个简短地师生对话,应用新旧知识间的迁移引入新知,干脆利落。

二、教学设计层次分明。

从比例的意义,探究比例的基本性质,再到比例的各部分名称,各环节的连接都是在师生默契的对话中顺利进行。

我们知道,在数学教学中,每个教学内容一般都以活动的`形式表现出来。

由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。

教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。

但在具体操作上难免有生硬预设嫌疑,汪老师注重联系点的有效生成,所以自然、流利。

三、指导练习的方法有趣易记。

这节课的巩固练习有这样的一道题,根据一个乘法算式写出比例式,怎样写不重复不遗漏,每位老师都会和学生探讨一定的方法,老师在这节课上揭示的方法比较实用。

《比例的意义》评课稿21、两节课思路清晰,环环相扣,师生互动性良好。

2、在数学教学中,知识的引入时机不同,得到的教学效果也不同。

这节课李波通过主题图的发散认识,简单明了的开始探究活动,王英芳则是在教室的引导中让学生发现每组的特点,条理清晰。

3、在数学教学中,教师都会特别强调一些关键性知识、易混淆知识和易疏忽知识时,常会采用加重语气、改变字样、运用比较或反复训练等方法,让学生特别重视这些注意点,防患于未然。

而这节课两位老师采取放手让学生去判断,形成认知冲突。

通过这节课我体会到:其实强调一些关键性知识、易混淆知识和易疏忽知识,也可以采用先让学生“吃一垫”来加深体验,然后“长一智”而自觉引起注意,成熟于已然。

2024年新人教版六年级数学下册《第4单元第1课时 比例的意义》课件

2024年新人教版六年级数学下册《第4单元第1课时 比例的意义》课件
义务教育(2024年)新人教版 六年级数学下册 第4单元 比例 教学课件
义务教育人教版六年级下册
4 比例
第1课时 比例的意义
环节一
1.什么是比?比各部分的名称是什么?
两个数的比表示两个数相除;
15
∶10=
3 2
前比后 比 项号项 值
2.求下面各比的比值。
36∶72
1.3∶2.6
8∶18
0.9∶1.5
36∶72 = 36÷72 =0.5
1.3∶2.6 =1.3÷2.6 = 0.5
8∶18

8÷18

4 9
0.9∶1.5 = 0.9÷1.5 = 0.6
哪两个比的 比值相等?
环节二
国旗长5m, 宽10 m。
3
国旗长2.4m, 国旗长60cm,
宽1.6m。
宽40cm。
你们想不想知道这些国旗的长和宽分别是多少?
,13
,16

1 4
1:1 = 1:1
23 46
(答案不唯一)
环节四
通过这节课的学习, 你有什么收获?
(2)20∶5和1∶4 因为20∶5=4 1∶4=0.25
所以6∶10=9∶15
所以不能组成比例。
1
(3)2
:
1 3
和6∶4
因为
1:1 23
3 2
6:4 3 2
所以 12∶13 =6∶4
(4)0.6∶0.2和 3 : 1 44
因为 0.6 : 0.2 3 3:1 3 44
所以0.6∶0.2= 34∶14
国旗长5m, 宽10 m。
3
国旗长2.4m, 宽1.6m。
国旗长60cm, 宽40cm。

新人教版六年级下册数学教案:比例的意义5篇

新人教版六年级下册数学教案:比例的意义5篇

新人教版六年级下册数学教案:比例的意义新人教版六年级下册数学教案:比例的意义精选5篇(一)教学目标:1. 理解比例的意义。

2. 能够解释比例在日常生活中的应用。

3. 能够根据比例关系进行计算。

教学步骤:步骤一:导入新知通过一些日常生活中常见的比例例子来引起学生的兴趣,例如:- 一本书的宽和高的比例。

- 一辆汽车的轮胎和车身的比例。

- 一次混合果汁的水和果汁的比例。

步骤二:讲解比例的意义1. 比例是指两个或多个具有相同或相似特性的事物之间的关系。

2. 比例可以用来描述两个事物之间的数量关系、形状关系或者其他特点关系。

3. 比例可以用来解决实际问题,例如购物中的优惠折扣、食谱中的配料比例等。

步骤三:比例的表示方法1. 比例用两个数或两个量之间的冒号“:”表示,例如1:2、2:3。

2. 比例也可以用分数表示,例如1/2、2/3。

步骤四:比例的计算1. 如果已知一个比例中的一项和比例的另一项,可以通过分析得到未知项目的值。

例如,已知比例2:3,其中2的值是4,可以通过分析得到3的值是6。

2. 如果已知一个比例和比例的一个项的值,可以通过计算得到比例的其他项的值。

例如,已知比例2:3,其中一个项的值是4,可以通过计算得到另一个项的值是6。

步骤五:练习和巩固通过一些实际问题的练习来巩固比例的意义和计算方法,并进行课堂讨论和解答。

步骤六:总结和反思对本节课所学内容进行总结和反思,确保学生对比例的意义和计算有清晰的理解。

解答学生的疑问,并鼓励他们在日常生活中多多应用和发现比例。

新人教版六年级下册数学教案:比例的意义精选5篇(二)教学目标:1. 理解负数的概念,掌握负数的大小比较方法;2. 能够用不等式比较法进行负数的大小比较;3. 通过练习,提高对负数大小比较的能力。

教学准备:1. 教学课件或黑板、白板;2. 教学素材(包括正负数的数轴、练习题等);3. 学生练习册。

教学过程:Step 1:引入负数的概念(5分钟)1. 要求学生回顾正数的概念,让学生举例说明正数表示什么。

比例的意义和基本性质2学习专用

比例的意义和基本性质2学习专用

比例的意义和基本性质2学习专用比例是描述两个或多个量之间的关系的工具,它可以用来比较不同物体之间的大小、形状、数量等。

在实际生活中,比例广泛应用于金融、商业、经济、科学等各个领域,并且在数学中也具有重要的意义和基本性质。

一、比例的意义:1.相对大小的比较:比例可以用来比较不同物体的大小,帮助我们了解它们在空间上的相对位置和大小关系。

例如,在地图上,通过比例尺可以计算实际距离,并帮助我们判断物体的大小。

2.数量关系的量化:比例可以用来量化两个或多个量之间的数量关系。

例如,在金融领域中,利率、收益率等常常以比例的形式表示,帮助我们了解不同投资产品之间的收益情况。

3.变化关系的分析:比例还可以用来分析物体或现象的变化关系,通过比较比例的大小来判断变化的幅度和趋势。

例如,在经济学中,GDP增长率的比例可以帮助我们判断经济的增长速度和趋势。

二、比例的基本性质:1.乘法性质:比例中的两个比例项可以通过乘法交换位置。

例如,对于比例a:b=c:d,可以得到a*d=b*c。

这个性质可以帮助我们在已知三个量的比例时求解未知的第四个量。

2.倒数性质:比例中的两个比例项的倒数也成比例。

例如,对于比例a:b,其倒数为1/a:1/b。

这个性质可以帮助我们在给定一个比例时求解其倒数比例。

3.极端项平方性质:比例中的极端项的平方等于两个比例项的乘积。

例如,对于比例a:b=c:d,可以得到a^2=b*c。

这个性质可以在已知三个量的比例时求解未知的第四个量。

4.平行性质:如果两个比例的比例项分别相等,则这两个比例是平行的。

例如,比例a:b=c:d和比例m:n=p:q,如果a/b=m/n,c/d=p/q,则这两个比例是平行的。

5.可比例性质:如果比例的两个比例项比例相等,则这个比例与另一个比例也成比例。

例如,比例a:b=c:d,如果a/b=c/d,则这个比例与比例c:d成比例。

总之,比例作为描述关系的工具,在实际生活和数学中都具有重要的意义和基本性质。

《比例的意义》教学设计一等奖3篇

《比例的意义》教学设计一等奖3篇

1、《比例的意义》教学设计一等奖教学内容教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

教学目标1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

教学重点认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

教学难点理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

教学准备教具:多媒体课件。

学具:作业本,数学书。

教学过程一、联系生活,复习引入(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

(2)揭示课题。

教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

二、自主探索,学习新知1.教学例1用课件在刚才准备题的表格中增加几列数据,变成表。

教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

教师根据学生的回答将表格完善,并作必要的板书。

教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

板书:相关联教师:你们还发现哪些规律?学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。

比例的意义和基本性质

比例的意义和基本性质

比例的意义和基本性质比例是数学中常用的概念,用于描述两个或更多数量之间的关系。

比例有着许多实际应用,可以帮助我们更好地理解和比较不同事物之间的关系。

接下来,我们将讨论比例的意义和基本性质。

一、比例的意义1.描述关系:比例用于描述两个或更多数量之间的比较关系。

通过比例,我们可以判断两个数值的大小、相对关系以及它们的变化趋势。

2.比较大小:比例可以用于比较不同事物之间的大小。

通过比较不同物品的价格、尺寸、重量等比例,我们可以更好地了解它们之间的差异和关联。

3.预测和估算:通过比例,我们可以根据已知的数据预测和估算未知的数值。

比如,在人口统计学中,可以利用城市总人口与其中一样本人口的比例,来估算整个城市的人口规模。

4.量化指标:比例也可以用来表示一些特定量的相对大小。

在统计学中,可以用比例来度量其中一种情况的频率、百分比等。

二、比例的基本性质1.恒定性:比例具有恒定性,即当两个数值同时成比例增加或减少时,它们之间的比例关系保持不变。

比如,如果甲、乙两个人参与的比赛中甲的得分是乙的两倍,那么无论甲、乙的得分如何变化,甲的得分始终是乙的两倍。

2.等式关系:比例可以表示为一个等式关系。

比例的等式关系通常表示为“a:b=c:d”,其中a、b、c、d表示四个相关的数值。

在这个等式中,a和b之间的比例关系与c和d之间的比例关系是相等的。

3.翻转性:比例的翻转也是成立的。

即如果"a:b=c:d",那么"b:a=d:c"。

这意味着当两个比例中的两个数值交换位置时,它们仍然成比例。

4. 交叉乘积:比例中的交叉乘积恒定。

即对于比例"a:b=c:d",交叉乘积为ad和bc。

无论a、b、c、d取何值,ad和bc的乘积始终相等。

5.倒数关系:如果两个数的比例为"a:b",那么这两个数的倒数之间的关系为"1/a:1/b"。

这意味着比例的倒数之间也成比例。

北师大版六年级数学下册第二单元《比例》知识点汇总

北师大版六年级数学下册第二单元《比例》知识点汇总

二 比 例一、比例的认识1.意义:表示两个比相等.....的式子,叫作比例。

例如:2∶1=2,6∶3=2;所以2∶1=6∶3。

2.比例的基本性质。

(1)认识比例的项。

在比例里,两端的两项叫作比例的外项,中间的两项叫作比例的内项。

(2)比例的基本性质。

在比例里....,.两个内项的积等于两个外项的积。

............... 例如:由3∶2=6∶4可知3×4=2×6;或者由x×1.5=y×1.2可知x∶y=1.2∶1.5。

3.判断两个比能否组成比例。

4. (1)解比例。

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫作解比例。

例如:3∶x=4∶8,内项乘内项,外项乘外项,则4x=3×8,解得x=6。

(2)根据比例的意义和基本性质,设未知数、解比例、解决实际问题。

二、比例尺 1.意义。

图上距离和实际距离的比,叫作这幅图的比例尺。

比例尺是一个比.......,它表示图上距离和实际距离的倍比关系,因此不能带有计量单位........。

2.比例尺的分类。

比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。

根据表现形式的不同,比例尺还可以分为线段比例尺和数值比例尺。

缩小比例尺.....:在绘图时,根据需要把实际距离按一定的比例缩小,在纸上画出来。

为了计算方便,一般把缩小比例尺写成组成比例的两个比的比值一定相等。

用比的前项除以比的后项,所得的商就是比值。

根据比例的基本性质也可以判断两个比能否组成比例。

例如:判断6∶3和3∶1能否组成比例,可以用6×1=6,3×3=9,6和9不相等,所以6∶3和3∶1不能组成比例。

方法:用内项的积(外项的积)除以已知的外项(内项)。

计算时要先统一单位。

数值比例尺的比的前项和后项单位相同,线段比例尺。

比例的意义和基本性质-人教版六下教案

比例的意义和基本性质-人教版六下教案

比例的意义和基本性质1、比例的意义(1)表示两个比相等的式子叫做比例。

根据比例的意义能判断两个比是否能组成比例。

(2)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

24 ∶ 18 = 4 ∶ 3 外项 内项 内项 外项 2、比例的基本性质在比例里,两个外项的积等于两个内项的积。

(外项×外项=内项×内项) 如果a :b = c :d 那么 ad = bc 或例1、判断下面两个比能否组成比例。

52∶65和12∶25 方法一:用求比值的方法 方法二:因为52×25= ,65×12=52∶65= 两外项的积等于两内项的积,所以能组12∶25= 成比例。

因为两个比相等,所以能组成比例。

组成的比例是:_______________________ 组成的比例是:_________________ 例2、用3、6、9和18组成不同的比例。

点拨:根据3×18=6×9组成比例3、解比例方法:(1)根据比例的基本性质把比例转化成方程。

(2)通过解方程求出比例中的未知项。

(3)书写格式和解方程相同。

例3、解比例 (1) 10x =2.10 (2)43∶81=X ∶125教学拓展【易错题】1、判断:5X=6y ,则 X ∶y=5∶6 ( )2、解比例:X36=9∶3真题训练:1.在比例里,两个( )的积和两个( )的积相等。

2.如果7ɑ=5b ,那么ɑ:b=( ):( ),ɑ:5=( ):( )3.10:( )=( ):8 = 5:1 =4.下面哪组中的两个比可以组成比例。

( )A. 6:9和9:12B.1.4:2和2:40C.51:21 和 41:85 D.9.5:13和5.9:3.15. 红星小学六年级四个班的学生人数在165到170之间,其中男女人数的比是3:4。

那么六年级学生的总人数是( )。

( A )166 (B)167 (C)168 (D)169 6.比值相等的两个比可以组成比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你什么好方法和同学们介绍一下。
通过这节课的学习,你学到了些什么?

=
4 6
下面哪几组中的两个比可以组成比例?把组 成的比例写出来。 2 3 10︰12 和 25︰30 —︰— 和 0.4︰0.35 7 4 比值相等都是5 / 6 10︰12=35︰42 1 1 —︰0. 5 和 1—︰5 8 4 比值相等都是1 / 4 1 1 ︰0. 5=1— — ︰ 5 8 4
6.4︰4 =1.6

9.6︰6=1.6
这两张照片长的比与宽的有什么关系呢?
6.4︰9.6
Байду номын сангаас

4︰ 6
表示两个比相等的式子叫做比例。
6.4:4
6.4︰9.6
= =
9.6︰6 4 ︰6
表示两个比相等的式子叫做比例。
6.4:4

6.4 4

9.6 6
9.6︰6 4 ︰6
=
6.4︰9.6

6.4 9.6
12cm 18cm
16cm 24cm
小结:
判断两个比能不能组成比例,
相等 要看它们的比值是否相等。
判断下面那几个比能与

1
5
:4组成比例。
( 1) 5 : 4 (3)1 : 20
(2)20 : 1 1 ( 4) 5 : — 4
请你写出两个比值是5的比例。 ( ) : ( )=( ) : ( ) ( ) : ( )=( ) : ( )
× ×
3︰8 和 5︰21
比和比例有什么区别?

4︰ 6
由两个数组成,是一个式子, 表示两个数相除。
﹋ ﹋

比例
2︰3=4︰6
由四个数组成,是一个等式。 表示两个比相等的式子。
﹋ ﹋

根据下表,先分别写出两次买练习本的钱数 和本数的比,再判断这两个比能否组成比例。
第一次 买练习本的钱数(元) 买的本数 第二次
1.2 2
3 5
第一次买练习本的钱数和本数的比是 1.2 第二次买练习本的钱数和本数的比是 因为 1.2 3
: 2
: 5
: 2 = 0.6 , 3 : 5 = 0.6 = 3 :5
所以
1.2 :2
4、李梅为布置教室墙报,剪了三张大 小不同的长方形剪纸。
15cm 10cm
(1)写出每张长方形剪纸长和宽的比,并计算 出比值。 (2)选择其中的两个比组成比例。
苏教版六年级下册
执教者:乔春
1.什么叫做比?
两个数相除又叫做两个数的比.
2.什么叫做比值?
比的前项除以比的后项所得的商,叫做比值。
3.什么叫做比的基本性质?
比的前项和后项同时乘或者同时除以 相同的数(0除外),比值不变。
分别写出每张照片长和宽 的比,这两个有什么关系?
6.4:4
9.6:6
求出它们的比值,你发现了什么?
相关文档
最新文档