应用运筹学11-12-1期末考试试卷
运筹学期末考试题及答案
运筹学期末考试题及答案一、单项选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都是非负的B. 目标函数是最大化C. 所有约束条件都是等式D. 所有变量都是正的答案:A2. 单纯形法中,如果某变量的检验数大于0,则该变量:A. 可以增加B. 可以减少C. 不能增加也不能减少D. 可以增加也可以减少答案:A3. 在对偶理论中,如果原问题的最优解是无界的,则对偶问题的:A. 无解B. 有唯一最优解C. 有无穷多解D. 无界答案:A4. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算最优值D. 确定初始状态答案:B5. 网络流问题中,增广路径是指:A. 从源点到汇点的路径B. 从汇点到源点的路径C. 流量可以增加的路径D. 流量可以减少的路径答案:C6. 整数规划问题中,分支定界法的基本思想是:A. 将整数变量分解为两个二元变量B. 将问题分解为多个子问题C. 通过松弛变量将问题转化为线性规划问题D. 通过增加约束条件来缩小解空间答案:B7. 排队论中,M/M/1队列的平均等待时间是:A. 1/μ - λ/μ^2B. λ/μ - 1/μC. λ/μ^2 - 1/μD. 1/μ - λ/μ^2答案:A8. 敏感性分析的目的是:A. 确定最优解B. 确定最优解的稳定性C. 确定目标函数系数的变化范围D. 确定约束条件的变化范围答案:B9. 决策树分析中,期望值的计算是基于:A. 每个分支的概率B. 每个分支的收益C. 每个分支的概率和收益D. 每个分支的成本答案:C10. 博弈论中,纳什均衡是指:A. 每个玩家都有最优策略B. 每个玩家的策略都是最优的C. 没有玩家可以通过单方面改变策略来提高自己的收益D. 所有玩家的策略都是固定的答案:C二、计算题(每题10分,共30分)1. 给定线性规划问题的标准形式,求解最优解。
Max Z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 102x1 + x2 ≤ 8x1, x2 ≥ 02. 使用单纯形法求解以下线性规划问题的最优解。
运筹学期末试题及答案
运筹学期末试题及答案一、选择题(每题2分,共20分)1. 线性规划问题的基本解是:A. 唯一解B. 可行域的顶点C. 可行域的内部点D. 可行域的边界点2. 以下哪项不是运筹学中的常用数学工具?A. 线性代数B. 微积分C. 概率论D. 量子力学3. 单纯形法是解决哪种类型问题的算法?A. 整数规划B. 非线性规划C. 线性规划D. 动态规划4. 以下哪个是网络流问题中的术语?A. 节点B. 弧C. 流量D. 所有以上5. 以下哪个不是运筹学中的优化问题?A. 最大化问题B. 最小化问题C. 等值问题D. 线性规划问题...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述线性规划问题的基本构成要素。
2. 解释单纯形法的基本思想及其在解决线性规划问题中的应用。
3. 描述网络流问题中的最短路径算法,并简述其基本原理。
三、计算题(每题25分,共50分)1. 给定以下线性规划问题:Max Z = 3x1 + 5x2s.t.2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0请找出该问题的最优解,并计算最大值。
2. 考虑一个网络流问题,其中有三个节点A、B、C,以及四条边。
边的容量和成本如下表所示:| 起点 | 终点 | 容量 | 成本 ||||||| A | B | 10 | 2 || A | C | 5 | 3 || B | C | 8 | 1 || C | B | 3 | 4 |假设从节点A到节点B的需求量为8,从节点A到节点C的需求量为5。
使用最小成本流算法求解此问题,并计算总成本。
四、论述题(每题30分,共30分)1. 论述运筹学在现代企业管理中的应用,并给出至少两个实际案例。
运筹学期末试题答案一、选择题答案:1. B2. D3. C4. D5. C...(此处省略其他选择题答案)二、简答题答案:1. 线性规划问题的基本构成要素包括目标函数、约束条件和变量。
运筹学期末考试试题
运筹学期末考试试题一、选择题(每题2分,共20分)1. 以下哪项不是线性规划问题的基本特征?A. 线性目标函数B. 线性约束条件C. 非线性约束条件D. 可行域2. 单纯形法中,如果某个基解的系数矩阵的某一列的所有元素都是负数,这意味着什么?A. 该基解是最优解B. 该基解不可行C. 该基解是退化解D. 该基解是可行解但不是最优解3. 在网络流问题中,若某条路径的流量超过了其容量限制,这将导致:A. 问题无解B. 问题有无穷多解C. 问题有唯一解D. 问题有多个可行解4. 动态规划用于解决的问题通常具有以下哪种特性?A. 线性性B. 递归性C. 非线性性D. 随机性5. 以下哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 割平面法C. 单纯形法D. 贪心算法二、简答题(每题10分,共30分)1. 解释什么是敏感性分析,并简述其在运筹学中的应用。
2. 描述网络流问题中的最小费用流问题,并给出一个简单的实例。
3. 简述如何使用动态规划解决资源分配问题。
三、计算题(每题25分,共50分)1. 给定以下线性规划问题,求解其最优解:\[ \text{Maximize } Z = 3x_1 + 2x_2 \]\[ \text{Subject to: } \]\[ 2x_1 + x_2 \leq 10 \]\[ x_1 + 3x_2 \leq 15 \]\[ x_1, x_2 \geq 0 \]2. 考虑一个生产问题,工厂需要生产两种产品A和B。
产品A的生产需要机器X工作2小时,机器Y工作1小时,利润为每单位500元。
产品B的生产需要机器X工作1小时,机器Y工作3小时,利润为每单位300元。
机器X每天最多工作8小时,机器Y每天最多工作12小时。
如何安排生产计划以最大化利润?四、案例分析题(共30分)1. 某公司计划在不同地区开设新的销售点,需要考虑运输成本、市场需求和竞争对手的情况。
请使用运筹学方法分析该公司应该如何决定销售点的位置和数量,以实现成本最小化和市场覆盖最大化。
运筹期末考试试题
运筹期末考试试题### 运筹期末考试试题一、选择题(每题2分,共20分)1. 线性规划中,目标函数的最优解可能出现在:A. 可行域的内部B. 可行域的边界C. 可行域的顶点D. 可行域的外部2. 以下哪项不是网络流模型的特点?A. 有向图B. 顶点分为源点和汇点C. 每条边有容量限制D. 边的权重可以为负3. 在动态规划中,状态转移方程的作用是:A. 确定问题的最优解B. 描述问题的初始状态C. 描述状态之间的依赖关系D. 描述问题的目标函数4. 排队论中,M/M/1队列的特点是:A. 一个服务台,顾客到达和服务时间服从泊松分布B. 多个服务台,顾客到达服从泊松分布C. 一个服务台,顾客到达和服务时间服从指数分布D. 多个服务台,顾客到达和服务时间服从泊松分布5. 以下哪种方法不是用于解决整数规划问题的方法?A. 割平面法B. 分支定界法C. 单纯形法D. 动态规划法二、简答题(每题10分,共30分)6. 简述单纯形法的基本步骤,并说明其在解决线性规划问题中的作用。
7. 解释什么是敏感性分析,并说明在运筹学中它的重要性。
8. 描述网络流模型在物流配送中的应用,并给出一个简单的实例。
三、计算题(每题25分,共50分)9. 给定以下线性规划问题:\[\begin{align*}\text{Maximize } & Z = 3x_1 + 2x_2 \\\text{Subject to } & 2x_1 + x_2 \leq 10 \\& x_1 + 3x_2 \leq 15 \\& x_1, x_2 \geq 0\end{align*}\]使用图解法求出该问题的最优解,并计算最大值。
10. 考虑一个简单的库存管理问题,公司需要决定每周的订货量。
已知需求量服从正态分布,平均需求量为100单位,标准差为10单位。
公司希望服务水平达到95%,即缺货概率不超过5%。
假设库存持有成本为每单位每年50元,缺货成本为每单位每次100元。
运筹学期末考试试卷
运筹学期考试试卷学院 ________________ 班级 __________ 姓名 __________ 学号 ___________《运筹学(I )》课程试卷A(本卷考试时间 120 分钟)1.一个极小化线性规划的某轮表格中有r =(-1,-2,0,0,0),请问是否可以选择1x 作为进基变量?为什么?2.线性规划原问题min{0}TC X AX b X ≥≥,和对偶问题 max{0}T T b U A U C U ≤≥,都有可行解,则原问题的目标函数值一定不小于对偶问题的目标函数值?为什么?3.有一个线性规划,它有8个变量、4个独立的约束。
请问X =(1,2,3,4,5,0,0,0)T是否可以是它的一个基本可行解?为什么?4. m 个发点,n 个收点的产销平衡运输问题数学模型约束条件中,独立约束条件有多少个?为什么?5.一个赋权图的最小生成树是否唯一?为什么?二、求极小化线性规划问题的一个单纯形表如下表。
问a 1、a 2、a 3、a 4、a 5 、a 6分别为何值时:(本题共13(1) (1)(2)表中给出线性规划有无穷多解;(3)表中给出线性规划的可行解无界;(4)表中给出线性规划1x 为换入变量,4x 为换出变量;三、给出线性规划:(本题共10分)ma x321326x x x f +-= t s . 12x 2x -223≤+x1x 443≤+x 01≥x 02≥x 03≥x(1)写出对偶问题;(2)已知41=x ,62=x ,03=x ,是上述线性规划的最优解,用互补松弛定理求 对偶问题的最优解。
四、已知线性规划:(本题共12分)max32110127x x x f ++=t s . 1x 2x +203≤+x2122x x +303≤+x01≥x 02≥x 03≥xf f -='(2)若该LP 问题原目标函数中X 1 的系数由7变为9,问最优解有什么变化?(3) 若右端常数⎪⎪⎭⎫ ⎝⎛21b b 由⎪⎪⎭⎫ ⎝⎛3020变为⎪⎪⎭⎫ ⎝⎛3040,问最优解有什么变化?五、若发点1A ,2A 及收点1B ,2B ,3B 的有关数据如下表所示。
运筹学试卷及参考答案
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
运筹学期末试题
运筹学期末试题《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。
2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定有最优解。
3. 如果一个线性规划问题有可行解,那么它必有最优解。
4.对偶问题的对偶问题一定是原问题。
5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。
7. 度为0的点称为悬挂点。
8. 表上作业法实质上就是求解运输问题的单纯形法。
9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日;春夏季4000人日。
如劳动力本身用不了时可外出打工,春秋季收入为25元/ 人日,秋冬季收入为20元/ 人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元/ 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。
三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分)(2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。
(1分)四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20x 1, x 2 , x 3 ≥0五、求解下面运输问题。
运筹学试题与答案11
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中X3,X4,X5为松驰变量。
问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312 (2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中X4,X5,X6为松驰变量。
应用运筹学11-12-1期末考试试卷
诚信应考 考出水平 考出风格浙江大学城市学院2011— 2012学年第一学期期末考试试卷《应用运筹学》开课单位: 计算分院 ;考试形式:闭卷;考试时间: _2012_年_1_月_13_日; 所需时间: 120 分钟(注:答案全部写在答卷上)一.判断题 (本大题共10小题,每题1分,共10分。
)在你认为正确的叙述后面打“√”,错误的后面打“╳”。
1. 线性规划中“线性”的含义是指约束条件关于决策变量是线性等式或不等式,而对目标函数没有要求。
( )2. 线性规划求解的结果可能会有无穷多个最优解,但解相应的最优值都相等。
( )3. 若线性规划有最优解则其可行域一定有界。
( )4. 若线性规划无解,则其可行域是空集。
( )5. 影子价格为0时,表明该资源未得到充分利用。
( )6. 平衡运输问题的约束是资源约束。
( )7. 指派问题是运输问题的特例。
( )8. 匈牙利法是对运输问题求最小值的一种求解方法。
( )9. 点vi 表示自来水厂及用户,vi 与vj 之间的边表示两点间可以铺设管道,权为vi 与vj 间铺设管道的距离或费用,极值问题是如何铺设管道,将自来水送到其他5个用户并且使总的费用最小。
这属于最短路问题。
( )10.邮递员从邮局vi 出发要经过每一条边将邮件送到用户手中,最后回到邮局vi ,如何安排路线使总路程最短。
这属于运输问题。
( )三.分析解答题 (共10分。
)某公司目前正在制造两种产品,产品I 和产品II ,现在产品I 和产品II 的每天产量分别为30个和120个,工资负责制造的副总经理希望了解是否可以通过改变这两种产品的数量来提高公司的利润。
公司制造每个产品所需的加工工时和每个车间的加工能力(每天加工工时数)如下表产品I 和产品II 一所示:生产两种产品的有关数据利用EXCEL 进行线性规划建模求解后的表格(表格一)和敏感性性分析报告(表格二)如下: 问:(1) 假设生产的全部产品都能销售出去,请确定最优产品组合,即确定使得总利润最大的产品I 和产品II 每天的产量。
运筹学期末考试题和答案
运筹学期末考试题和答案一、单项选择题(每题2分,共20分)1. 线性规划问题中,目标函数的最优解是在可行域的()。
A. 边界上B. 内部C. 顶点D. 任意点答案:C2. 单纯形法中,如果某非基变量的检验数大于0,则()。
A. 该变量不能进入基B. 该变量可以进入基C. 该变量必须进入基D. 该变量可以进入基,也可以不进入基答案:C3. 在对偶线性规划问题中,对偶问题的最优解与原问题的最优解之间的关系是()。
A. 相等B. 不相等C. 互为相反数D. 互为倒数答案:A4. 动态规划中,状态转移方程的作用是()。
A. 确定最优解B. 确定最优策略C. 确定状态转移D. 确定决策过程答案:C5. 在排队论中,M/M/1队列的平均等待时间是()。
A. 1/μB. 1/(μ-λ)C. ρ/(μ-λ)D. ρ/(1-ρ)答案:D6. 决策树中,期望值的计算是基于()。
A. 概率B. 成本C. 时间D. 收益答案:A7. 运输问题中,初始解的检验数表中,如果某行的检验数都为负,则()。
A. 该行需要调换B. 该列需要调换C. 该行和该列都不需要调换D. 该行和该列都需要调换答案:C8. 在库存管理中,经济订货量(EOQ)模型假设()。
A. 需求量是确定的B. 需求量是随机的C. 订货成本是确定的D. 订货成本是随机的答案:A9. 网络计划技术中,关键路径是()。
A. 总时差最长的路径B. 总时差最短的路径C. 持续时间最长的路径D. 持续时间最短的路径答案:C10. 敏感性分析中,如果目标函数系数的变化范围是[-2, 2],则该系数的敏感性是()。
A. 低B. 中等C. 高D. 无法确定答案:C二、简答题(每题10分,共40分)1. 简述单纯形法的基本步骤。
答案:单纯形法的基本步骤包括:(1)构造初始单纯形表;(2)进行选基操作,确定基变量和非基变量;(3)进行选主元操作,确定主元列;(4)进行主元行的变换,使主元列下方的元素变为0;(5)检查是否达到最优解,若达到最优解,则停止;若未达到最优解,则重复步骤(2)-(4)。
《运筹学》期末复习题.docx
《运筹学》期末复习题.docx《运筹学》期末复习题第一讲运筹学概念一、填空题1 ?运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2. 运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3. 模型是一件实际事物或现实情况的代表或抽彖。
4通帘对问题屮变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5. 运筹学研究和解决问题的某础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具冇连续性。
6. 运筹学用系统的观点研究功能Z 间的关系。
7. 运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8. 运筹学的发展趋势是进一步依赖于宝篡枇的应用和发展。
9. 运筹学解决问题吋首先要观察待决策问题所处的坯境。
10. 用运筹学分析与解决问题,是一个科学决策的过程。
11?运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳力案。
12.运筹学中所使用的模型是数学模型°用运筹学解决问题的核心是建立数学模型,并対摸型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14. 运筹学的系统特征Z —是用系统的观点研究功能关系。
15. 数学模型中,“s ?t”表示约束。
16. 建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17. 运筹学的主要研究对象是各种有组织系统的篮理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小纟R 简称为 ORo二、单选题1. 建立数学模型时,考虑可以由决策者控制的因素是(A )A.销售数量 B.销售价格 C.顾客的需求2. 我们可以通过(C )来验证模型最优解。
A.观察 B.应用 C.实验3. 建立运筹学模型的过程不包括(A )阶段。
A.观察环境B.数据分析C.模型设计4. 建立模型的一个基本理由是去揭晓那些重要的或有关的(B )7. 运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
《运筹学》期末考试试题及参考答案
《运筹学》试题参考答案 一、填空题�每空2分�共10分� 1、在线性规划问题中�称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中�图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点�化为供求平衡的标准形式 。
4、在图论中�称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、�每小题5分�共10分�用图解法求解下列线性规划问题� 1�m a x z = 6x 1+4x 2�������������0781022122121x x x x x x x � 解�此题在“《运筹学》复习参考资料.d o c ”中已有�不再重复。
2�m i n z =�3x 1+2x 2 �������������������0,137210422422121212121x x x x x x x x x x解�⑴⑵⑶ ⑷ ⑸⑹、⑺⑴⑵⑶ ⑷ ⑸、⑹可行解域为a b c d a �最优解为b 点。
由方程组������02242221xx x 解出x 1=11�x 2=0 ∴X *=��������21x x =�11�0�T∴m i n z =�3×11+2×0=�33三、�15分�某厂生产甲、乙两种产品�这两种产品均需要A 、B 、C 三种资源�每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示�ABC甲 9 4 3 70 乙 4 6 10 120 360 200 3002�用单纯形法求该问题的最优解。
�10分� 解�1�建立线性规划数学模型� 设甲、乙产品的生产数量应为x 1、x 2�则x 1、x 2≥0�设z 是产品售后的总利润�则 ma x z =70x 1+120x 2 s.t . ��������������0300103200643604921212121x x x x x x x x � 2�用单纯形法求最优解� 加入松弛变量x 3�x 4�x 5�得到等效的标准模型� ma x z =70x 1+120x 2+0 x 3+0 x 4+0 x 5 s.t . ������������������5,...,2,1,03001032006436049521421321j x x x x x x xx x x j 列表计算如下�CB XB b70 120 0θL x1 x2 x3 x4 x5 0x 3 360 94190 0 x 4 200 4 6 0 1 0 100/3 0 x 5 300 3 �10� 0 0 1 300 0 0 0 0 70 120↑ 0 0 0 0 x3 240 39/5 0 1 0 - 2/5 400/13 0 x4 20 �11/5� 0 0 1 - 3/5 100/11 120 x 2 30 3/10 1 0 0 1/10 10036 120 0 0 12 34↑ 0 0 0 �12 0 x3 1860/11 0 0 1 �39/11 19/11 70 x 1 100/11 1 0 0 5/11 - 3/11 120 x 2 300/11 0 1 0 - 3/22 2/11114300070 120 0 170/11 30/11 0 0-170/11 �30/11 ∴X *=�11100�11300�111860�0�0�T ∴m a x z =70×11100+120×11300=1143000四、�10分�用大M 法或对偶单纯形法求解如下线性规划模型� mi n z =5x 1�2x 2�4x 3 ������������0,,10536423321321321x x x x x x x x x解�用大M 法�先化为等效的标准模型� ma x z / =�5x 1�2x 2�4x 3 s.t . ���������������5,...,2,1,01053642353214321j y x x x xx x x x j 增加人工变量x 6、x 7�得到� ma x z / =�5x 1�2x 2�4x 3�M x 6�M x 7 s.t �����������������7,...,2,1,0105364237532164321j x x x x x x x x x x x j 大M 法单纯形表求解过程如下�C B X B b�5�2�400�M�MθLx1x2x3x4x5x6x7�M x64�3�12�10104/3�M x7106350�1015/3�9M�4M�7M M M�M�M9M�5↑4M�27M�4�M�M00�5x14/311/32/3�1/301/30——�M x72011�2��1�211�5-M�5/3-M�10/3-2M+5/3M2M�5/3-M0M�1/3M�2/32M�5/3↑�M�3M+5/30�5x15/311/25/60�1/601/610/3 0x410�1/2�1/21�1/2�11/22�5�5/2�25/605/60�5/601/2↑1/60�5/6�M�M+5/6�5�2x12/3101/3�11/31�1/3 x220112�1�21�322�5�2�11/311/3�1�1/3 00�1/3�1�1/3�M+1�M+1/3∴x*=�32�2�0�0�0�T最优目标函数值m i n z=�m a x z/=���322�=322五、�15分�给定下列运输问题��表中数据为产地A i到销地B j的单位运费�B1 B2 B3 B4 si A 1 A 2 A 3 1 2 3 4 8 7 6 5 9 10 11 9 10 80 15 dj 8 22 12 181�用最小费用法求初始运输方案�并写出相应的总运费��5分� 2�用1�得到的基本可行解�继续迭代求该问题的最优解。
运筹学期末考试试题及答案
2011年运筹学期末考试试题及答案(用于09级本科)一、单项选择题(每题3分,共27分)1. 使用人工变量法求解极大化的线性规划问题时,当所有的检验数0j δ≤,但在基变量中仍含有非零的人工变量,表明该线性规划问题( D ) A .有唯一的最优解 B .有无穷多最优解 C .为无界解 D .无可行解2.对于线性规划121231241234max 24..3451,,,0z x x s tx x x x x x x x x x =-+-+=⎧⎪++=⎨⎪≥⎩如果取基1110B ⎛⎫= ⎪⎝⎭,则对于基B 的基解为( B )A.(0,0,4,1)T X =B.(1,0,3,0)T X =C.(4,0,0,3)T X =-D.(23/8,3/8,0,0)T X =-3.对偶单纯形法解最小化线性规划问题时,每次迭代要求单纯形表中( C ) A .b 列元素不小于零 B .检验数都大于零 C .检验数都不小于零 D .检验数都不大于零4. 在n 个产地、m 个销地的产销平衡运输问题中,( D )是错误的。
A .运输问题是线性规划问题B .基变量的个数是数字格的个数C .非基变量的个数有1mn n m --+个D .每一格在运输图中均有一闭合回路 5. 关于线性规划的原问题和对偶问题,下列说法正确的是( B )A .若原问题为无界解,则对偶问题也为无界解B .若原问题无可行解,其对偶问题具有无界解或无可行解C .若原问题存在可行解,其对偶问题必存在可行解D .若原问题存在可行解,其对偶问题无可行解6.已知规范形式原问题(max 问题)的最优表中的检验数为12(,,...,)n λλλ,松弛变量的检验数为12(,,...,)n n n m λλλ+++,则对偶问题的最优解为( C ) A. 12(,,...,)n λλλ B. 12(,,...,)n λλλ--- C .12(,,...,)n n n m λλλ+++--- D. 12(,,...,)n n n m λλλ+++ 7.当线性规划的可行解集合非空时一定( D )A.包含原点B.有界 C .无界 D.是凸集8.线性规划具有多重最优解是指( B )A.目标函数系数与某约束系数对应成比例。
运筹学期末试题及答案
运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。
最新(整理)《运筹学》期末考试试题及参考答案
(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。
do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。
《运筹学》期末考试试题及参考答案
《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。
2、运筹学包括的内容有_______、、、_______、和。
3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。
二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。
2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。
假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。
此外,手工生产每件产品的材料消耗为10元,机器生产为6元。
已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。
请用运筹学方法确定手工或机器生产的数量,以达到最大利润。
参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。
例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。
以下以背包问题为例进行详细说明。
在背包问题中,给定一组物品,每个物品都有自己的重量和价值。
现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。
这是一个典型的0-1背包问题,属于运筹学的研究范畴。
运筹学期末试卷及答案
运筹学期末试卷及答案一、判断题(21分)1、可行解是基本可行解的充要条件是它的正分量所对应的A 中列向量线性无关();2、如果一个LP 问题有最优解,则它的对偶问题也有最优解,且它们的最优解相等();3、若线性规划问题有最优解,则一定有唯一的最优解();4、若一个原始线性规划问题无界,则它的对偶问题也无界();5、设1:R R f n →在点n x R ∈*处的Hesse 矩阵)(2*?x f 存在,若0)(2=?*x f ,并且)(2*?x f 正定,则*x 是(UMP )的严格局部最优解();6、若1:R R f n →是S 上的凸函数,任意实数0≥α则f α是S 上的凸函数();7、设n R S ?是非空开凸集,1:R R f n →二阶连续可导,则f 是S 上的严格凸函数的充要条件是f 的Hesse 矩阵)(2x f ?在 S 上是正定的().二、1.将下面的线性规划问题化成标准形(7分)2,写出下面线性规划的对偶规划(7分)321654max x x x z ++=32134min x x x z ++=≥≥-+≤++=++.约,0,9522082510x 432.231321321321束无x x x x x x x x x x x t s≥≥≥+-=++≤-+.变为,0,016342532.231321321321量自由x x x x x x x x x x x x t s三、证明题(10分)设1:R R f n →在点n x R ∈*处可微.若*x 是(UMP )的局部最优解,则0)(=?*x f .四、用对偶单纯形法求解下列线性规划问题(10分)32152415min x x x z ++==≥≥++≥+3,2,1,012526.32132j x x x x x x t s j五、把线性规划问题(18分)321x 2min x x Z -+-= ??≥≤+-≤++0,,426x .32121321x x x x x x x t s 记为(P )求(1)用单纯形算法解(p );(2) 2c 由1变为)3(-;(3)b由4346变为六、用分枝定界法解下述ILP 问题(10分)21max x x z +=≥≥-≤+且为整数,0,2452.212121x x x x x x t s七、求以下无约束非线性规划问题的最优解(8分)746),(min 2211222121+-+-+=x x x x x x x x f 八、验证下列非线性规划为凸规划(9分)11394)(min 2112221++++=x x x x x x f ≤++-+=≤++=7422)(0975)(.22122212211x x x x x x g x x x g t s一、判断题(20分)1. V ;2. X;3. X;4. X;5. X ;6. V ;7. X 。
运筹学期末试题4套
《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611-2002-111/21/21407五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2 -1 1 0 02 3 11311111610 0 -3 -1 -2 0(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地产地甲乙丙丁产量A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地产地B1B2B3B4供应量A1 3 2 7 6 50A27 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
三、(35分)设线性规划问题maxZ=2x1+x2+5x3+6x4的最优单纯形表为下表所示:xx1 x2 x3 x4 x5 x6Β bx3 4 2 -2 1 0 2 -1x4 40 2 0 1 -1 1-8 -1 0 0 -4 -1利用该表求下列问题:(1)要使最优基保持不变,C3应控制在什么范围;(2)要使最优基保持不变,第一个约束条件的常数项b1应控制在什么范围;(3)当约束条件中x1的系数变为时,最优解有什么变化;(4)如果再增加一个约束条件3x1+2x2+x3+3x4≤14,最优解有什么变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诚信应考 考出水平 考出风格
浙江大学城市学院
2011— 2012学年第一学期期末考试试卷
《应用运筹学》
开课单位: 计算分院 ;考试形式:闭卷;考试时间: _2012_年_1_月_13_日; 所需时间: 120 分钟
(注:答案全部写在答卷上)
一.判断题 (本大题共10小题,每题1分,共10分。
)
在你认为正确的叙述后面打“√”,错误的后面打“╳”。
1. 线性规划中“线性”的含义是指约束条件关于决策变量是线性等式或不等式,而对目标函数没有要求。
( )
2. 线性规划求解的结果可能会有无穷多个最优解,但解相应的最优值都相等。
( )
3. 若线性规划有最优解则其可行域一定有界。
( )
4. 若线性规划无解,则其可行域是空集。
( )
5. 影子价格为0时,表明该资源未得到充分利用。
( )
6. 平衡运输问题的约束是资源约束。
( )
7. 指派问题是运输问题的特例。
( )
8. 匈牙利法是对运输问题求最小值的一种求解方法。
( )
9. 点vi 表示自来水厂及用户,vi 与vj 之间的边表示两点间可以铺设管道,权为vi 与vj 间铺设
管道的距离或费用,极值问题是如何铺设管道,将自来水送到其他5个用户并且使总的费用最小。
这属于最短路问题。
( )
10.邮递员从邮局vi 出发要经过每一条边将邮件送到用户手中,最后回到邮局vi ,如何安排路线使总路程最短。
这属于运输问题。
( )
三.分析解答题 (共10分。
)
某公司目前正在制造两种产品,产品I 和产品II ,现在产品I 和产品II 的每天产量分别为30个和120个,工资负责制造的副总经理希望了解是否可以通过改变这两种产品的数量来提高公司的利润。
公司制造每个产品所需的加工工时和每个车间的加工能力
(每天加工工时数)如下表产品I 和产品II 一所示:
生产两种产品的有关数据
利用EXCEL 进行线性规划建模求解后的表格(表格一)和敏感性性分析报告(表格二)如下: 问:
(1) 假设生产的全部产品都能销售出去,请确定最优产品组合,即确定使得总利润最大的产
品I 和产品II 每天的产量。
(2) 在问题(1)所求得的最优产品组合中,在1、2、3、4四个车间中哪些车间的能力还有
剩余,剩余多少?
(3) 1、2、3、4四个车间能力的影子价格各为多少?即1、2、3、4四个车间的能力分别增
加一个加工工时数时能给公司带来多少的额外利润?
(4)当产品I的单位利润不变,产品II的单位利润在什么范围内变化时,此最优解不变?
分别讨论各个单位产品利润在什么范围内变化时,原生产计划不变。
当产品II的单位利润不变,产品I的单位利润在什么范围内变化时,此最优解不变?
(5)当产品I的单位利润从500元降为450元,而产品II的单位利润从400元降为430元时,最优解是否改变?
表格一、EXCEl建模表格
表格二、第三题的敏感性分析报告
某公司铺设光导纤维网络问题(最小支撑树问题)。
某公司的管理层已经决定铺设最先进的光导纤维网络,为它的主要中心之间提供高速通信(数据、声音和图像)。
图一中的节点显示了该公司主要中心(包括公司的总部、巨型计算机、研究区、生产和配送中心等八个位置)的分布图。
虚线是铺设纤维光缆可能的位置。
每条虚线旁边的数字表示了如果选择在这个位置铺设光缆需要花费的成本。
(分别用破圈法和避圈法、Prim算法和Sollion算法求解,给出算法步骤,不用建立模型。
)
图一、第三题的节点分布图
五.计算解答题 (共10分。
) 指派问题。
根据下面的费用矩阵,采用匈牙利算法给出最优的指派方案。
(给出算法步骤,不用建立模型。
)
12797989666717121412151466104107106⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
六.线性规划建模题(共10分。
)
解题要求:给出三要素,建立相应的规划模型。
(生产与存储问题问题)。
某厂按合同规定须于当年每个季度末分别提供10,15,25,20台同一规格的柴油机。
已知该厂各季度的生产能力及生产每台柴油机的成本如表三所示。
如果生产出来的柴油机当季不交货的,每台每积压一个季度需储存、维护等费用1500元。
要求在完成合同的情况下,做出使该厂全年生产(包括储存、维护)费用最小的决策。
表格三、各季度的生产能力及生产每台柴油机的成本
(1) 以各季度的产量及库存为决策变量,建立线性规划模型;
(2) 以第i 季度生产的第j 季度交货的柴油机数为决策变量,建立产大于销的运输问题模型。
七.优化建模题 (共10分。
)
解题要求:给出三要素,建立相应的规划模型。
图二、第五题的城市网络图
1) 在进行货郎担问题试求解时,有回路“2—>3—>6—>5—>2”,“4—>7—>8—>4”,“9<
—>12”,给出货郎担问题的数学模型; 2) 给出上图求解中国邮路问题的数学模型;
八.最大流建模题(共10分。
)
解题要求:给出三要素,建立相应的规划模型。
计划编制问题。
某市政工程公司在未来5~8月份内需完成4项工程:修建一条地下通道、修建一座人行天桥、新建一条道路及道路维修。
工期和所需劳动力见表3。
该公司共有劳动力120人,任一工程在一个月内的劳动力投入不能超过80人,问公司应如何分配劳动力完成所有工程,是否能按期完成?
(1) 画出将该问题转化为最大流问题的网络图; (2)
解题要求:给出三要素,建立相应的规划模型。
某速递公司提供快递服务,所有快件两天内都能送到。
快件在晚上到达各收集中心,并于第二天早上装上送往该地区的几辆卡车。
因为快递行业的竞争加剧,为了减少平均的送货时间,必须将各包裹根据目的地的地理位置加以分类,并分装到不同的卡车上。
假设每天有三辆卡车提供快递服务,卡车可行的路线有10条,如表格五所示(其中各列的数字表示送货的先后次序)。
公司有特制软件,该软件第一步就是根据当天要送快递的地点,找出各卡车可能的路线。
假设当天有9个快件需要送到9个地点,请根据各种可能的路线以及所需时间的估计值,建立相应的0-1整数规划模型,为每辆卡车选出一条路线,以最短的总时间完成各地的送货工作。
表格五某速递公司的路线选择的相关数据
诚信应考 考出水平 考出风格
浙江大学城市学院
2011— 2012学年第一学期期中末考试试卷
《应用运筹学》
一.判断题(本大题共10小题,每题1分,共10分。
)
二.填空题(本大题共30空,每空1分,其中第一小题每行1分,共30分。
)
三.分析解答题 (共10分。
)
四.计算解答题 (共20分。
)
五.计算解答题 (共10分。
)
解题要求:给出三要素,建立线性规划模型。
六.线性规划建模题(共10分。
)
解题要求:给出三要素,建立相应的规划模型。
七.优化建模题 (共10分。
)
解题要求:给出三要素,建立相应的规划模型。
八.最大流建模题(共10分。
)
解题要求:给出三要素,建立相应的规划模型。
九.整数规划建模题(共10分。
)
解题要求:给出三要素,建立相应的规划模型。
第11 页共11 页。