人教高中数学基本不等式优秀PPT

合集下载

2.2.1 基本不等式-(新教材人教版必修第一册)(35张PPT)

2.2.1 基本不等式-(新教材人教版必修第一册)(35张PPT)

利用基本不等式比较大小
【例 2】 (1)已知 a,b∈R+,则下列各式中不一定成立的是( )
A.a+b≥2 ab
B.ba+ab≥2
C.a2+abb2≥2 ab
D.a2+abb≥ ab
(2)已知 a,b,c 是两两不等的实数,则 p=a2+b2+c2 与 q=ab+bc
+ca 的大小关系是________.
B [当a2+1=2a,即(a-1)2=0 1.不等式a2+1≥2a中等号成立 即a=1时,“=”成立.] 的条件是( ) A.a=±1 B.a=1 C.a=-1 D.a=0
2.已知a,b∈(0,1),且a≠b,
D [∵a,b∈(0,1),∴a2<a,
下列各式中最大的是( )
b2<b,
A.a2+b2
一定成立的是( )
A.a-b<0
B.0<ab<1
C.
a+b ab< 2
D.ab>a+b
C [∵a>b>0,由基本不等式知 ab<a+2 b一定成立.]
3.不等式x-9 2+(x-2)≥6(其 中x>2)中等号成立的条件是( )
A.x=3 B.x=-3
C [由基本不等式知等号成立 的条件为x-9 2=x-2,即x=5(x=- 1舍去).]
∴a2+b2<a+b,又a2+b2>
B.2 ab
2ab(∵a≠b),
C.2ab
∴2ab<a2+b2<a+b.
D.a+b
又∵a+b>2 ab(∵a≠b),∴a
+b最大.]
3.已知ab=1,a>0,b>0,则a
B [∵a>0,b>0,∴a+
+b的最小值为( )
b≥2 ab=2,当且仅当a=b=1时取

2.2基本不等式(第1课时) 高中数学人教版必修一 课件(共14张PPT).ppt

2.2基本不等式(第1课时) 高中数学人教版必修一 课件(共14张PPT).ppt
追问1. 基本不等式实质上就是比较大小,以前学习的比较大小的方法都有哪些?你会用这些
方法证明基本不等式吗? 作差法
a b ab 1 (a b 2 ab)

2
ab 2
1 ( a b)2 0 2
ab
,即
ab a b 2
【师生共探,证明新知】
问题3. 我们从赵爽弦图得到了重要不等式,又通过代换得到了基本不等式。数学讲究严谨性,请
同学们想一想,可以用什么方法证明基本不等式?
追问2:除了以上的方法,你还能用其它的方法证明吗?
要证 只要证 要证①,只要证 要证②,只要证
2 ab a b

2 ab a b 0 ②
( a b)2 0 ③
要证③,只要证
( a b)2 0

显然,④成立,当且仅当a=b时,等号成立。
分析法(执果索因法)
a2 b2 2ab(a,b R) ,当且仅当 a b 时,等号成立。那么, 当 a 0,b 0 时,我们用 a , b 分别代替上式中的 a, b ,上述
不等关系变为什么?
a2 b2 2ab(a, b R) a b 2 ab
基本不等式 (均值不等式)
【合作交流,生成新知】
基本不等式的结构特征:
2.2 基本不等式
【创设情境,发现新知】
【地主分地的故事】 地主家有两个儿子,为了分家产,他分给大儿子一块长方形的地,分
给小儿子一块正方形的地,这两块地的周长相同。问:这样分家公平吗?
你分这块长 方形的地
你分这块正 方形的地
【合作交流,生成新知】
问题1. 上一节我们通过赵爽的弦图得出了一个重要不等式:
【师生共探,证明新知】 问题4. 以上的方法都是从代数的角度证明的,你能从几何的角度解释基本不等式吗?

基本不等式课件(共43张PPT)

基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。

人教高中数学不等式的基本性质PPT完美版

人教高中数学不等式的基本性质PPT完美版
例题讲解 例1、比较两数(a+1)2与 a2-a+1值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
练习 比较两数(a2 +1)2与 a4+a2+1的值的大小。
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版
例题讲解

6.不能把质朴、理性的爱国主义视为 民粹主 义、狭 隘民族 主义, 同时应 防止各 种形式 的民粹 主义和 极端民 族主义 行为。

7. 众多短视频平台成为人们的消遣神 器,但 如果缺 乏内容 创新和 内涵续 航,短 视频的 发展将 不容乐 观。

8. 在这个浅表性阅读时代,越是具有 艺术美 感、内 容穿透 力和人 文内涵 的走心 作品越 能获得 观众的 认可。
性质5:如果a>b>0,c>d>0,那么ac>bd.不等式的叠乘性质
人教高中数学不等式的基本性质PPT完 美版
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版
谢谢
人教高中数学不等式的基本性质PPT完 美版 人教高中数学不等式的基本性质PPT完 美版

1.中美贸易摩擦已升级为舆论战,坚 持正确 舆论导 向、弘 扬爱国 主义精 神尤为 重要。

2.爱国主义精神具有深厚的历史性, 极强的 传承力 、感染 力,以 及坚韧 性,顽 强性和 理性。

3.爱国主义精神,是在中国共产党近 百年之 奋斗史 中不断 形成, 积聚与 升华而 成的。

4.面对史上规模最大的贸易战,中国 政府和 人民最 重要的 是“集中 力量做 好自己 的事”

人教版高中数学新教材必修第一册2.2基本不等式1课件(优秀课件)

人教版高中数学新教材必修第一册2.2基本不等式1课件(优秀课件)

x
x
当且仅当 x 1 ,即 x2 1, x 1 时等号成立
x
因此所求的最小值为 2
变式1:把 x 0 改为 x 0 成立吗? 不成立
讲 课 人 :
变式2:把 x
0
改为 x
2 成立吗?不成立

启 强
9
典型例题
均值不等式的运用
例2, 已知x, y都是正数 , 求证: (1)如果xy等于定值 P, 那么当x y时, 和x y有最小值 2 P; (2)如果和x y等于定值 S, 那么当x y时, 积xy有最大值 1 S 2.
(1) xy=P x+y≥2 P(当且仅当 x=y 时, 取“=”号).
(2)
x+y=S
xy≤
1 4
S2(当且仅当
x=y
时,
取“=”号).

求最值时注意把握 “一正,二定,三相等”




启 强
12
作业 课本48页 习题2.2
复习巩固1、 2





启 强
13





启 强
14
4
解:因为 x>0,y>0,所以 x y xy 2
(1)当积 xy=P 为定值时, x y p 所以 x+y≥2 p
2
当且仅当 x=y 时上式等号成立,于是当 x=y 时,x+y 有最小值 2 p
(2) 当和 x+y=S 为定值时, xy S 所以 xy≤ s2
2
4
s2
当且仅当 x=y 时上式等号成立,于是当 x=y 时,xy 有最大值

人教版高中数学A版必修一2.2 基本不等式课件

人教版高中数学A版必修一2.2 基本不等式课件
提示:①AB 表示圆的直径;②������+2������表示线段 OD;③ ������������对应线段 CD; ④圆的半径大于或等于 CD,即������+2������ ≥ ������������.基本不等式的几何意义是 “半径不小于半弦”.
一二
课前篇 自主预习
2.填空
我们称不等式 ������������ ≤ ������+2������为基本不等式,其中 a>0,b>0,当且仅当 a=b 时,等号成立.
∴xy≤4,当且仅当 x=y=2 时,等号成立, ∴xy 的最大值为 4.
答案:(1)4 (2)4
课前篇 自主预习
探究一
探究二
探究三 随堂演练
基本不等式的理解
例1下列命题正确的是( )
A.若 x≠0,则 x+4������≥4
B.若 a,b∈R,且 ab>0,则������������ + ������������≥2
课堂篇 探究学习
探究一
探究二
探究三 随堂演练
变式训练2(1)已知a,b,c,d都是正数,求证:(ab+cd)(ac+bd)≥4abcd.
(2)已知 a>0,b>0,且 a+b=2,求证:1������ + 1������≥2. 证明(1)因为 a,b,c,d 都是正数,所以
ab+cd≥2 ������������������������,ac+bd≥2 ������������������������,
C.
������2 + 2 +
1 的最小值为
������2+2
2

高中数学人教版必修五:基本不等式(共23张PPT)

高中数学人教版必修五:基本不等式(共23张PPT)
基本不等式:
ab

a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:

ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。

基本不等式ppt课件

基本不等式ppt课件
a b
12 3
1 4b 3a 1

8+ a + b ≥ 8+2
5a b(a+2b)=5
5

4b 3a
4b 3a 8+4 3
(当且仅当 a = b ,
·

5
a b
8+4 3
2 3
即 2b= 3a 时取等号),∴ + 的最小值为
.故选 B.
a b
5
22.(多选)(2021·湖南省长沙市长郡中学上学期适应性调查考试)小王从
n 4m 9
4m·n =2,
2
1
当且仅当 n=3,m=6时取等号.故选 C.
2
3
3.设 x>0,则函数 y=x+
-2的最小值为( A )
2x+1
A.0
1
B.2
解析
2≥2
C.1
3
D.2

1
2
3

由 于 x>0 , 则 y = x +
- = x+2 +
2
2x+1



1

x+ ·
2

m· n 4
二、高考小题
13.(2021·全国乙卷)下列函数中最小值为 4 的是( C )
A.y=x +2x+4
4
B.y=|sin x|+|sin x|
C.y=2 +2
4
D.y=ln x+
ln x
2
x
2-x
15.(2020·上海高考)下列不等式恒成立的是( B )
A.a2+b2≤2ab
C.a+b≥2 |ab|
命题中正确的是( AB )
A.若 P=1,则 S 有最小值 2
B.若 S+P=3,则 P 有最大值 1

基本不等式(共43张)ppt课件

基本不等式(共43张)ppt课件
15
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。

基本不等式ppt课件

基本不等式ppt课件

a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b

(1)当积xy等于定值P时,

2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.

人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。

过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。

情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。

本节课共分为引入、新课、巩固练习、小结四个部分。

课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。

本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。

030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。

不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。

对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。

若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。

同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。

若a>b>0且c>d>0,则ac>bd 。

特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。

柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。

人教版高中数学必修一《基本不等式》PPT课件

人教版高中数学必修一《基本不等式》PPT课件

科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
记忆口诀:两正数的和定积最大,两正数的积定和最小.
栏目 导引
第二章 一元二次函数、方程和不等式
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理课件:/kejian/dili/
历史课件:/kejian/lishi/
栏目 导引
第二章 一元二次函数、方程和不等式
不等式(x-2y)+x-12y≥2 成立的前提条件为(
)
A.x≥2y
B.x>2y
C.x≤2y
D.x<2y
栏目 导引
第二章 一元二次函数、方程和不等式
判断正误(正确的打“√”,错误的打“×”) (1)对任意 a,b∈R,a2+b2≥2ab 均成立.( √ )
(2)若 a>0,b>0 且 a≠b,则 a+b>2 ab.( √ )
(3)若 a>0,b>0,则 ab≤a+2 b2.( √ ) (4)a,b 同号时,ba+ab≥2.( √ )
PPT课件:/kejian/
语文课件:/kejian/yuwen/ 数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/ 美术课件:/kejian/meishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/

人教版高中数学必修1《基本不等式》第1课时PPT课件

人教版高中数学必修1《基本不等式》第1课时PPT课件
当然,我们可以用作差比较法证明基本不等式 .
∀ a > 0,b > 0, ab ≤
高中数学
一、温故知新-新知形成
分析法
分析法是一种“执果索因”的证明方法,即从要证
明的结论出发,逐步寻求使它成立的充分条件,直至最后,
把要证明的结论归结为判定一个明显成立的条件(已知条
件、定理、定义、公理)为止.
高中数学
四、画龙点睛-关键之处
例2 已知x,y都是正数,求证:
(1)如果积等于定值P,那么当x=y时,和x+y有最小值 2 P ;
x+ y
证明:因为x,y都是正数,所以 2 ≥
x+ y

所以
2
P , 当且仅当x=y时,上式等号成立. 于是,当x=y时,和
x+y有最小值 2 P ;
高中数学
xy .
四、画龙点睛-关键之处
高中数学
一、温故知新-新知特征
问题2


即由


根据不等式性质,两边同乘以一个负数,所得不等式与原不
等式反向,这里,根据前面的知识,我们可以知道⑤是④成立的充
分条件;
显然,⑤成立,当且仅当 = 时,⑤中的等号成立.
高中数学
一、温故知新-新知特征
分析法的证明格式
由于分析法是从要证明的结论出发,逐步寻求使它成立的
要证②,只要证
要证③,只要证
要证④,只要证
高中数学

+

2 ≤ + .
2 − − ≤0.
2
− − ≤0 .
2
− ≥0 .
2

基本不等式-ppt课件高中数学人教版

基本不等式-ppt课件高中数学人教版
第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T)
第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T)
第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T)
第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T)
第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T)
第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T) 第二章 2.2 第2课时基本不等式的应用-【新教材 】人教 A版(2 019) 高中数 学必修 第一册 课件(共 49张PP T)

人教版高中数学1不等式的性质(共17张PPT)教育课件

人教版高中数学1不等式的性质(共17张PPT)教育课件

:


















































:







1







5












楚 弄
有 怎
完 情













西
(





























)







拍 以


















高中数学新人教A版必修5课件:第三章不等式3.4基本不等式第一课时基本不等式

高中数学新人教A版必修5课件:第三章不等式3.4基本不等式第一课时基本不等式

ab+ 1 ≥2 ab 1 =2,故(3)正确;由基本不等式可知,当 y >0, x >0 时,有
ab
ab
xy
y + x ≥2 y x =2 成立,这时只需 x 与 y 同号即可,故(4)错误.
xy
xy
答案:(3)
方法技能 应用基本不等式时,第一根据题目的特征,确定“a”和“b”. 它们可以是数字也可以是复杂的代数式.其次,注意“a”和“b”的符号,必 须都是正数,最后看“=”号能否成立.
(D) b + a ≥2 ab
解析:因为 a2+b2≥2ab,当且仅当 a=b 时,等号成立,所以 A 错误;对于 D,因为
ab>0,所以 b + a ≥2 b a =2.
ab
ab
对于 B,C,当 a<0,b<0 时,明显错误.
故选 D.
2.不等式 a2+ 4 ≥4 中,等号成立的条件是( D ) a2
2
2
课堂探究
题型一 对基本不等式的理解
【例 1】 给出下列命题:(1)若 x∈R,则 x+ 1 ≥2;(2)若 a>0,b>0,则 lg a+lg b≥ x
2 lg a lgb ;(3)若 a<0,b<0,则 ab+ 1 ≥2;(4)不等式 y + x ≥2 成立的条件是
ab
xy
x>0 且 y>0.其中正确命题的序号是
ab > ab > 2
ab .而 y= log1 x 为减函数,故 Q>P>M.故选 B.
2
题型三 利用基本不等式证明不等式 【例 3】 已知 a,b,c>0,求证: a2 + b2 + c2 ≥a+b+c.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.4基本不等式: ab a b
2
探究发现
你能在图中找出一些相等关系或不等关系吗?
a2 b2 2aba、bR
a b 2 ab a、b R
应用举例
例1.已知x 0, y 0,求证:
1) y x 2; xy
2) xy 2xy . x y
应用举例
例2.学校用篱笆围一个面积为36平方米的矩形花 圃,问这个矩形花圃的长、宽各为多少时,所用 的篱笆最短,最短篱笆是多长?
人 教 高 中 数 学基本 不等式 优秀PP T
1.中美贸易摩擦已升级为舆论战,坚 持正确 舆论导 向、弘 扬爱国 主义精 神尤为 重要。 2.爱国主义精神具有深厚的历史性, 极强的 传承力 、感染 力,以 及坚韧 性,顽 强性和 理性。
3.爱国主义精神,是在中国共产党近 百年之 奋斗史 中不断 形成, 积聚与 升华而 成的。 4.面对史上规模最大的贸易战,中国 政府和 人民最 重要的 是“集中 力量做 好自己 的事” 5.美方发起贸易战,进行恫吓威胁, 不会给 中国发 展带来 困难和 影响, 只会更 加激发 中国人 民的勇 气、士 气与硬 气。 6.不能把质朴、理性的爱国主义视为 民粹主 义、狭 隘民族 主义, 同时应 防止各 种形式 的民粹 主义和 极端民 族主义 行为。 7. 众多短视频平台成为人们的消遣神 器,但 如果缺 乏内容 创新和 内涵续 航,短 视频的 发展将 不容乐 观。 8. 在这个浅表性阅读时代,越是具有 艺术美 感、内 容穿透 力和人 文内涵 的走心 作品越 能获得 观众的 认可。 9. 弊端重重的人类中心主义亟须克服 自身认 识的偏 见,而 中华民 族的中 道智慧 是一个 可取的 办法。
y
x
变式:一段长为36米的篱笆围成一个矩形花圃, 问这个矩形花圃的长、宽各为多少时,花圃的面 积最大,最大面积是多少?
巩固练习
练习:已知
x
0
,求函数
y
x
1 x
的最小值。
变式:已知x 1,求函数y x 1 的最小值. x 1
提炼总结
a2 b2 2aba、bR ab a b a、b R
2 基本不等式 ab a b 的证明
2
基本不等式 ab 几何直观
布置作业
1.教材第100页习题3.4A组第1、2、3题 2.课后探究
探究1.“换元法”是推导均值不等式的基 本方法 之一,类比这一过程,你能写出与 均值不等式有关的一些变形结论吗?
探究2.以“均值不等式的几何解释”为主 题,查阅资料,相互交流。
人 教 高 中 数 学基本 不等式 优秀PP T
相关文档
最新文档