第三章空间数据处理汇总

合集下载

地理信息系统概论-第三章

地理信息系统概论-第三章

2024/7/17
22
高斯-克吕格投影的特点:
① 中央经线上没有任何变形,满足中央经线投影后保持长度 不变的条件;
② 除中央经线上的长度比为1外,其他任何点上长度比均大 于1;
③ 在同一条纬线上,离中央经线越远,变形越大,最大值位 于投影带的边缘;
④ 在同一条经线上,纬度越低,变形越大,变形最大值位于 赤道上。
局部比例尺: 由于投影中必定存在某种变形,地图仅能在某些点或线上保 持比例尺,其余位置的比例尺都与主比例尺不相同,即大于 或小于主比例尺。这个比例尺被称为局部比例尺。
一般地图上注明的比例尺是主比例尺,而对用于测量长度的
地图要采用一定的方式设法表示出该图的局部比例尺。这就
是在大区域小比例尺地图(小于1:1 000 000)上常见的图解
地形图上公里网横坐标前2位就是带号, 例如:1∶5万地形图上的坐标为(18576000, 293300),其中18即为带号。
2024/7/17
24
当地中央经线经度的计算
六度带中央经线经度的计算: 当地中央经线经度=6°×当地带号-3°, 例如:地形图上的横坐标为18576000,其所处的六度带的中 央经线经度为:6°×18-3°=105°。
2、建立地图投影的目的: 采用某种数学法则,使空间信息在地球表面上的位置和地 图平面位置一一对应起来,以满足地图制图的要求。
2024/7/17
9
理解地图投影如何改变空间属性的一种简便方法:
观察光穿过地球投射到表面(称为投影曲面)上。 想像一下,地球表面是透明的,其上绘有经纬网。用一 张纸包裹地球。位于地心处的光会将经纬网投影到一张纸上 。现在,可以展开这张纸并将其铺平。纸张上的经纬网形状 与地球上的形状不同。 地图投影使经纬网发生了变形。

第三章空间数据模型第3节矢量数据模型

第三章空间数据模型第3节矢量数据模型

(xn,yn) (x(1x,ny,1y)n) (x1,y1)
(a) (xn,yn)
(b)
(xn,yn)
A
KI
H
J
BC
G
FE
D
(c)
第三章空间数据模型第3节矢量数据模型
一维矢量具有方向、长度
方向:即有起始结点和终止结点
长度:可以用以下方式表达:
引入欧氏空间的距离概念:
n
长度 [(xi xi1)2 ( yi yi1)2 ]1/2 i2
一.基本概念 二.关系数据模型和关系表 三.矢量数据模型( Spaghetti Model ) 四.矢量数据模型(拓扑数据模型)
第三章空间数据模型第3节矢量数据模型
一、基本概念
• 现实世界和矢量表达 • 位置和边界被清楚地记录 • 对象可以被识别 • 属性值与对象相联系 • 空间关系可以清晰表达
第三章空间数据模型第3节矢量数据模型
(1) 地理要素被当成单个对象对待
空间边界可以被清晰的编码
(2)对象之间没有关系
要素间的空间拓扑不被记录
第三章空间数据模型第3节矢量数据模型
矢量表达法
• 不同的空间特征具有不同的矢量维数
– 0维矢量-点:即空间中的一个点,没有大小、 方向,二维和三维欧氏空间中为:(x,y),(x,y,z)
– 一维矢量-线:空间中的线划要素或空间对象间 的边界,也称为弧段、链
用的概念,是三维空间中曲面法向矢量的 另外一种描述方法
第三章空间数据模型第3节矢量数据模型
空间曲面
• 矢量实现方法多样 • 常用等值线法、剖面法
第三章空间数据模型第3节矢量数据模型
三维矢量-体
• 指三维空间中的实体

GIS空间数据处理与分析

GIS空间数据处理与分析
内边界
栅格单元(i,j)四角点坐标的计算:
X(i1,i2)=(j-1)*DX和J*DX Y(i1,i2)=(i-1)*DY和i*DY I,j:栅格单元行列值; DX,DY:栅格单元边长
⑴:识别内边界,并将内边界端点坐标置零. 判别方法: 判断与栅格单元某条边相邻的另一栅 格单元的值,若值小于零,则该边为内边界. 内边界端点坐标置零: 边界起点和终点坐标置零.
分区数据的方法就称为空间数据的内插。
第五节 空间数据的内插方法
1、点的内插:研究具有连续变化特征现象 的数值内插方法。
步骤: 数据取样;数据处内插;数据记录
第五节 空间数据的内插方法
2、区域的内插
研究根据一组分区的已知数据来推求
同一地区另一组分区未知数据的内插方法。
区域内插方法:
2.1 叠合法:认为源和目标区的数据是均匀 分布的,首先确定两者面积的交集,然后 计算出目标区各个分区的内插值。
1、遥感与GIS数据的融合:
遥感技术的优势 融合必要性 GIS技术的优势 遥感图像与图形的融合 融合方法: 遥感数据与DEM的融合 遥感数据与地图扫描图像的融合第三节 多源 Nhomakorabea间数据的融合
2、不同格式数据的融合
不同格式数据的融合方法主要有:
2.1基于转换器的数据融合:
一种软件的数据格式输出为交换格式,然后用于另
P3
P
0
x
判断点是否在多边形内,从该点向左引水平扫描线,计算此 线段与区域边界相交的次数,若为奇数,该点在多边形内;若为 偶数,在多边形外。利用此原理,直接做一系列水平扫描线,求 出扫描线和区域边界的交点,对每个扫描线交点按X值的大小进 行排序,其两相邻坐标点之间的射线在区域内。
第二节

【GIS】地理信息系统复习资料

【GIS】地理信息系统复习资料

第一章绪论1、信息的特点1)信息的客观性2)信息的适用性3)信息的传输性4)信息的共享性2、数据处理:即对数据进行收集、筛选、排序、归并、转换、存储、检索、计算,以及分析、模拟和预测等操作。

3、地理信息的特点:1)空间分布性2)具有多维结构的特征3)时序特征十分明显4、地理数据:是与地理环境要素有关的物质的数量、质量、分布特征、相互联系和变化规律的数字、文字、图像和图形等的总称。

5、地理信息系统:它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

6、简述GIS的构成。

它的的基本功能有哪些?硬件系统、软件系统、空间数据库、应用模型、用户基本功:数据采集与编辑、数据存储与管理、数据处理与变换、空间分析和统计、产品制作与显示、二次开发和编辑。

第二章地理信息系统的数据结构1、矢量表示法:采用一个没有大小的点(坐标)来表达基本点元素。

2、栅格表示法:采用一个有固定大小的点(面元)来表达基本点元素。

3、空间数据的基本特征。

1)属性特征:描述空间对象的特性,即是什么。

如对象的类别、等级、名称、数量等。

2)空间特征:描述空间对象的地理位置以及相互关系,又称几何特征和拓扑特征,前者用经纬度、坐标表示,后者用拓扑关系表示,如交通学院与电力学院相邻等。

3)时间特征:描述空间对象随时间的变化。

4、拓扑关系的类型1)拓扑邻接:相同拓扑元素之间的关系。

2)拓扑关联:不同拓扑元素之间的关系。

3)拓扑包含:同类但不同级元素之间的关系。

5、空间数据拓扑关系意义1)根据拓扑关系,不需要利用坐标或距离,可以确定一种地理实体相对于另一种地理实体的空间位置关系。

2)有利于空间要素的查询。

3)可以利用拓扑关系数据作为工具,重建地理实体。

6、建立如下图所示的拓扑关系的全显式表达。

(方向自己给定)弧段与结点关系表多边形与弧段关系表结点与弧段关系表弧段与多边形7、栅格数据单元值的确定方法有哪些?①中心点法:②面积占优法:③重要性法:④百分比法:8、如何确定合理的网格尺寸?为了逼近原始数据精度,除了采用这几种取值方法外,还可以采用缩小单个栅格单元的面积,增加栅格单元总数的方法。

第三章 空间数据模型

第三章 空间数据模型
• 地理系统是个开放的复杂系统,所谓开放就是与 其它系统有关联,所谓复杂就是子系统种类非常 多
• 地理系统主要涉及地球内部系统、地球表层空间、 天体系统
• GIS涉及范围主要在地球表层空间,即岩石圈、 水圈、生物圈、大气圈
• 地理系统:自然环境系统和社会经济环境系统, 系统中各种要素特征都与地理空间位置有关
拓扑点n 拓扑链n 拓扑Biblioteka n拓扑点n 拓扑链n 拓扑面n
拓扑点n 拓扑链n 拓扑面n
拓扑关系--隐式表达
拓扑链 始拓扑点 终拓扑点 左拓扑面 右拓扑面
1 .能够派生出所有的以显示表达的拓扑关系 2 .避免数据存储冗余
3 .拓扑数据能以定长关系表格形式存储
4.空间对象的矢量表达
• 矢量模型最小单元与它表达的真实世界空 间实体有直接的对应关系
第三章 空间数据模型
邹逸江
目录
• 地理系统与地理现象 • 空间对象及其定义 • 空间对象描述 • 空间对象关系 • 空间对象的矢量表达 • 空间对象的栅格表达 • 矢量与栅格数据结构比较 • 混合数据结构与一体化数据结构 • 空间对象的地面高程模型表达 • 空间对象的编码体系
1.地理系统与地理现象--地理系统
• 相离关系:面与面相互隔离(与水库相隔5公里的 湖泊)
• 包含关系:一个面完全落入另一个面内(省级行 政边界内包含了县级行政边界)
• 重合关系:不存在
3.空间对象关系--空间拓扑关系
• 空间对象关系:相邻、相离、相交、包含、重合 • 相离、相交、重合空间对象关系:不适合用固定
的表达式(数学计算)事先表达出来
• 将地理现象进行抽象得到空间对象 • 空间对象分为0、1、2、3维简单和复杂对
象,其中复杂对象由0、1、2、3维对象组 合而成 • 0维空间对象的定义 • 1维空间对象的定义 • 2维空间对象的定义 • 3维空间对象的定义

第三章-空间数据的处理

第三章-空间数据的处理


二值化

细化

跟踪
分 类 图 扫描 二值化
遥感影象图 栅格分类图 原始线划图
边界 提取 预 处 理
二值化 细化
编 辑
矢 量 跟 踪
数 据 压 缩
拓 扑 化


基于再生栅格数据的矢量化方法
首先对栅格数据按行扫描,找出位于各类型边界的栅格 单元,并将边界内部具有相同值或同质的栅格单元以一 种显著不同的符号进行充值,产生只记录类型边界栅格 值得文件; 其次建立对类型边界栅格单元的追踪算法,寻找同质区 的闭合曲线,同时计算其坐标,并整理成有序(按顺时 针或逆时针方向)的坐标数组; 最后处理相邻类型的公共边界,将按区域单元建立的数 据结构转换为按线段链建立的数据结构,以便实现任意 区域或类型数据的提取、综合、分析和制图输出。
数值变换:根据两种投影在变换区内的若干同名数字化点,
采用插值法,或有限差分法,或最小二乘法,或有限元法, 或待定系数法,从而实现由一种投影的坐标到另一种投影坐 标的变换。
例如,采用二元三次多项式进行变换:
通过选择10个以上的两种投影之间的共同点, 并组成最小二乘法的条件式,进行解算系数。
第二节 空间数据结构的转换

不同格式的融合
数据存储格式和结构不同。 方式: 基于转换器的数据融合 基于数据标准的数据融合 基于公共接口的数据融合 基于直接访问的数据融合
MapInfo向Arcinfo转换
MapInfo中的地图可以有两种格式:Tab格式(表格式)、Mif格式(交换 格式)。 ArcInfo中的地图也支持多种格式:Shape格式、Coverage、E00(交换格 式).... 由Tab->Shape:使用MapInfo工具中的通用转换器 由Tab->E00:使用MapInfo工具中的ArcLink 由Tab->Coverage:先转换成Shape,然后在ArcInfo中用Shapearc;或则 先转成E00,在Import 由Mif->Shape:使用MapInfo工具中的通用转换器;或则使用ArcToolbox 直接转换 由Mif->E00:在MapInfo中导入成Tab,然后使用MapInfo工具中的 ArcLink 由Mif->Coverage:先用ArcToolbox转换成Shape,然后在ArcInfo中用 Shape arc

地理信息系统概论——知识点总结

地理信息系统概论——知识点总结

地理信息系统概论第一章导论数据与信息的关系:数据:是通过数字化或记录下来可以可以被鉴别的符号,不仅数字是数据,而且文字、符号、图象也是数据,数据本身没有意义;信息:是对数据的解释、运用与解算,数据即使是经过处理以后的数据,只有经过解释才有意义,才成为信息。

数据(data)是信息(information)的表达,而信息是数据的内容。

数据是未经加工的原始材料,地理信息系统的设计和建立,首先是收集数据和处理数据。

就本质而言数据是客观对象的表示,而信息则是数据内涵的意义,只有数据对实体行为产生影响时才成为信息。

信息是用数字、文字、符号、语言等介质来表示事件、事物、现象等的内容、数量或特征,以便向人们(或系统)提供关于现实世界新的事实的知识,作为生产、管理和决策的依据。

数据处理:是指对数据进行收集、筛选、排序、归并、转换、存储、检索、计算,以及分析、模拟和预测等操作。

信息的特点:客观性、适用性、传输性、共享性。

地理信息:是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律等的数字、文字、图象和图形的总称。

地理信息属于空间信息,它具有空间定位特征、多维结构特征和动态变化特征。

地理信息系统(Geographical Information System):地理信息系统既是管理和分析空间数据的应用工程技术,又是跨越地球科学、信息科学和空间科学的应用基础学科。

其技术系统是由计算机硬件、软件和不同的方法组成的系统,该系统设计支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划和管理问题。

GIS的基本构成:GIS一般包括以下5个主要部分:系统硬件、系统软件、空间数据、应用人员和应用模型。

1、系统硬件:(1)GIS主机:包括大型、中型、小型机,工作站∕服务器和微型计算机,其中各种类型的工作站∕服务器成为GIS的主流。

(2)GIS外部设备:包括各种输入(如图形数字化仪、图形扫描仪、解析和数字摄影测量设备等)和输出设备(如各种绘图仪、图形显示终端和打印机)。

北师大地理信息系统课件03空间数据模型

北师大地理信息系统课件03空间数据模型

因此,最好的通用数据模型是不存在的,数据模型优劣取决于 你的需要,使用数据的方式和目的才是决定数据模型优劣的标 准。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子:
河流作为组成网络的一系列要素。每条线段都拥有流量、容量和其他属性 。这时可以使用线性网络模型(几何网络)来分析水文流量或者船务运输 等。
空间事物或现象 选择、综合、简化和抽象
概念世界
数据世界 (计算机)
概念模型 Conceptial Model
最高层
编码、表达、建立空间关系
逻辑数据模型 Logical Data Model
中间层
数据结构对数据进行组织
物理数据模型 Physical Data Model
最底层
信息
11 地理空间数学基础
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据模型类型
例子: 即使在同一数据模型中,每种空间数据也有不同的表达方式。
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
空间数据概念模型类型
现有GIS中常用的空间数据概念模型主要有三个: 场(Field)模型:强调空间要素的连续性
地图使用者的认识模型
地理空间数学基础
胡嘉骢
BNUEP 地 理 信 息 系 统
维度世界:度 量语言
地理空间世 界:GIS 语言
概念世界:自 然语言
现实世界:基 本语言
地理空间数学基础
对现实世界的抽象
项目世界: 信息团体
点世界:坐标 几何
几何世界:WKT
OpenGIS的九层模 型
要素世界:要 素

第三章 空间数据的处理——内插

第三章    空间数据的处理——内插

r s p r s 0
b
rs
x y
r
s
P为二元函数阶数,通常≥1
趋势面法

趋势面的阶数
p=0,水平面
f ( x, y)
r s p
r s 0 f (x,y)=b0 p=1,倾斜面 f(x,y)=b0+b1x+b2y p=2,二次曲面 f(x,y)=b0+ b1x+b2y +b3x2+b4xy+b5y2 p=3,复杂曲面常用三次 f(x,y)=b0+ b1x+b2y +b3x2+b4xy+b5y2 +b6x3+b7x2y+b8xy2+b9y3
318 b 0 67.270 b 5043 650 29007 23862 1 . 23862 20714 b 2 4445 800 . 377
- 0.163 0.002 0.000 - 0.168 0.000 0.002 67.270 - 10.094 5043.650 0.020 4445.800 0.347
5、空间数据的内插方法
6、图幅数据边沿匹配处理
z b n b x b y
0 1 2
xz b x b x
0 1
2
b2 xy
2 y 2b yx 1b y 0b zy

改成矩阵形势并代入数据
5 377 318
23.210 - 0.163 - 0.168
比 重 法 区 域 内 插 值 实 例 :
5.0 5.0 5.0 5.0

第三章 空间数据模型

第三章 空间数据模型

分类 空间关系 非空间关系 时间关系 非空间属性 地理空间 空间要素
子类 超类 子部分 超部分
几何坐标
对象模型对空间要素的描述
场模型 • 也称域(field)模型,是把地理空间中的现象看作连续 也称域( )模型,是把地理空间中的现象看作连续 的变量或体,如大气污染程度、地表温度、土壤湿度、 变量或体 如大气污染程度、地表温度、土壤湿度、 地形高度以及大面积空气和水域的流速和方向等。 地形高度以及大面积空气和水域的流速和方向等。 • 场可分为二维或三维。二维场是在二维空间 2中任意给 在二维空间R 场可分 二维或三维。 场是在二维空间 定的一个空间位置上,都有一个表现某现象的属性值, 定的一个空间位置上,都有一个表现某现象的属性值, 场是在三维空间R 即A=f(x,y)。三维场是在三维空间 3中任意给定一个 = , 。三维场是在三维空间 空间位置上,都对应一个属性值, 空间位置上,都对应一个属性值,即A=f(x,y,z)。 = , , 。
• 由于地理空间事物和现象的复杂性和人们 认识地理空间在观念和方法上的不同, 认识地理空间在观念和方法上的不同,墓 地里信息系统对空间实体的抽象方式也存 在一定的差别,或者说不同的学科或部门 在一定的差别, 可能对地理空间按照各自的认识和思维方 式来构造不同的模型。 式来构造不同的模型。
地理空间认知概念模式( 地理空间认知概念模式(国际标准化组织地理信息 标准化委员会) 标准化委员会)
机器世界
用数据模型描述现实世界中的事物及其联系。 用数据模型描述现实世界中的事物及其联系。
1) 字段(field)或数据项(data item): 字段( )或数据项( ): 标记实体属性的命名单位,是数据库中的最小信息单位。 标记实体属性的命名单位,是数据库中的最小信息单位。 2) 记录(record):字段值的有序集合。 记录( ):字段值的有序集合 ):字段值的有序集合。 3) 记录型 : 字段名的有序集合。 字段名的有序集合。 4) 文件 : 同类记录的集合。对应于实体集。 同类记录的集合。对应于实体集。

第3章 空间数据模型

第3章 空间数据模型
– 现实世界许多地理事物和现象可以构成网络,如公路、 铁路、通讯线路、管道、自然界中的物质流、物量流 和信息流等
空间数据概念模型
• 网络是由一系列节点和环链组成的,与对象模型 没有本质的区别 • 网络模型可以看成对象模型的一个特例,它是由 点对象和线对象之间的拓扑空间关系构成的 • 空间数据概念模型归结为对象模型(或称要素模 型)和场模型(或称域模型)两类
空间数据概念模型
• 不规则多边形区。将平面区域划分为简单连通的多边形区 域,每个多边形区域的边界由一组点所定义;每个多边形 区域对应一个属性常量值,而忽略区域内部属性的细节变 化 • 不规则三角形区。将平面区域划分为简单连通三角形区域, 三角形的顶点由样点定义,且每个顶点对应一个属性值; 三角形区域内部任意位置的属性值通过线性内插函数得到 • 等值线。用一组等值线C1,C2,…,Cn,将平面区域划 分成若干个区域。每条等值线对应一个属性值,两条等值 线中间区域任意位置的属性是这两条等值线的连续插值
(a) 规则分布的点
( b ) 不规则分布的 点
(c)规则矩形区
(d) 不规则多边形区
(e) 不规则三角形区
(f) 等值线
空间数据概念模型
• 网络模型
– 网络模型与对象模型类似,都是描述不连续的地理现 象,不同之处在于它需要考虑通过路径相互连接多个 地理现象之间的连通情况 – 网络是由欧式空间R2中的若干点及它们之间相互连接 的线(段)构成
地理空间与空间实体
• 属性特征
– 也称为非空间特征或专题特征,是与空间实体相联系 的、表征空间实体本身性质的数据或数量,如实体的 类型语义定义、量值等 – 类型
• 定性属性,如名称、类型、特性等 • 定量属性,如数量、等级等

第三章空间数据模型第2节栅格数据模型

第三章空间数据模型第2节栅格数据模型

5
7
D
5
8
C
5
8
Full Raster Encoding (100 Values)
Rows
Columns 0123456789 0 AAAAAAAAAA 1 AAAAAAAAAA 2 AAAABBBBBB 3 AAAABBBBBB 4 DDDDBBBBBB 5 DDDDDBBBBB 6 DDDDDCCCCC 7 DDDDDCCCCC 8 DDDDDCCCCC 9 DDDDCCCCCC
(88 bytes)
4、四杈树编码-概念
四 叉 树 分 割
四杈树编码-数据表达
三、计算机中的栅格数据
• DEM示例
地形表达
地形表达 DEM
地形表达
等值线表示
污染浓度表示
等高线的栅格表示
四、栅格数据总结
1. 面积被表达为栅格矩阵
栅格是基本元素(像元)
2. 空间描述的详细程度依赖于栅格的大小 3. 存储要求高,需要压缩
第三章 空间数据模型
主要内容
第一节 关系数据模型 第二节 栅格数据模型 第三节 矢量数据模型 第四节 矢量数据模型TIN 第五节 空间数据模型比较 第六节 属性数据与空间数据的连接 第七节 数据模型发展趋势
第二节 栅格数据模型
一.栅格表达 二.栅格数据压缩技术 三.计算机中的栅格数据 四.栅格数据总结
1 2 34 5 6 7 8 1 2 3 4 5 6 7 8
作业:分别用块状编码和标准游程长度编码对此图像进行编码
栅格表达的 精度-分辨率 的大小,依 赖于栅格的 大小
存储量和精 度的矛盾
分辨率与存储单元示意图
思考题
1. 感知世界的二分法是什么?地理信息的空间变化在 这种二分法下是如何被感知的?

黄杏元《地理信息系统概论》(第3版)章节题库-第三章至第四章【圣才出品】

黄杏元《地理信息系统概论》(第3版)章节题库-第三章至第四章【圣才出品】

第3章空间数据处理一、名词解释1.栅格数据压缩编码答:栅格数据压缩编码是指在不丢失信息的前提下,缩减数据量以减少存储空间,提高传输、存储和处理效率的一种技术方法。

编码方式有键码、游程长度编码、块码和四叉树编码等。

其类型又有信息无损编码和信息有损编码之分。

2.边界代数算法答:边界代数算法是一种基于积分思想的矢量格式向栅格格式转换算法,它适合于将记录拓扑关系的多边形矢量数据转换为栅格结构。

它不是逐点判断与边界的关系完成转换,而是根据边界的拓扑信息,通过简单的加减代数运算将边界位置信息动态地赋给各栅格点,实现了矢量格式到栅格格式的高速转换,而不需要考虑边界与搜索轨迹之间的关系,因此算法简单、可靠性好,各边界弧段只被搜索一次,避免了重复计算。

3.DIME文件答:DIME文件是美国人口普查局在1980年的人口普查中提出的双重独立地图编码文件。

它含有调查获得的地理统计数据代码及大城市地区的界线的坐标值,提供了关于城市街道、住址范围以及与人口普查局的列表统计数据相关的地理统计代码的纲要图。

在1990年的人口普查中,TIGER取代了DIME文件。

4.空间数据内插答:空间数据内插是通过已知点或分区的数据,推求任意点或分区数据的方法。

在已观测点的区域内估算未观测点的数据的过程称为内插。

一般情况下,空间位置越靠近已观测点的未观测点越有可能获得与实际值相似的数据,而空间位置越远的点则获得与实际值相似的数据的可能性越小。

5.坐标变换答:坐标变换是把一个坐标系下的空间对象转换到另一个坐标系下的过程,是空间实体的位置描述。

其实质是建立两个平面点之间的一一对应关系,包括几何纠正和投影转换,是空间数据处理的基本内容之一。

两个及以上的坐标转换时由极坐标相对参照确定维数空间。

6.仿射变换答:仿射变换是GIS数据处理中使用最多的一种几何纠正方法。

是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。

它的主要特性为:同时考虑到因地形突变而引起的实际比例尺在x和y方向上的变形,因此纠正后的坐标数据在不同方向上的长度比将发生变化。

第三章 空间数据处理

第三章 空间数据处理

平面方程为: zp=a0+a1x+a2y 只需要3个数据点即可。
z1=a0+a1x1+a2y1
z2=a0+a1x2+a2y2
z3=a0+a1x3+a2y3
z1 1 z 1 2 z 3 1
x1 x2 x3
y1 a 0 y 2 a 1 y 3 a 2
21 22.5 23 27 28 28.6 29 30.4 31 26 18 17
23 24 24 28 30 29 30 31 32 27 20 18
26.6 24.3
2、双线性多项式内插法
双线性内插多用于已经规则分布的数据内插。
用最邻近的四个已知点构成一个四边形块,并确定一 个双线性函数。
p1 p2
因此最少需要三个同名地点的坐标,列出6 个方程组。求出系数,得到两者的转换方程。
X1’= a0 +a1 x1+a2 y1 Y1’= b0 + b1 x1 + b2 y1 X2’= a0 +a1 x2+a2 y2 Y2’= b0 + b1 x2 + b2 y2 X3’= a0 +a1 x3+a2 y3 Y3’= b0 + b1 x3 + b2 y3 a0, a1, a2, b0 , b1, b2
压缩后由{A1,A2………Am}m个坐标子集组成。 则压缩比为: a=m/n ; a≤1
二、矢量数据压缩
V3 V2 V4
V5
V1
V6
(一)矢量数据压缩基本原理:道格拉斯—佩克算法 (1)用待压缩折线首尾两点连接为直线L。
(2)计算折线上各坐标点到直线的垂直距离。

第三章 空间数据采集与处理练习

第三章  空间数据采集与处理练习

一、单选题1、对于离散空间最佳的内插方法是:A.整体内插法 B.局部内插法C.移动拟合法 D.邻近元法2、下列能进行地图数字化的设备是:A.打印机B.手扶跟踪数字化仪C.主机 D.硬盘3、有关数据处理的叙述错误的是:A.数据处理是实现空间数据有序化的必要过程B.数据处理是检验数据质量的关键环节C.数据处理是实现数据共享的关键步骤D.数据处理是对地图数字化前的预处理4、邻近元法是:A.离散空间数据内插的方法B.连续空间内插的方法C.生成DEM的一种方法D.生成DTM的一种方法5、一般用于模拟大范围内变化的内插技术是:A.邻近元法B.整体拟合技术C.局部拟合技术D.移动拟合法6、在地理数据采集中,手工方式主要是用于录入:A.属性数据B.地图数据C.影象数据 D.DTM数据7、要保证GIS中数据的现势性必须实时进行:A.数据编辑B.数据变换C.数据更新 D.数据匹配8、下列属于地图投影变换方法的是:A.正解变换B.平移变换C.空间变换 D.旋转变换9、以信息损失为代价换取空间数据容量的压缩方法是:A.压缩软件B.消冗处理C.特征点筛选法 D.压缩编码技术10、表达现实世界空间变化的三个基本要素是。

A. 空间位置、专题特征、时间B. 空间位置、专题特征、属性C. 空间特点、变化趋势、属性D. 空间特点、变化趋势、时间11、以下哪种不属于数据采集的方式:A. 手工方式B.扫描方式C.投影方式 D.数据通讯方式12、以下不属于地图投影变换方法的是:A. 正解变换B.平移变换C.数值变换 D.反解变换13、以下不属于按照空间数据元数据描述对象分类的是:A. 实体元数据B.属性元数据C.数据层元数据D. 应用层元数据14、以下按照空间数据元数据的作用分类的是:A. 实体元数据B.属性元数据C. 说明元数据D. 分类元数据15、以下不属于遥感数据误差的是:A. 数字化误差B.数据预处理误差C. 数据转换误差D. 人工判读误差二、填空题1、数据处理涉及的内容很广泛,主要取决于和,一般包括数据变换、数据重构、数据提取等内容。

地理信息系统期末复习(1-3)

地理信息系统期末复习(1-3)

地理信息系统期末复习第一章导论第一节地理信息系统的基本概念一、数据与信息data)为便于交流、解释或处理,对信息的可再解释的形式化表示。

理解:泛指表示一个指定的值或条件的数字、符号(或字母)等。

数据是表示信息的,但这种表示要适合传输、分析和处理。

在数字通信中,常把数据当作信息的同义词。

information)关于客体(如事实、事件、事物、过程或思想,包括概念)的知识,在一定场合中具有特定的意义。

二、地理信息与地理信息系统geographic data)直接或间接关联着相对于地球的某个地点的数据。

(geographic information)关于那些直接或间接涉及相对于地球的某个地点的现象的信息。

GIS的操作对象是地理数据或空间数据。

P5-----Who?GIS空间数据(地理信息)的基本特征:空间特征、属性特征、时序或时间特征。

(1、2题的关系)P3------操作对象的特点GIS,7.132)在计算机软硬件支持下,把各种地理信息按照空间分布,以一定的格式输入、存储、检索、更新、显示、制图和综合分析的计算机技术系统。

课后习题1、什么是地理信息系统(GIS)?它与一般计算机应用系统有哪些异同点?(P4)答:在计算机软硬件支持下,把各种地理信息按照空间分布,以一定的格式输入、存储、检索、更新、显示、制图和综合分析的计算机技术系统。

GIS脱胎于地图学,是计算机科学、地理学、测绘遥感学、环境科学、城市科学、空间科学、信息科学和管理科学等众多学科交叉融合而成的新兴学科。

但是,地理信息系统与这学科和系统之间既有联系又有区别:(1)GIS与机助制图系统。

机助制图是地理信息系统的主要技术基础,它涉及GIS中的空间数据采集、表示、处理、可视化甚至空间数据的管理。

地理信息系统和数字制图系统的主要区别在于空间分析方面。

一个功能完善的地理信息系统可以包含数字制图系统的所有功能,此外它还应具有丰富的空间分析功能。

(2)GIS与DBMS(数据库管理系统)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地图投影实质
设想地球是透明体,有一点光源S(投影中心),向四周辐射 投影射线,通过球表面射到可展面(投影面)上,得到投影 点,然后再将投影面展开铺平,又将其比例尺缩小到可见程 度,从而制成地图。
建立地球椭球面上经纬线网和平面上相应经纬 线网的数学关系,也就是建立地球椭球面上的点的 地理坐标(λ,φ)与平面上对应点的平面坐标(x,y) 之间的函数关系:
应分布均匀、点位合适,通常选道路交叉点、河流桥梁等固定设
施点,以保证纠正精度。
二、地图投影及其转换
一个特定的地理坐标系是由一个特定的椭球体 和一种特定的地图投影构成。其中:
椭球体是一种对地球形状的数学描述;
地图投影是将球面坐标转换成平面坐标的数学方 法。绝大多数的地图都是遵照一种已知的地理坐 标系来显示坐标数据。
圆锥
方位
主比例尺:在地图上注出的比例尺
计算投影展绘经纬网使用 不能研究地图投影的变形
局部比例尺:大于或小于主比例尺
由于长度变形,比例尺不能处处相等。 只有在无变形点和无变形线上才能保
持投影长度为1
(三)GIS中常用的地图投影 1.高斯-克吕格投影 2.墨卡托投影
3.UTM投影
4.兰勃特投影 5.阿尔伯斯投影
比例变换
变形误差消除
投影类型转换
坐标旋转和平移
第一节 空间数据的坐标转换

一、几何纠正 二、投影变换
一、几何纠正

图形编辑可消除数字化产生的错误,但无法纠正
图纸变形等误差。几何纠正是为了实现对数字化
数据的坐标系转换和图纸变形误差的纠正。

常用的几何纠正方法有仿射变换、相似变换和二 次变换。
(一)地图投影的基本原理
地图投影就是依据一定的数学法则,将不可展开的地 表曲面映射到平面上或可展开成平面的曲面上,最终 在地表面点和平面点之间建立一一对应的关系。
•地理坐标为球面坐标,不方便进行距离、方位、面积等参数 的量算。 •地球椭球体为不可展曲面。 •地图为平面,符合视觉心理,并易于进行距离、方位、面积 等量算和各种空间分析。 地球曲面转换成地图平面,不仅仅存在着比例尺变换 ,而且还存在着投影转换的问题。
第三章 空间数据处理
第三章 空间数据处理

一、空间数据的变换 二、空间数据结构的转换 三、多元空间数据的融合 四、空间数据的压缩与重分类 五、空间数据的内插方法 六、空间拓扑关系的编辑

空间数据的处理是GIS的重要功能之一。空 间数据处理涉及的内容很广泛,主要取决 于原始数据的特点和用户要求,一般包括 数据变换、数据重构、数据提取等内容。
r r′ r′ b a a b b a ab
实地上的一 个微分圆
a=b=r′< r 1
a=b=r′> r
ab=r 3

a > r,b=r
a≠b≠r


4Байду номын сангаас

图03-0 5 通 过变形椭圆 形状 显示变形特 征
(二)地图投影的类型

根据投影面与球面相关位置的分类
正轴 斜轴 横轴
圆 锥
圆 柱
方 位
圆柱
设a1=m1cosα a2=m2sinα
b1=-m1sinα b2=m2cosα
式中含有6个参数a0、a1、a2、b0、b1、b2,要实现仿射变换, 需要知道不在同一直线上的3对控制点的数字化坐标及其理论值, 才能求得上述6个待定参数。 但在实际应用中,通常利用4个以上的点来进行几何纠正。下面 按最小二乘法原理来求解待定参数: 设Qx、Qy表不转换坐标与理论坐标之差,则有
数据变换:几何纠正、地图投影转换 数据重构:结构转换、格式转换、类型替换 数据提取:类型提取、窗口提取、空间内插
第一节 空间数据的变换

空间数据的变换即空间数据坐标系的变换。 其实质是建立两个坐标系坐标点之间的一 一对应关系,包括几何纠正和投影转换。
数字化设备与地理空间坐标
数字化图纸发生变形 不同来源数据—地图投影、比例尺
仿射变换举例
例证1:地形图的纠正 一般采用4点纠正法或网格纠正法。4点纠正法通过输入4个 图幅轮廓控制点坐标来实现变换。当4点纠正法不能满足精度
要求时,可选用网格纠正法,以增加采样控制点的个数。
TIC2 TIC3
TIC1
TIC4
例证2:遥感影像图的纠正
遥感影像图的纠正通常选用同遥感影像图比例尺相同的地形 图或正射影像图作变换标准图,在选择好变换方法后,在被纠正 的遥感影像图和标准图上分别采集同名地物点,所选的点在图上
x f1 ( , ) y f 2 ( , )
当给定不同的具体条件时,将得到不同类型的 投影方式。
(二)地图投影的类型
地图投影的三钟变形:


长度变形 面积变形 角度变形
长度变 形
角度变 形
面积变形和 长度变形
按变形性质地图投影分为三类:
通过变形椭圆形状显示变形特征
微分圆长、短半轴的大小,等于该点主方向的 长度比。也就是说,如果一点上主方向的长度 比(极值长度比)已经确定,则微分圆的大小 和形状即可确定。
使用最多的一 种几何变换。
m1m2:地图横向、纵向比例尺 x,y:数字化仪坐标
Y
X,Y:理论坐标
a:数字化仪坐标与理论坐标
y
a
P x a0 O´ b0
a
的夹角
0
X
设x,y为数字化仪坐标,X,Y为理论坐标, m1、m2为横向和纵向的实际比例尺, 两坐标系夹角为α, 数字化仪原点O‘相对于理论坐标系原点平移了a0、b0, 则根据图形变换原理,得出坐标变换公式:
按照[Qx2]=min和[Qy2]=min的条件,可得到两组法方程:
式中: n为控制点个数; x,y 为控制点的数字化坐标 X、Y 为控制点的理论坐标。
通过消元法, 可求得仿射变换的待定参数a0、a1、a2、b0、b1、b2。
经过仿射变换的空间数据,其精度可用点位中误差表示,即
仿射变换是GIS数据处理中使用最多的一种几何纠正 方法。它的主要特性为:同时考虑到x和y方向上的变形, 因此纠正后的坐标数据在不同方向上的长度比将发生 变化。其他方法还有相似变换和二次变换等。
1.高斯-克吕格投影 (横轴等角切椭圆柱投影)
椭圆柱为投影面,使地球椭球体的某一经线与椭圆柱相切, 然后按等角条件,将中央经线两侧各一定范围内的地区投影 到椭圆柱面上,再将其展成平面而得。 由德国数学家、天 文学家高斯(C.F. Gauss,1777—1855)及大地测量学家 克吕格(J. Krüger,1857—1928)共同创建。
相关文档
最新文档