2011_2012学年第一学期末数值分析考试试题A

合集下载

2011-2012第一学期期末考试试卷及答案

2011-2012第一学期期末考试试卷及答案

p1q1 kp
p0 q1 )
(2)计算农产品收购量总指数,以及由于收购量的变化给农民货币收入带来的影响; 收购量总指数=102.9%,收入带来的影响=69.2
(3)计算报告期收购额与基期收购额的发展速度(即收购额指数),及其变动差额。 收购额指数=118.2%, 变动差额=436
三(20 分)、试用符号与成对资料的秩和,检验两组鼠肝中维生素 A 含量(国际单位/克)
2(1 − θ), 0 < θ < 1 π(θ) =
0, 其他
试在平方损失函数下求 的 Bayes 估计,并求其后验方差。
π(θ|x)~Beta(4,7) E(θ|x) = 0.364, Var(θ|x) = 0.019
五(20 分)、EM 算法。
设某实验可能有四个结果,其出现的概率分别为
111
1
1-9 1-10 1-11
X 112 122
133 143 NA 165 176 112345 300 205 216
求 1 删除异常数据, 2 填补 2009-1-5 的数据。 采用肖维勒准则 112345-mean(x)-1.96*sd(x)=31429.32>0, 删除 112345,
300- mean(x[-7])-1.96*sd(x[-7])=12〉0 删除 300 其他不能删除。 数据填充 均值 159 回归 153.7 (用其他方法也算对) 二(20 分)、某基层供销社向农民收购农产品的有关资料如下:
采用滑动平局,四个季节因子约为 7.91,-30.74,-22.57,45.41
有无显著差异,并与 t 检验的结果作比较。
不同饲料组鼠肝维生素 A 含量
大鼠配偶组
肝中维生素 A 含量

三峡大学硕士研究生数值分析11年-12年秋考试试卷Word版

三峡大学硕士研究生数值分析11年-12年秋考试试卷Word版

阅卷负责人签名:.(5分)设 n n n I I e -=,则11---n n I I )(1n n I I n--=, ||11---n n I I |)(|1n n I I n -=,即n n e ne 11=-.每迭代一次误差均在减少,所以设计的递推算法是数值稳定的. (15分)二、(15分)设n n ij R a A ⨯∈=)(对称,顺序主子式),,2,1(0n i i =≠∆则T LDL A =分解存在,其中L 为单位下三角形矩阵,D 为对角阵,试写出求方程组b Ax =解的计算步骤(用矩阵表示), 此法称为改进平方根法. 试用它求解方程组.:⎩⎨⎧=+=+221669632121x x x x 解: 由T LDL A =可得b Ax =的方程为b x LDL T=,令y x DL T=,则b Ly =.计算步骤(1) 将A 直接分解T LDL A =,求出 D L , (2) 求解方程b Ly =(3) 求解方程y D x L T 1-= (5分)现有⎢⎣⎡63 ⎥⎦⎤166⎥⎦⎤⎢⎣⎡=10121l ⎥⎦⎤⎢⎣⎡2100d d ⎥⎦⎤⎢⎣⎡10121l 比较矩阵两边的元素,可得: ,221=l ,31=d .42=d由b Ly =可得⎥⎦⎤⎢⎣⎡1201⎥⎦⎤⎢⎣⎡21y y ⎥⎦⎤⎢⎣⎡=229 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒4921y y 由y D x L T1-=得⎥⎦⎤⎢⎣⎡1021⎥⎦⎤⎢⎣⎡21x x ⎥⎦⎤⎢⎣⎡=13 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⇒1112x x (15分)三、(15分)已知下列线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-14514103131021310321x x x 之精确解Tx )1,1,1(=.用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列问题: (1) 写出Jacobi 迭代和Gauss-Seidel 迭代两种迭代格式的分量迭代形式;(2) 求Jacobi 迭代格式的迭代矩阵及其-∞范数,并指出Jacobi 迭代法的收敛性. 解: (1) Jacobi 迭代法的分量形式:⎪⎪⎩⎪⎪⎨⎧--=----=--=+++10/)314()10/()325(10/)314()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x ),1,0( =kGauss-Seidel 迭代法的分量形式:⎪⎪⎩⎪⎪⎨⎧--=----=--=++++++10/)314()10/()325(10/)314()1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x ),1,0( =k (10分)(2) Jacobi 迭代格式的迭代矩阵及其-∞范数分别为:⎪⎪⎪⎭⎫ ⎝⎛----=-=-010/310/110/3010/210/110/301A D I B J15.010/310/2||||<=+=∞J B Jacobi 迭代收敛. (15分)四、(10分)用最小二乘法解下列超定线性方程组:⎪⎪⎩⎪⎪⎨⎧=+=+=-=+7262353114221212121x x x x x x x x 解 +-+=221)1142(),(x x y x Q 221)353(--x x+-++221)62(x x 221)72(-+x x要使总残差达到最小,必有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0021x Q x Q ⇒⎩⎨⎧-=-=-48463513182121x x x x⇒⎪⎪⎩⎪⎪⎨⎧==9111327383021x x 或⎩⎨⎧≈≈24.104.321x x (10分)五、(10分) 设23)()(a x x f -=.(1) 写出0)(=x f 解的Newton 迭代格式; (2) 证明此迭代格式是线性收敛的.解 (1) 因23)()(a x x f -=,故)(6)(32a x x x f -='.由Newton 迭代公式: ,1,0,)()(1='-=+k x f x f x x k k k k 得 ,1,0,665)(6)(232231=+=---=+k x ax a x x a x x x kk k k k k k .(5分)(2)迭代函数,665)(2x a x x +=ϕ而,365)(3--='x ax ϕ 又3*a x =, 则 =-='-333)(3165)(a a ϕ.0213165≠=-故此迭代格式是线性收敛的. (10分)六、(15分) 取节点21,010==x x ,12=x ,求函数xe x y -=)(在区间]1,0[上的二次插值多项式),(2x L 并估计插值误差.解 由Lagrange 插值公式得()()()2112142122112----⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=e x x e x x x x x L . (10分)())1)(5.0)(0(!3)()()(22---'''=-=x x x y x L x y x R ξ )10(<<ξ ()1)5.0(max 6110--≤≤≤x x x x 令 ),1)(5.0()(--=x x x x h 由0)(='x h ,求得两个驻点得)311(211+=x , )311(212-=x于是 =≤≤|)(|max 10x h x 3121)}1(),(),(),0({max 2110=≤≤h x h x h h x所以,有())()(22x L x y x R -=)(max 6110x h x ≤≤≤008019.03721≈=(15分) 七、(10分)已知某河宽20m ,测得水深)(x f 如下表 (单位:m ):4.18.10.28.20.35.28.20.38.15.10.1)(20181614121086420k kx f x利用所有数据,用复合梯形公式和复合Simpson 公式计算河水的截面积dx x f ⎰20)(的近似值.解:用复合梯形公式,小区间数,10=n 步长.21020=-=h]4.1)8.10.28.20.35.28.20.38.15.1(20.1[22)(1020++++++++++=≈⎰T dx x f)(8.442m = (5分)用复合Simpson 公式. 小区间数5=n , 步长4)020(51=-⨯=h ]4.1)0.20.38.28.1(2)8.18.25.20.35.1(40.1[64)(520++++++++++=≈⎰S dx x f)(33.45)(313622m m ≈=(10分)八、(10分)设初值问题:⎩⎨⎧=≤≤-='0)0(10),1(10y x y x y ,(1) 写出用Euler 方法、取步长1.0=h 解上述初值问题数值解的公式; (2) 写出用改进Euler 方法、取步长1.0=h 解上述初值问题数值解的公式. 解: (1)取步长1.0=h 解上述初值问题数值解的Euler 公式为;9,,1,0),1(),(01==-+=+=+y n y x y y x hf y y n n n n n n n (5分)(2)取步长1.0=h 解上述初值问题数值解的改进Euler 公式为:)]1()1([21)1(01111=⎪⎩⎪⎨⎧-+-+=-+=++++y y x y x y y y x y y n n n n n n n n n n 9,,1,0 =n (10分)。

2011---2012学年第一学期期末考试试题评分标准及参考答案

2011---2012学年第一学期期末考试试题评分标准及参考答案
2011---2012 学年第一学期期末考试试题评分标准及参考答案
七年级数学
一、选择题(每小题 3 分,共 27 分)
题号
1
2
3
4
5
6
7
8
9
答案
B
C
D
C
B
B

D
D
A
二、填空题(每小题 3 分,共 18 分)
10、6.60 × 106
11
x

y
公里 / 时
12、40°43′ 12″
3
三、解答题 (共 55 分)
16、解:原式 =8+6-15
=14-15
………… 2 分
=-1
………… 5 分
13、> 14 、75° 15 、100x+10y+8
4
4
17、解:原式 = - 27- +27 ………… 4 分
3
3
=0
………… 5 分
1
3
2
2
18、解:原式 =﹙- 1+ ﹚÷ [ ×﹙- ﹚×﹙- ﹚ ]
3
4
3
3
………… 2 分
24、解:第一条边长: x cm
第二条边长:﹙ 2x+ 3﹚ cm
………… 1 分
第三条边长:﹙ 3x+ 3﹚ cm
………… 2 分
第四条边长: 48-﹙ 6x+ 6﹚ =﹙ 42- 6x﹚ cm
………… 5 分
当 x=5 时,第四条边长 42- 6x=42- 6×5=12cm ………… 6 分
25、解:设经营户这天批发西红柿 x 千克,则批发豆角( 1.2x + 1.6 ﹙ 40-x﹚ =60 1.2x + 64- 1.6x=60 1.2x - 1.6x= - 64+ 60 - 0.4x= - 4 x=10 所以,批发西红柿 10 千克,批发豆角 30 千克。 当天经营户卖完这些西红柿和豆角赚 10× 0.6 + 30× 0.9=6 + 27=33 元。

《数值分析》A卷期末考试试题及参考答案

《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。

浙江大学2011-2012数学分析1-试卷及答案baidu

浙江大学2011-2012数学分析1-试卷及答案baidu

浙江大学20 11 -20 12 学年 秋冬 学期《 数学分析(Ⅰ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___ 考试形式:闭卷,允许带___笔____入场考试日期: 2012 年 1 月 11 日,考试时间: 120 分钟. 考生姓名: 学号: 所属院系: _一、6分)0002()()00013214()().lim ()..0min{1}00251251322.lim 3.111x x x f x U x A x x x x x x x x f x A f x x x x A f x x x A εδδεδεεδε→→∀>∃><-<<<<+<∀>∃=><-<----=<-<=+++-<=设在内有定义,如果存在常数,对,,当时,不妨令,则:对,,,当,有;则称在处有极限,记作::因此二、 计算下列极限:(每题6分,共18分)1. ()21211cos 12cos 101lim cos lim 1(cos 1).x ux u u u x u u e x =--⋅-→∞→⎛⎫=+-= ⎪⎝⎭令2.222303330003322200limlim limarcsin [()]()662arctan 26lim 6lim 4.33x x x x x x x x x x x x xx x o x xo x x x x xx +++++→→→→→==⋅-++-+===⎰⎰⎰ 3. tan 0.x x n x e e x n αα→-设当时,与为等价无穷小量,求:常数、的值tan tan 3330000(1)tan 1lim lim lim lim 1313.3x x x x x n n n n x x x x e e e e x x x x x x x x x n ααααα-→→→→---==⋅====,因此,,三、 导数及应用:(每题7分,共21分) 1.21211(1)11111..242x y x x x y x y x π='=⋅=-+-'===+-则:故,在处的切线方程为2.342242444cos 42(1)2.(2).2cos 2cos cos dy dy dy t t d y t dt dt t dx dx dx t t dx t t t dt dt'======3.(2012)2(2012)12(2011)22(2010)2012201220122201120102(2012)0(2)()(2)()(2)()(1)(2)(1)2012(22)(1)20122011(2)2012(22)20122011.=20122x x x x x x xxxx y x x e C x x e C x x e x x e x e e x x e x ee y ---------='''=-+-+-=--+--+-⨯=---+⨯⨯因此,013=4050156.四、 计算下列积分:(每题7分,共28分) 1.ln(1)x x dx +⎰222222111ln(1)ln(1)ln(1)2221111ln(1)1221111ln(1)(1)ln(1).242x x x dx x dx x x dx x x x x dxx x x x x C +=+=+-+⎛⎫=+--+ ⎪+⎝⎭=+---++⎰⎰⎰⎰2.66333(2(2(3)63(27.2x x x u u π--+=+-==+==⎰⎰⎰⎰令3.22222tan 1422220002124220002(1).1(1)2=2sin 1(1)3132.4228(2)sin 2sin cos .3sin tan 2sin cos 2sin .8u t u uu x dx du u u u u u du tdtu u x u dx u udu u u u udu udu ππππππ=+∞===++⋅⋅=++=⋅⋅⋅====⋅==⎰⎰⎰⎰⎰⎰,则:,则:令:,则:则:4. 211()().xt f x e dt f x dx -=⎰⎰设,计算:()22111111001()()().22xxe ef x dx xf x xf x dx xedx ----'=-=-==⎰⎰⎰五、(1)(2)2.D D x =计算:的面积;绕直线旋转一周所得立体的体积 (9分)322221111222001(1)(21).211(2)21.23144(3)212(22(1).335444(2)(1).335l y x A D S V x x dx V x dy y dy ππππππππππ==⋅⋅-=⎫=⋅⋅--=--=⎪⎭=--=--=⎰⎰⎰⎰⎰切线的方程为,切点,的面积或:证明题:(每题6分,共18分)1.21121111311(1)()()0.().41(41)11111(2).1()().22222(3){}.2()().3{}{}.(4n n n n n n n n n n n n n x f x f x f x x x x x x x f x f x x x x x x f x f x x x x +-+--'==>-->=>>=>==<<=<=【方法一】:令,则:则:单调递增下面证明:显然;假设,则:下面证明:单调递减,假设,则:由此可得,单调递减且有下界,因此,数列收敛11121113111)lim .lim .41221(1){}.21113112110.2224122(41)11.{}.222(2){}.3n n n n n n n n n n n n n n n n n n x x x x x x x x n N x x x x x x x x x x x x x x x x →+∞→+∞+++-+-==⇒==-∀∈>--•=>>-=-=>-->=<<设,则:故,【方法二】:数列有下界:对,;假设,则:因此,即:数列有下界数列单调递减,假设,则:111131310.{}.4141(41)(41)(3)(1)(2){}{}.3111lim .lim .4122n n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x ----→+∞→+∞----=-=>-----==⇒==-因此,单调递减由、可得,数列单调递减有下界,因此,收敛令:,则:故,().()[)()f x I f x a g x +∞叙述函数在区间上一致连续的定义设在,上一致连续,[)lim[()()]0.()[).x a f x g x g x a →+∞+∞-=+∞在,上连续,且证明:在,上一致连续(1)00()()().li (2)()[)00()().300.m [()()]0()(300)x x x I x x f f x a x f x f x I f x g x f x g x x x f x f x G x G x x εδδεεδδεεδεε→+∞'''+∞'''''''''∀>∃>∈-<-<∀>∃>-<'''-<∀>∃->><'''=∀>->∃由于在,内一致连续,则对,,当时,由于对,,当时,则:对,对,,当、,且时,,当,则称在区间上一致连续,、()()()[1)()()()()()()()()()()()()()().()[1).()[1]()[).G x x g x g x g x f x f x f x f x g x g x f x f x f x f x g x g x G g x a G g x a δε'''∈++∞-<''''''''''''-=-+-+-'''''''''≤-+-+-<++∞++∞,,且时,因此,在,内一致连续而,在,上一致连续,因此,在,内一致连续2. 2240()[02](02)()2(2).x f x e f x dx f -=⎰设在,上连续,在,内可导,且 (02)()2().f f ξξξξ'∃∈=证明:,,使得()2222242(1)()()()()2().(2)(02)2()2(2)()(2).()(2).(3)()[2](2)(2)(02)()0.()2().x xF x e f x F x e f x xf x e f f e f e f F F F x Rolle F f f ηηηηηηηηξηξξξξ-----''==-∃∈=⇒==∃∈⊂''==令:,则:根据积分中值定理,,使得,即:又在,上连续,在,内可导,根据定理,,,使得即:友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

数值分析期末考试试卷

数值分析期末考试试卷

数值分析期末考试试卷一、单项选择题(每题3分,共30分)1. 在数值分析中,下列哪个方法用于求解线性方程组的近似解?A. 插值法B. 高斯消元法C. 傅里叶级数D. 泰勒级数2. 以下哪个算法用于数值积分?A. 牛顿迭代法B. 梯形法则C. 欧拉方法D. 辛普森法则3. 对于非线性方程的求解,牛顿法的收敛速度通常为:A. 线性收敛B. 二次收敛C. 线性收敛或二次收敛D. 指数收敛4. 在最小二乘法中,下列哪个选项描述了法方程?A. 矩阵方程 Ax = bB. 矩阵方程Ax = λxC. 矩阵方程 A^TAx = A^TyD. 矩阵方程 A^Tb = Ax5. 以下哪个数值方法是用于求解微分方程的?A. 欧拉方法B. 辛普森法则C. 高斯消元法D. 梯形法则6. 插值法中,拉格朗日插值多项式的主要缺点是:A. 计算复杂B. 计算量小C. 稳定性好D. 稳定性差7. 在数值分析中,条件数是用来衡量什么的?A. 算法的稳定性B. 算法的复杂度C. 算法的收敛性D. 算法的准确性8. 以下哪个方法不是用于求解线性方程组的迭代方法?A. 雅可比迭代法B. 高斯-塞德尔迭代法C. 牛顿迭代法D. 逐次超松弛法9. 在数值分析中,下列哪个方法用于求解特征值问题?A. 幂迭代法B. 高斯消元法C. 牛顿迭代法D. 梯形法则10. 对于线性方程组 Ax = b,若 A 是奇异矩阵,则该方程组:A. 有唯一解B. 有无穷多解C. 无解D. 无法确定二、填空题(每题4分,共20分)11. 在数值分析中,条件数的计算公式为 ________。

12. 高斯消元法中,主元选取的目的是为了避免 ________。

13. 牛顿法的迭代公式为 x_{n+1} = x_n - ________。

14. 辛普森法则用于数值积分时,其误差与 ________ 成正比。

15. 拉格朗日插值多项式中,插值点的数量为 n 时,多项式的阶数为________。

数值分析学期期末考试题与答案(A)

数值分析学期期末考试题与答案(A)

期末考试试卷(A 卷)2007学年第二学期考试科目: 数值分析考试时间:120分钟学号 姓名 年级专业、判断题(每小题 分,共分)100011.用计算机求z —100■时,应按照n 从小到大的顺序相加。

n 3n3 .用数值微分公式中求导数值时,步长越小计算就越精确。

()4 .采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。

()5 .用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有关,与常数项无关。

()二、填空题(每空 2分,共36分)1 .已知数a 的有效数为0.01 ,则它的绝对误差限为 ,相对误差限为 .10 -11 一0]2 .设 A= 0-2 1 ,x= -5,则| A 1 =, ||^|2 =Ax L =.-1 3 0J3 .已知 f (x) =2x 5 +4x 3—5x,则 f[—1,1,0] =, f[-3,-2,-1,1,2,3] =.13 34 .为使求积公式 f f (x)dx 定A f (———)+ A 2 f (0) + A 3 f (」一)的代数精度尽量局,应使t 3 3A =, A =, A =,此时公式具有 次的代数精度。

5 . n 阶方阵A 的谱半径P (A)与它的任意一种范数| A 的关系是.6 .用迭代法解线性方程组以=8时,使迭代公式 X(k41)=MX (k) + N (k=0,1,2,|||)产生的向量序列{X(k)}收敛的充分必要条件是 .7 .使用消元法解线性方程组 AX =8时,系数矩阵A 可以分解为下三角矩阵 L 和上三角矩2. 为了减少误差 ,应将表达式 J2001 - J1999改写为22001 ,1999进行计算。

4 -2阵U的乘积,即A = LU .若米用图斯消兀法解AX = B,其中A= 1 ,则一1 2 3 4 1 L = , U = ;若使用克劳特消元法解AX = B ,则u11 =;若使用平方根方法解AX = B,则111与u11的大小关系为 (选填:>, <,=,不一'定)。

长安大学2011-2012学年第一学期研究生《数值分析原理》试题(A)卷及答案

长安大学2011-2012学年第一学期研究生《数值分析原理》试题(A)卷及答案

解得: x1 x2
3 h ,——4 分 5
1 A1 A2 h3 。——4 分 3
2
五. (本题满分 12 分)给定方程组
x1 2 x2 2 x3 5 x1 x2 x3 1 2x 2x x 3 2 3 1
1) (本小题满分 6 分)用三角分解法解此方程组; 2) (本小题满分 6 分)写出解此方程组的雅可比迭代公式,说明收敛性;取初始 向量 x0 (0,0,0) ,当 xk 1 xk 10 时,求其解。
长安大学 2011-2012 学年第一学期研究生 《数值分析原理》试题(A)卷
说明:1.试题共 9 道大题、共 2 页。 2.考试时间两个小时,可带计算器。 3.所有答案都写在答题纸(试卷)上,否则无效。
一. (本题满分 8 分)给定方程 x x 2 0 , x [0,2] ,采用迭代公式
(0 , 0 ) 1/ 2 , (0 , 1 ) 1/ 3 , (0 , 2 ) 1/ 4 , (1 , 1 ) 1/ 4 , (1 , 2 ) 1/ 5 , (2 , 2 ) 1/ 6 , 1 1 1 (0 , f ) ln 2 , (1 , f ) 1 , (2 , f ) ln 2 ; 2 4 2 2
二. (本题满分 8 分)对于定积分 I

1 0
f ( x)dx ,当 M 2 1/8 及 M 4 1/ 32 ,用 11 点的
复化辛普森(Simpson)求积公式求 I 的截断误差为 RS [ f ] ,用 n 个节点的复化梯形 求 积 公 式 求 I 的 截 断 误 差 为 RT [ f ] , 要 使 RT [ f ] RS [ f ] , n 至 少 是 多 少 ? ( M 2 max f ( x) , M 4 max f 解: n1 10 , h1

中国石油大学《数值分析》2011年考试试题A卷及答案

中国石油大学《数值分析》2011年考试试题A卷及答案

f (4)(x)
1 2880
1 n
4
6
1 2
104
,
仅要 n 4 1 101 2.54 ,取 n 3 即对将[1,2] 作 6 等分,则有 240
(8 分)
2
1 ln xdx
1 [0 4(ln 7 ln 3 ln 11) 2(ln 4 ln 5) ln 2] 0.38628716327880 .
0.000040074
( 4 分)
七、(10 分)(1)牛顿迭代格式
x(k 1)
x(k)
f f
(x(k ) ) '(x(k) )
x(k)
x(k) 1 (2
(x(k) )2 )(x(k) )1
1
(1 (2
)(
x( )(
)k ) 2 x(k ) )1
(2)
x(k 1)
lim
k
x(k)
1 1
fgdx
,取( x) ax bx3 , f ( x) sin x ,则法方程为
(0 ,0 )
(1
,
0
)
(0 ,1) (1 , 1 )
a b
( (
f f
,0 ,1
) )
( 4 分)
其中 0,0
1
x xdx
1
2, 3
0 ,1
(1 )(x(k) )2
lim
k
1
(2
)(x(k ) )1
c0
2
c 1
(5 分) (5 分)
1
x(k) 2
x(k) 3
1
x(k) 1
x(k) 3
/2
x3( k
1)

数值分析考试及答案

数值分析考试及答案

数值分析考试及答案作者:日期:班级• • •• • •• • •• • • o • • •学号• • •• • •姓名密• • •• • •o• • •• • •东北大学研究生院考试试卷2011 —2012 学年第一学期课程名称:数值分析(共3页)一、解答下列各题:(每题5分,共30分)1.设近似值x具有5位有效数字,则x的相对误差限为多少? 解:记x* 0.吋2…10m,则x的相对误差为:0.5 10m 50.a1a2... 10m0.5 10 50.10.5 10即,相对误差限为:0.5 102.问a, b满足什么条件时,矩阵Ao • • •• • •• • •线总分一——二三四五4 2 02 5a有分解式A GG T,并求a b 2时0 b 54 2 0 2 1 0解:由于A 2 5 a 1 2 a/2 (A对称正定时)0 b 5 0 b/2 5 ab/4所以,当2 .5 a b 2 5时有分解式 A GG T,a b 2 时有:4 2 0 2 0 0 2 1 0A 2 5 2 1 2 0 0 2 10 2 5 0 1 2 0 0 23.解线性方程组X1 2x2 2 的Jacobi 迭代法是否收敛,为什么?2x19x2 3的分解式(其中G是对角线元素大于零的下三角形矩阵)解:Jacobi迭代矩阵为:B2/92,所以,(B) 2/3 1所以,Jacobi迭代法是否收敛.4.对方程f (x) (x3 a)20建立敛?若收敛,收敛阶是多少?解:Newton迭代格式为:X k 1 X kf(xk)f (X k)由于迭代函数为:(x)?X ka6x2所以,此迭代格式收敛,收敛阶是Newton迭代格式,并说明此迭代格式是否收3X k a2~ ,x k6X k,方程根为:1.56k 6:k2, k 012-3 a,所以,5.设f (x) 4x3 3x 5,求差商f[0,1], f[1,2,3,4]和f [1,2,3,4,5]。

数值分析试题及答案

数值分析试题及答案

数值分析考试试题纸(A卷)课程名称数值分析专业年纪•计算题(本题满分100分,共5小题,每小题20分)•已知函数表•求f(x)的三次Lagrange型插值多项式及其插值余项(要求化成最简形式).•求f(x)的Newton插值多项式(要求化成最简形式).2. 已知A=,求,A的LU分解.3. 叙述m阶代数精度的定义,写出求的Simpson公式,并验证Simpson公式的代数精度为3阶.4. 设矩阵A=,求当为何值时,解线性方程组Ax=b的Gauss-Seidel迭代法收敛.5. 叙述最小二乘法的基本原理,并举例说明其应用.参考答案•计算题•解:(1)(2) 均差表如下:2、解:由所以3. 解:定义:如果某个求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次的多项式就不准确成立,则称该求积公式具有m次代数精度。

的Simpson公式:验证代数精度:当时,左边积分=,右边左边当时,左边积分右边左边当时,左边积分右边左边当时,左边积分右边左边当时,左边积分右边左边故Simpson公式对次数不超过三次的多项式均能准确成立,而对四次多项式不成立,所以Simpson公式具有三次代数精度。

4. 解; Ax=b其Gauss-Seidel迭代格式为迭代矩阵该迭代发收敛的充要条件是矩阵B的谱半径, 特征根当时,解线性方程组Ax=b的Gauss-Seidel迭代法收敛。

5. 答:在函数的最佳平方逼近中,如果只在一组离散点集上给定,这就是科学实验中经常见到的实验数据的曲线拟合,这里,要求一个函数与所给数据拟合,若记,是上线性无关函数族,在中找一函数,使误差平方和这里这就是一般的最小二乘逼近,用几何语言说,就成为曲线拟合的最小二乘法。

举例说明:测得铜导线在温度(℃)时的电阻如表6-1,求电阻R与温度 T的近i(℃)故取n=1,拟合函数为列表如下6解方程组得故得R与T的拟合直线为利用上述关系式,可以预测不同温度时铜导线的电阻值。

2011-2012学年度第一学期期末考试七年级数学试题

2011-2012学年度第一学期期末考试七年级数学试题

2011-2012学年度七年级上学期期末数学试卷一、选择题1.(3分)的倒数是()A.B.C.﹣1D.2.(3分)用科学记数法表示1387000000,应记为()A.13.87×108B.1.387×108C.1.387×109D.1387×106 3.(3分)单项式的系数与次数分别为()A.,3B.﹣5,3C.,2D.,34.(3分)下列计算正确的是()A.﹣3a﹣3a=0B.x4﹣x3=x C.x2+x2=x4D.6x3﹣2x3=4x3 5.(3分)钟表上的时间为9时30分,则时针与分针的夹角度数为()A.105°B.90°C.120°D.150°6.(3分)我们从不同的方向观察同一物体,可以看到不同的平面图形,如图,从图的上面看这个几何体的平面图形是()A.B.C.D.7.(3分)如图,a、b、c为数轴上的三点表示的有理数,在a+b,c﹣b,abc中,负数的个数有()A.3B.2C.1D.08.(3分)下列图形中,不是正方体展开图形的是()No.:000000000000002609.(3分)如图所示图案是由边长为单位长度的小正方形按一定规律排列而成,依此规律,第n个图中小正方形的个数为2011个,则n的值为()A.600B.700C.670D.67110.(3分)甲厂有某种原料198吨,每天用去12吨,乙厂有同样的原料121吨,每天运进7吨,问多少天后甲厂原料是乙厂原料的,设x天后甲厂原料是乙厂原料的,则下列正确的方程是()A.B .C.D.11.(3分)如图,线段AB=9cm,C、D、E分别为线段AB(端点A,B除外)上顺次的三个不同的动点,图中所有线段的和等于40cm,则下列结论一定成立的是()A.C D=1cm B.C E=2cm C.C E=3cm D.D E=2cm12.(3分)如图平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.3B.2C.1D.4二、填空题(共4个小题,每小题3分,共12分)13.(3分)计算﹣24的值=_________.14.(3分)一项工程甲单独做要15小时完成,乙单独做要6小时完成,现在先由甲单独做8小时,然后乙加入合做x小时完成整个工程,则所列方程为_________.,则这个锐角的度数为_________.16.(3分)浓度分别为m、n的甲、乙两种糖水,(0<m<1,0<n<1,m≠n),甲种糖水重20千克,乙种糖水重30千克,现从这两种糖水中各倒出x千克,再将每种糖水所倒出的x千克与另一种糖水余下的部分混合,若混合后的两种糖水的浓度相同,则x为_________千克.(糖水浓度=糖的重量÷糖水的重量)三、解答题(共9小题,共72分)17.(6分)计算:(1)(﹣5)÷6﹣(﹣2)(2).18.(6分)先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.19.(6分)解方程:.20.(7分)画图,说理题如图,已知四个点A、B、C、D;(1)画射线AD;(2)连接BC;(3)画∠ACD;(4)画出一点P,使P到点A、B、C、D的距离之和最小;并说明理由.21.(7分)一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机本身的飞行速度.22.(8分)已知m、n满足|m﹣12|+(n﹣m+10)2=0.(1)求m、n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好是AP=nPB,点Q为BP的中点,求线段AQ的长.23.(10分)一种商品售价2.2元/件,如果买100件以上,超过100件部分的售价为2元/件.(1)若买100件花_________元,买140件花_________元;(2)若小明买了这种商品花了n元,解决下列问题;①小明买了这种商品多少件;(用n的式子表示)②如果小明买这种商品的件数恰好是0.48n件,求n的值.24.(10分)平价商场经销甲、乙两种商品,甲种商品每件进价50元,售价80元;乙种商品每件售价60元,利润率为50%.(1)每件甲种商品利润率为_________,乙种商品每件进价为_________元;(2)该商场准备用2580元钱购进甲、乙两种商品,为使销售后的利润最大,则最大利润为_________元;(3)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2100元,求购进甲种商品多少件?(4)在“元旦”期间,该商场对甲、乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施不超过380元不优惠超过380元,但不超过500元售价打九折超过500元售价打八折按上述优惠条件,若小聪第一天只购买甲种商品,实际付款360元,第二天只购买乙种商品实际付款432元,求小聪这两天在该商场购买甲、乙两种商品一共多少件?25.(12分)已知∠AOB=160°,∠COE=80°,OF平分∠AOE.(1)如图1,若∠COF=14°,则∠BOE=_________;若∠COF=n°,则∠BOE=_________,∠BOE 与∠COF的数量关系为_________;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由;(3)在(2)的条件下,如图3,在∠BOE的内部是否存在一条射线OD,使得∠BOD为直角,且∠DOF=3∠DOE?若存在,请求出∠COF的度数;若不存在,请说明理由.2011-2012学年七年级期末数学试卷参考答案与试题解析一、选择题1.(3分)的倒数是()A.B.C.﹣1D.考点:倒数。

数值分析2012考试卷

数值分析2012考试卷

研究生考试命题纸沈阳工业大学 2012 / 2013 学年 第 一 学期课程名称:数值分析 课程编号:000304 任课教师:陈欣 曲绍波 考试形式:闭 卷一、填空(每题3分,共15分)1. 二分法是求解 方程f (x )=0的 根一种方法,其前提是f (x )在有根区间[a ,b ]内单调且 。

2. 设矩阵⎪⎪⎭⎫ ⎝⎛-=0112A ,则1A = 、=2A 、)(A ρ= 。

3. 对于正数a ,使用牛顿法于方程02=-a x 所得到的迭代格式为 ,其收敛阶为 、求110(取x 0=10)的第一个近似值为 。

4. 幂法用来计算实矩阵A 的 特征值及对应的 ,在计算过程中进行“归一化”处理的原因是为了 。

5. 高斯求积公式)33()33()(11f f dx x f +-≈⎰-的代数精度为 ,当区间不是[-1,1],而是一般区间[a , b ]时,需要做变换 ,使用该公式计算≈⎰311dx x。

二、解答下列各题(每题5分,共10分)1. 请写出经过点A (0,1),B (2,3),C (4,5)的拉格朗日插值多项式形式。

说明插值基函数的性质以及拉格朗日插值法的优缺点。

2. 设n 阶可逆矩阵A 已经分解成A =LU ,其中L 下三角矩阵,U 单位上三角矩阵,推导出解线性方程组AX =b 的计算公式。

三、(10分)用不选主元的直接三角分解法解下面线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=-+-=-+-=-342424344343232121x x x x x x x x x x 四、(20分,每题10分)对于线性方程组⎪⎩⎪⎨⎧=++=++=-+9223122321321321x x x x x x x x x 1. 分别写出使用GS 迭代法,SOR 迭代法(ω=1.3)求解的迭代格式,并对初始向量(1,0,0)T ,分别计算第一步近似解向量;2. 分别讨论求解此方程的J —方法和GS —方法的收敛性。

五、(10分)给出函数表如下,用牛顿向前插值公式求f (2.03)的近似值。

数值分析(2011年12月)A卷

数值分析(2011年12月)A卷

湖南大学研究生课程考试命题专用纸考试科目: 数值分析 (A 卷) 专业年级: 2011级各专业 考试形式: 闭 卷(可用计算器) 考试时间:120分钟……………………………………………………………………………………………………………………… 注:答题(包括填空题、选择题)必须答在专用答卷纸上,否则无效。

一、填空题(每空3分,共30分)(1)利用4位浮点数计算,31.97+(2.457+0135。

2)=( )。

(2) 设1||<<x ,为了使计算更准确,应将计算公式xx y 21111---=等价转化为( )。

(3)用二分法求1)(3-+=x x x f 在区间[0,1]内的唯一根,迭代二步后根所在的区间为( )。

(4)求1)(23--=x x x f 在区间(1,2)内的根,用迭代格式111-=+k k x x ,该迭代格式是收敛还是发散? ( )。

(5)用高斯消元法求解n 阶线性方程组,乘除的运算量为( )。

(6)T x )0,1,2,8(-=,则向量x 的1-范数2||||x =( )。

(7)设⎪⎪⎪⎭⎫ ⎝⎛----=8100212322A ,则矩阵A 的无穷范数1||||A =( )。

(8)设x 为n 维列向量,G 为n 阶矩阵,则迭代格式f Gx xk k +=+)()1(收敛的充分必要条件为( )。

(9)已知2)1(1)(x x f +=在 1.2 1.1, ,0.1 三点的函数值分别为0.2066 0.2268, ,25.0,利用三点数值微分公式近似计算f(x) 在1.1处的导数值)1.1('f ≈( )。

(10) 设5228)(257+++=x x x x f ,则差商=]2,,,2,2[821 f ( )。

二、(10分) 当2,1,0,1-=x时,函数值分别为17,4,3,2)(=x f 求f(x)的三次插值多项式。

三、((10分) 求函数x x f ln )(=在区间[1, 3]的最佳平方逼近一次多项式。

研究生数值分析期末考试试卷参考答案

研究生数值分析期末考试试卷参考答案

研究生数值分析期末考试试卷参考答案太原科技大学硕士研究生2012/2013学年第1学期《数值分析》课程试卷参考答案一、填空题(每小题3分,共30分)1、x x ++11;2、2;3、20;4、6;5、kk k k k x x x x x cos 11sin 1----=+ ( ,1,0=k ); 6、12121)(2++=x x x f ;7、311+=+k k x x ( ,1,0=k );8、12-n ;9、2; 10、+++++++--100052552452552052552525524;二、(本题满分10分)解:Gauss-Seidel 迭代方法的分量形式为+--=+--=++-=++++++3221522)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x -----5分取初始向量T x )0,0,0()0(=时,则第一次迭代可得===315)1(3)1(2)1(1x x x ,--------------7分答案有错误第二次迭代可得=-==7119)2(3)2(2)2(1x x x ,-----------9分所以T x )7,11,9()2(-=.---------------10分三、(本题满分10分)解:构造正交多项式:取)()()()(,)(,1)(01112010x x x x x x x ?β?α?α??--=-==,1)()(402040200=∑∑===i i i i i x x x ??α,1)()(402140211=∑∑===i i i i i x x x ??α,2)()(402040211=∑∑===i i i i x x ??β;所以点集{}1,0,1,2,3-上的正交多项式为12)(,1)(,1)(2210--=-==x x x x x x .-------------------------5分则矩阵???????? ?-----=221111*********A , ??=14000100005A A T ,????? ??=3915y A T ;法方程=????? ??????? ??391514000100005210c c c ----------------8分解得===1431093210c c c ;--------9分所以要求的二次多项式为35667033143)12(143)1(109322++=--+-+=x x x x x y .-----------10分四、(本题满分10分)解:取基函数210)(,1)(x x x ==??,则1),(1000=?=dx ??,31),(10201=?=dx x ??, 51),(10411=?=dx x ?? ππ?2sin ),(100=?=xdx f , 3102141sin ),(πππ?-=?=xdx x f----------------------------------6分法方程-=???? ???????? ??34125131311πππb a -----------------8分解得-=+=33454151543ππππb a .---------------9分所以最佳平方逼近多项式233)45415(1543)(x x ππππ?-++=.---------10分五、(本题满分10分)解:在区间[]1,+n n x x 上对微分方程),(y x f dxdy =进行积分得 ??=++11),(n n n n x x x x dx y x f dx dxdy 即=-+n n y y 1?+1),(n n xx dx y x f -------2分对上式等号右边的积分采用梯形公式进行求解,即+1),(n n x x dx y x f []n n f f h +=+12-------5分所以原微分方程初值问题的数值求解公式为11()2n n n n h y y f f ++=++.-------6分上述数值求解公式的截断误差为 ))](,())(,([2)()(1111n n n n n n n x y x f x y x f h x y x y R +--=++++---8分而又由泰勒公式得)()()()(2'1h O x hy x y x y n n n ++=+;)())(,())(,(11h O x y x f x y x f n n n n +=++;所以))](,()())(,([2)()()()(2'1n n n n n n n n x y x f h O x y x f h x y h O x hy x y R ++--++=+ )()())(,()(22'h O h O x y x hf x hy n n n =+-= 故该方法是一阶的方法.-----------------10分六、(本题满分20分)解:(1)构造的差商表如下:x )(x f 一阶差商二阶差商三阶差商 1 22 4 23 5 1 21- 4 8 3 121 -----------------------------15分(2)取2、3、4作为插值点,----------------------------------------------------17分构造的二次牛顿插值多项式为84)3)(2()2(4)(22+-=--+-+=x x x x x x P -----19分所以25.6)5.3()5.3(2=≈P f .------------------------------20分七、(本题满分10分)解:由泰勒公式可得)2)(()2()('b a x f b a f x f +-++=ξ,),(b a ∈ξ. 把上式代入积分公式?b a dx x f )(可得dx b a x f b a f dx x f b a b a+-++=?)2)(()2()('ξ ?+-++-=b a dx b a x f b a f a b )2)(()2()('ξ 故求积公式的截断误差表达式为?+-b a dx b a x f )2)(('ξ,),(b a ∈ξ.-----------5分当1)(=x f 时,求积公式左边=右边=a b -.当x x f =)(时,求积公式左边=右边=222a b -. 当2)(x x f =时,求积公式左边=333a b -,右边=()()92a b a b +-,左边≠右边. -----8分所以求积公式具有一次代数精度.-------------------------- -----10分。

数值分析(2011)试题A卷 参考答案

数值分析(2011)试题A卷  参考答案

装订线年 级 学 号 姓 名 专 业一、填空题(本题40分, 每空4分)1.设),,1,0()(n j x l j =为节点n x x x ,,,10 的n 次基函数,则=)(i j x l 1,0,1,,0i j i j n i j=⎧=⎨≠⎩ 。

2.已知函数1)(2++=x x x f ,则三阶差商]4,3,2,1[f = 0 。

3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0===C C C ,则=)3(3C 1/8 。

4.用迭代法解线性方程组Ax=b 时,迭代格式 ,2,1,0,)()1(=+=+k f Bx x k k 收敛的充分必要条件是 ()1B ρ< 。

5.设矩阵⎥⎦⎤⎢⎣⎡=1221A ,则A 的条件数2)(A Cond = 3 。

6.正方形的边长约为100cm ,则正方形的边长误差限不超过 0.005 cm才能使其面积误差不超过12cm 。

(结果保留小数)7.要使求积公式)()0(41)(111x f A f dx x f +≈⎰具有2次代数精确度,则 =1x23 , =1A 34。

8. 用杜利特尔(Doolittle )分解法分解LUA =,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1359 45- 279 126 0 945- 0 45 1827- 9 189A 其中,则=L 10002100121023113⎛⎫⎪ ⎪ ⎪-⎪ ⎪- ⎪⎝⎭=U 918927091890281540009-⎛⎫⎪-⎪ ⎪-⎪⎝⎭。

二、计算题(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。

2011级数值分析 试题 A 卷 2011 ~ 2012学年,第 1 学期一 二 三 四 五 六 七 八 九 十 总分年 级2011级研究生 份 数 拟题人 王吉波 审核人装 订线年级 学 号 姓 名 专 业三、计算题(15分)试导出计算)0(1>a a的Newton迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。

2012数值分析a考题

2012数值分析a考题
共8页第6页
八、(9分)设 是互不相同的插值节点, 是拉格朗日插值基函数。证明
共8页第7页
九、(5分)设有线性方程组 ,其中 是 阶对的迭代序列收敛于方程组的唯一解.
共8页第8页
五、(8分)求函数 在区间 上的最优平方逼近一次式。
八、(8分)设 是实对称正定矩阵,
其中
三、(8分)对线性代数方程组 :
(1)请写出雅可比(Jacobi)迭代法的迭代格式,并证明迭代格式收敛还是发散;
(2)请写出高斯-赛德尔(Gauss-Seidel)迭代法的迭代格式,并证明迭代格式收敛还是发散.
共8页第2页
四、(8分)已知函数 的函数值、导数值如下:
0
1
(x)
1
0
(x)
0
1
(x)
2
求满足条件的Hermite插值多项式及截断误差表示式.
共8页第3页
五、(8分)已知一组实验数据
X(i)
-3
-2
-1
0
1
2
3
Y(i)
4
2
3
0
-1
-2
-5
求最小二乘拟合二次多项式。
共7页第4页
六、(8分)求函数 在区间 上的最优一致逼近一次式。
共8页第5页
七、(10分)构造在区间[-1,1]上关于权函数 的最高次项系数为1的正交多项式;确定求积公式 中的系数与节点,使其具有最高代数精度;用广义皮亚诺定理确定其误差项。
6.给定 ,用共轭梯度法求解线性方程组
,可得 ,

7.若f(0.0)=1.0, f(1.0)=2.0,用梯形公式计算积分 求得的近似值为;又f(0.5)=3.0,用Simpson求积公式求得的近似值为。用三点数值微分公式计算 求得的近似值为。

数值分析A卷(2011年秋)

数值分析A卷(2011年秋)

试题__2011___年~__2012___年第一学期课程名称:数值分析专业年级: 2011级(研究生)考生学号: 考生姓名:试卷类型: A卷√ B卷□ 考试方式: 开卷√ 闭卷□………………………………………………………………………………………………………注意:本试卷共八道大题,共100分。

一、单选题(4*5=20分)1、设矩阵A=, 则Cond(A)为( )。

(A)、1; (B)、2; (C)、3; (D)、。

2、已知求方程在区间上的根的不动点迭代为,对于其产生的数列,下列说法正确的是()。

(A)、若数列收敛,则迭代函数唯一;(B)、若对于,,则收敛;(C)、若对于,,则收敛;(D)、若对于,,则收敛。

3、对矩阵A采用幂法迭代,如果该方法收敛,则其收敛速度取决于( )。

(A)、模最大特征值和模次最大特征值的比值;(B)、模最大特征值和模次最大特征值的模的比值;(C)、模次最大特征值和模最大特征值的比值;(D)、模次最大特征值和模最大特征值的模的比值。

4、设是个互异节点的拉格朗日插值基函数,则下列选项中正确的是( )。

(A)、; (B)、;(C)、; (D)、。

5、若求积公式为高斯型求积公式,下列说法正确的是()。

(A)、不能确定该求积公式的稳定性; (B)、;(C)、该求积公式的代数精度为11; (D)、它不是插值型求积公式。

二、填空题(4*5=20分)1、求解常微分方程初值问题的改进的欧拉法是阶方法。

2、解非线性方程的单根的牛顿法格式为 ,其收敛阶为 。

3、设矩阵,,则 , 。

4、设,则= 。

5、若用高斯-赛德尔方法解方程组,其中为实数,则该方法收敛的充要条件是应满足。

三、(10分)设在上有5阶连续导数,且,(1)试作一个次数不高于4次的多项式,满足条件(2)写出的表达式。

四、(10分)求在上的二次最佳平方逼近,权为1。

五、(10分)用的高斯-勒让德公式计算积分六、(10分)已知,请用Doolittle三角分解法求解线性方程组。

数值分析试题(A)参考答案2012.6

数值分析试题(A)参考答案2012.6

湖南大学研究生课程考试命题专用纸考试科目: 数值分析 (A 卷)参考答案 专业年级: 11级各专业 考试形式: 闭 卷(可用计算器) 考试时间:120分钟……………………………………………………………………………………………………………………… 注:答题(包括填空题、选择题)必须答在专用答卷纸上,否则无效。

一、简答题(20分)1、避免误差危害的主要原则有哪些?答:(1)两个同号相近的数相减(或异号相近的数相减),会丧失有效数字,扩大相对误差,应该尽量避免。

(2分)(2)很小的数做分母(或乘法中的大因子)会严重扩大误差,应该尽量避免。

(3分)(3)几个数相加减时,为了减少误差,应该按照绝对值由大到小的顺序进行。

(4分)(4)采用稳定的算法。

(5分)2.求解线性方程组的高斯消元法为什么要选主元?哪些特殊的线性方程组不用选主元?答:(1) 若出现小主元,将会严重扩大误差,使计算失真,所以高斯消元法选主元。

(3分)(2)当系数矩阵是对称正定矩阵时,高斯消元法不用选主元。

(4分)(3)当系数矩阵是严格对角占优或不可约对角占优时,高斯消元法不用选主元。

(5分)3.求解非线性方程的Newton 迭代法的收敛性如何?答:(1) Newton 迭代法是局部收敛的,即当初值充分靠近根时,迭代是收敛的。

(2分)(2)用Newton 迭代法求方程0)(=x f 的单根时,其收敛至少是平方收敛,若求重根,则只有线性收敛。

(5分)4.Newton-Cotes 积分公式的稳定性怎么样?答:(1)Newton-Cotes 积分公式当7≤n 时,Cotes 系数都为小于1的正数,因此是稳定的。

(3分)(2)当8>n 时,出现了绝对值大于1的Cotes 系数, 因此是不稳定。

(5分)二、(10分) 证明函数)(x f 关于点k x x x ,...,,10的k 阶差商],...,,[10k x x x f 可以写成对应函数值k y y y ,...,,10的线性组合,即∑==k j jjk x w y x x x f 010)('],...,,[ 其中节点))...()(()(10k x x x x x x x w ---=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011/2012学年第一学期末考试试题(A 卷)
数值分析
使用班级: 2011级研
一、填空题(每空2分,共30
分) 1. 1.414
≈,用公式
)
6
1、99-

(3
1
3
+)
6
1
的近似值分别有 、 、 、 位有效数字;
2. 设有矩阵()
332,346-⎛⎫
== ⎪- ⎪
⎝⎭A x ,则1=A ,∞=A ;
3. 对线性方程组{
121235
34
x x x x +=+=,若迭代公式
()()()()(1)()()112(1)()()
2
2115/3
,0,1,2,14/3k k k k k k x x x k x x x ω
ωωω++⎧=-+-⎪=⎨=-+-⎪⎩
对任意的初始向量()T
(0)
(0)(0)
12,x x =x
都收敛,则松弛因子ω的取值范围为 ;
4. 设(0)0,(1)1,(2)1,f f f ===则[0,1]f = ,[0,1,2]f = ;()f x 的二次
Newton 插值多项式为 ;又若(1)1f '=,则(
)f x 的三次Hermite 插值多项式为 ;
5. 用公式()358509
99G f f f ⎛=
++ ⎝近似计算11()d f x x -⎰具有 次代数精度; 6. 非线性方程解方程e x
x -=的一个具有3位有效数字的近似根为 ;
7. 求解初值问题00()(,),()y t f t y y t y '==的改进Euler 公式为
,它是 阶方法。

二、解答下列各题(每小题12分,共24分)
1.用LU分解法求解线性方程组
1
2
3
4
33319 9109432 64921 310211
x
x
x
x
⎛⎫
⎛⎫⎛⎫

⎪ ⎪

⎪ ⎪
=

⎪ ⎪
--

⎪ ⎪⎝⎭⎝⎭
⎝⎭

2.用Romberg方法计算积分
2
1
ln d
I x x x
=⎰的近似值。

要求计算到第一个Romberg值(3)0T,
说明共计算了多少个求积节点处的函数值,并将计算结果与准确值
3
2ln2
4
I=-进行比
较,说明计算的精度。

分,共40分)
1.用列主元Gauss消去法解线性方程组
123
123
123
2320
28 249
x x x
x x x
x x x
-+=-


-++=-

⎪++=


2.在某低温过程中,变量y 依赖于温度o
C x 的试验数据如下表
试用最小二乘法确定经验公式()y g x ax bx ≈=+,并估计变量y 在 2.5x =处的值。

2.写出用Newton 迭代法求解非线性方程组2222
20
2210
x y x xy y ⎧+-=⎨-+-=⎩的步骤,并取初值00(,)(1.01,0.99)x y =计算近似解11(,)x y (只进行一次迭代)。

.3.设A=31⎛⎫
⎪⎝⎭
,写出用幂法求A 的按模最大的特征值及对应的一个特征向量的计算过程,并取初始特征向量(0)0.8161.000x ⎛⎫
= ⎪⎝⎭
进行1次迭代计算。

试确定求解初值问题
()
()0
00
,
y f t y t t T
y t y
'=≤≤

⎨=

的三步显示Adams公式
()
3122110
n n n n n
y y h f f f
βββ
++++
=+++
中的系数,使它的阶尽可能的高,并求它的局部截断误差和阶数。

相关文档
最新文档