哈工大机械设计大作业轴系部件设计完美版
哈工大机械设计大《作业》轴系部件设计完美版
Harbin Institute of Technology课程设计说明书课程名称:机械设计设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:郑德志设计时间:2014年11月哈尔滨工业大学目录一、选择轴的材料 (1)二、初算轴径 (1)三、轴承部件结构设计 (2)3.1轴向固定方式 (2)3.2选择滚动轴承类型 (2)3.3键连接设计 (2)3.4阶梯轴各部分直径确定 (3)3.5阶梯轴各部段长度及跨距的确定 (4)四、轴的受力分析 (5)4.1画轴的受力简图 (5)4.2计算支反力 (5)4.3画弯矩图 (6)4.4画转矩图 (6)五、校核轴的弯扭合成强度 (8)六、轴的安全系数校核计算 (9)七、键的强度校核 (10)八、校核轴承寿命 (11)九、轴上其他零件设计 (12)十、轴承座结构设计 (12)十一、轴承端盖(透盖) (13)参考文献 (13)一、 选择轴的材料通过已知条件和查阅相关的设计手册得知,该传动机所传递的功率属于中小型功率。
因此轴所承受的扭矩不大。
故选45号钢,并进行调质处理。
二、 初算轴径对于转轴,按扭转强度初算直径:d ≥√9.55×106P n10.2[τ]=C √P n13式中 d ——轴的直径;P ——轴传递的功率,kW ;n1——轴的转速,r/min;[τ]——许用扭转剪应力,MPa; C ——由许用扭转剪应力确定的系数;由大作业四知P =3.802kw所以:d ≥36.99mm本方案中,轴颈上有一个键槽,应将轴径增大5%,即d ≥36.99×(1+5%)=38.84mm按照GB2822-2005的a R 20系列圆整,取d =40 mm 。
根据GB/T1096—1990,键的公称尺寸b ×h =12×8,轮毂上键槽的尺寸 b=12mm ,1t =3.3mm 3、设计轴的结构3.1轴承机构及轴向固定方式因传递功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件的固定方式采用两端固定方式。
哈工大机械设计大作业方案
Harbin Institute of Technology机械设计大作业说明书设计题目:轴系部件设计院系:材料科学与工程学院班级:电子封装设计者:姚明山学号:1132920112指导教师:张峰设计时间:2015.12.19目录目录 (1)任务书 (1)1选择轴的材料 (2)2初算轴径 (2)3 结构设计 (2)4轴的受力分析 (5)5校核轴的强度 (7)6校核键连接的强度 (7)7校核轴承的寿命 (8)参考文献 (9)任务书试设计齿轮减速器的输出部件。
已知输出轴功率P=2.7kW,转速n=80r/min,大齿轮齿数z2=81,齿轮模数m=3mm,齿宽B=80mm,小齿轮齿数z1=17,中心距a=150mm,半联轴器轮毂宽L=70mm,载荷平稳,工作环境多尘,三班工作制,使用3年,大批量生产。
12设计要求1. 轴系部件装配图一张(样图见图7.1和图7.2)2. 设计说明书一份,包括输出轴、输出轴上的轴承及键的校核计算1选择轴的材料因传递功率不大,并对重量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。
MPa 650=B δ,MPa 360=s δ。
2初算轴径对于转轴,按扭转强度初算轴径,查表11.4得C=106~118;考虑轴端弯矩比转矩小,故取C=106,则mm n P C d 26.34807.210633min =⨯==,考虑键槽的影响, 5.29mm 31.0334.26min =⨯=d 。
3 结构设计(1)轴承部件的结构形式为了方便轴承部件的装拆,减速器的机体采用剖分式机构。
因传递的功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件可采用两端固定方式。
(2)联轴器及轴段1轴段1的设计与联轴器的设计同时进行。
考虑成本因素,选用凸缘联轴器。
查表取5.1=A K ,则计算传递转矩m N T K T A ⋅=⨯⨯⨯==483.5807.21055.95.16,查《机械设计课程设计》p159,取3GY5弹性柱销联轴器,公称转矩为m 500N ⋅,许用转速为8000r/min,轴孔直径范围30mm~42mm ,考虑 5.29mm 3min =d ,取d1=38mm 。
哈工大机械设计课程设计-轴系部件设计说明书
取L=48 mm。
2.轴的结构设计
本设计方案是有8个轴段的阶梯轴,轴的径向尺寸(直径)确定,以外伸轴径 为
基础,考虑轴上零件的受力情况、轴上零件的装拆与定位固定、与标准件孔的配合、轴的表面结构及加工精度等要求,逐一确定其余各轴段的直径;而轴的轴向尺寸(长度)确定,则考虑轴上零件的位置、配合长度、支承结构情况、动静件间的距离要求等因素,通常从与传动件的轴段开始,向两边展开。
轴段②和轴段⑦直径最终由密封圈确定。由参考文献[2]表14.4,选用毡圈油封
FZ/T 92010-1991中的轴径为48mm的,则轴段②和轴段⑦直径 。
(3)轴承及轴段③和轴段⑥
考虑轴系部件几乎呈对称布置,且没有轴向力,轴承类型选择深沟球轴承。轴段③
和轴段⑥上安装轴承,其直径应既便于轴承安装,又应符合轴承内径系列。
初选轴承型号6211,由参考文献[2]表12.1,内径d=55mm,外径D=100mm,宽度B=19mm,定位轴肩直径 。
通常同一轴上两轴承取相同型号,故轴段③和轴段⑥直径为 。
(4)齿轮及轴段④
轴段④安装齿轮,为便于齿轮的拆装,且与齿轮轮毂配合,取 。齿轮左端用套筒固定,为使套筒端面顶在齿轮左端面上,即仅靠,轴段④的长度 应比齿轮轮毂长略短,由于齿宽 ,取 。
为补偿机体的铸造误差,轴承应深入轴承座孔内适当距离,以保证轴承在任何时候都能坐落在轴承座孔上。由参考文献[1]表10.3,取轴承上靠近机体内壁的端面与机体内壁间的距离Δ=10mm。
采用凸缘式轴承盖,由6211轴承参数及参考文献[2]表12.6,取凸缘厚度e=12mm。
哈工大机械设计大作业V带传动设计说明书完美版
机械设计作业任务书题目:液体搅拌机中的V带传动结构简图见下图:方案P (KW) n m(r/mi n) n w(r / min) i1 轴承座中心高H( mm)最短工作年限L工作环境5.2.3 4 720 80 2.5 200 3年3班室内潮湿确定设计功率F d设计功率是根据需要传递的名义功率、载荷性质、原动机类型和每天连续工作的时间长短等因素共同确定的,表达式如下:Pd = K A U P式中P ――需要传递的名义功率K A――工作情况系数,按表2工作情况系数K A选取K A=1.2;选择带型所以P d =K A L P =1.2x4 =4.8kW根据F d、n1,查看图5.71可选取B型带。
确定带轮的基准直径d d 1和d d 2d dmin知B型带d dmin =125mm,在优选直径系列选取小带轮基准直径: d dj =140mm ;大带轮基准直径: d d2 =i1L d d1 =2.5x140 = 350mm查表优先选取大带轮基准直径d d2 = 355mm ;其传动比误差心=3552.5-—1402.5咒100%=1.43%<5%,故可用。
验算带的速度兀Ld d1L n1 兀X140X720 ,V = ------ = ----------- = 5.3m /s60 咒1000 60^1000式中n1——电动机转速;d d1—小带轮基准直径;即v=5.3m/s< V max=25m/s,符合要求。
确定中心距a和V带基准长度L i根据:0.7(d d1 +d d2)兰a o <2(d d1 +d d2)初步确定中心距0.7(140+355)=346.5 < <2(140+355)=990考虑到应使结构紧凑,选取中心距a0=400mm初算带的基准长度L d':2 2-=2X400+ 王x(140+355)+(355-140)=1606.0mm2 4x400式中L d 带的标准基准长度;L d 带的初算基准长度;V带带轮最小基准直径a 。
2021年哈工大机械设计大作业
哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: .11.12哈尔滨工业大学机械设计作业任务书题目: 轴系部件设计设计原始数据:图1表 1 带式运输机中V带传动已知数据方案dP(KW)(/min)mn r(/min)wn r1i轴承座中心高H(mm)最短工作年限L工作环境5.1.2496010021803年3班室外有尘机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴材料 (1)三、初算轴径d min (1)四、结构设计 (2)1. 确定轴承部件机体结构形式及关键尺寸 (2)2. 确定轴轴向固定方法..................................................................................... 错误!未定义书签。
3. 选择滚动轴承类型, 并确定润滑、密封方法 ...................................... 错误!未定义书签。
4. 轴结构设计 ....................................................................................................... 错误!未定义书签。
五、轴受力分析 (4)1. 画轴受力简图 (4)2. 计算支承反力 (4)3. 画弯矩图 (5)4. 画扭矩图 (5)六、校核轴强度 (5)七、校核键连接强度 (7)八、校核轴承寿命 (8)1. 计算轴承轴向力 (8)2. 计算当量动载荷 (8)3. 校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文件 (9)一、 带轮及齿轮数据已知带传动输出轴功率 P = 3.84 kW , 转矩 T = 97333.33 N·mm , 转速 n = 480 r/min , 轴上压力Q = 705.23 N , 因为原本圆柱直齿轮尺寸不满足强度校核, 故修改齿轮尺寸为分度圆直径d 1 =96.000 mm , 其它尺寸齿宽b 1 = 35 mm , 螺旋角β = 0°, 圆周力 F t = 2433.33 N , 径向力 F r = 885.66 N , 法向力 F n = 2589.50 N , 载荷变动小, 单向转动。
哈工大机械设计大作业轴系部件设计完美版
(4)轴段1和轴段7:
轴段1和7分别安装大带轮和小齿轮,故根据大作业3、4可知轴段1长度 ,轴段7长度 。
(5)计算
, ,
, ,
4、轴的受力分析
4.1画轴的受力简图
轴的受力简图见图3。
4.2计算支承反力
传递到轴系部压轴力
带初次装在带轮上时,所需初拉力比正常工作时大得多,故计算轴和轴承时,将其扩大50%,按 计算。
图2
3.2选择滚动轴承类型
因轴承所受轴向力很小,选用深沟球轴承,因为齿轮的线速度小于2m/s,齿轮转动时飞溅的润滑油不足于润滑轴承,采用油脂对轴承润滑,由于该减速器的工作环境有尘,脂润滑,密封处轴颈的线速度较低,故滚动轴承采用唇形圈密封,由于是悬臂布置所以不用轴上安置挡油板。
3.3键连接设计
齿轮及带轮与轴的周向连接均采用A型普通平键连接,齿轮、带轮所在轴径相等,两处键的型号均为12 8GB/T 1096—1990。
4.4画转矩图……………………………………………………………6
五、校核轴的弯扭合成强度……………………………………………………8
六、轴的安全系数校核计算……………………………………………………9七、键的强度校核………………………………………………………………10
八、校核轴承寿命………………………………………………………………11
在水平面上:
在垂直平面上
轴承1的总支承反力
轴承2的总支承反力
4.3画弯矩图
竖直面上,II-II截面处弯矩最大, ;
水平面上,I-I截面处弯矩最大, ;
合成弯矩,I-I截面:
II-II截面: ;
竖直面上和水平面上的弯矩图,及合成弯矩图如图5.4所示
4.4画转矩图
哈工大机械设计大作业V带传动设计完美版
哈工大机械设计大作业V带传动设计完美版作者: 日期:H arbin Ins t i t ut e of Te chno 1 ogy机械设计大作业说明书大作业名称:机械设计大作业 __________设计题目:____________班级: _______________________________________设计者: ____________________________________学号: ___________________________________指导教师:_________________________________ 设计时间: ________ 2014.1 0 .25 ________________哈尔滨工业大学目录一、大作业任务书 (1)二、电动机的选择 (1)三、确定设计功率P (2)四、选择带的型号 (2)五、确定带轮的基准直径d d1和d d2 (2)六、验算带的速度 (2)七、确定中心距 a和V带基准长度L d (2)八、计算小轮包角 (3)九、确定 V带根数Z (3)十、确定初拉力F0 (3)十一、计算作用在轴上的压力 (4)十二、小 V带轮设计 (4)1、带轮材料选择 (4)2、带轮结构形式 (4)十二、参考文献 (6)、大作业任务书带式运输机的传动方案如图1所示,机器工作平稳、单向回转、成批生产,其他数据见表1。
图1表1万案电动机工作功率Pd/k W电动机满载转速n m/(r/min) 工作机的转速n w/(r/mi n)第一级传动比i1轴承座中心高H/mm最短工作年限工作环境5.1.4 2. 2 94 0 80 2. 1 160 5年2班室内、清洁、电动机的选择根据所选方案已知数据,查参考文献[2]表14.1 —丫系列三相异步电动机的型号及相关数据选择,可选择Y112M-6。
可查得轴径为d=28mm,长为60mm、确定设计功率P d根据参考文献[1]表5.7查得工作情况系数K A = 1.2,则P d=K A P 1.2 2.2 kW 2.64k W四、选择带的型号根据巳、n:,查看参考文献[1]图5.17可选取A型带。
哈工大机械设计大作业资料
哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: 2016.11.12哈尔滨工业大学机械设计作业任务书题目:轴系部件设计设计原始数据:图1表 1 带式运输机中V带传动的已知数据方案dP(KW)(/min)mn r(/min)wn r1i轴承座中心高H(mm)最短工作年限L工作环境5.1.2496010021803年3班室外有尘机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴的材料 (1)三、初算轴径d min (1)四、结构设计 (2)1. 确定轴承部件机体的结构形式及主要尺寸 (2)2. 确定轴的轴向固定方式 ................................................................................ 错误!未定义书签。
3. 选择滚动轴承类型,并确定润滑、密封方式 ....................................... 错误!未定义书签。
4. 轴的结构设计 .................................................................................................. 错误!未定义书签。
五、轴的受力分析 (4)1. 画轴的受力简图 (4)2. 计算支承反力 (4)3. 画弯矩图 (5)4. 画扭矩图 (5)六、校核轴的强度 (5)七、校核键连接的强度 (7)八、校核轴承寿命 (8)1. 计算轴承的轴向力 (8)2. 计算当量动载荷 (8)3. 校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文献 (9)一、带轮及齿轮数据已知带传动输出轴功率 P = 3.84 kW ,转矩 T = 97333.33 N·mm ,转速 n = 480 r/min ,轴上压力Q = 705.23 N ,因为原本圆柱直齿轮的尺寸不满足强度校核,故修改齿轮尺寸为分度圆直径d 1 =96.000 mm ,其余尺寸齿宽b 1 = 35 mm ,螺旋角β = 0°,圆周力 F t = 2433.33 N ,径向力 F r = 885.66 N ,法向力 F n = 2589.50 N ,载荷变动小,单向转动。
哈尔滨工业大学机械设计大作业
哈尔滨工业大学机械设计作业设计计算说明书题目: 轴系部件设计系别: 英才学院班号: 1436005姓名: 刘璐日期: 2016.11.12哈尔滨工业大学机械设计作业任务书题目:轴系部件设计设计原始数据:图1表 1 带式运输机中V带传动的已知数据方案dP(KW)(/min)mn r(/min)wn r1i轴承座中心高H(mm)最短工作年限L工作环境5.1.2496010021803年3班室外有尘机器工作平稳、单向回转、成批生产目录一、带轮及齿轮数据 (1)二、选择轴的材料 (1)三、初算轴径d min (1)四、结构设计 (2)1. 确定轴承部件机体的结构形式及主要尺寸 (2)2. 确定轴的轴向固定方式 ................................................................................ 错误!未定义书签。
3. 选择滚动轴承类型,并确定润滑、密封方式 ....................................... 错误!未定义书签。
4. 轴的结构设计 .................................................................................................. 错误!未定义书签。
五、轴的受力分析 (4)1. 画轴的受力简图 (4)2. 计算支承反力 (4)3. 画弯矩图 (5)4. 画扭矩图 (5)六、校核轴的强度 (5)七、校核键连接的强度 (7)八、校核轴承寿命 (8)1. 计算轴承的轴向力 (8)2. 计算当量动载荷 (8)3. 校核轴承寿命 (8)九、绘制轴系部件装配图(图纸) (9)十、参考文献 (9)一、带轮及齿轮数据已知带传动输出轴功率 P = 3.84 kW ,转矩 T = 97333.33 N·mm ,转速 n = 480 r/min ,轴上压力Q = 705.23 N ,因为原本圆柱直齿轮的尺寸不满足强度校核,故修改齿轮尺寸为分度圆直径d 1 =96.000 mm ,其余尺寸齿宽b 1 = 35 mm ,螺旋角β = 0°,圆周力 F t = 2433.33 N ,径向力 F r = 885.66 N ,法向力 F n = 2589.50 N ,载荷变动小,单向转动。
哈尔滨工业大学机械设计基础轴系部件设计
机械设计基础大作业计算说明书题目:朱自发学院:航天学院班号:1418201班姓名:朱自发日期:2016.12.05哈尔滨工业大学机械设计基础大作业任务书题目:轴系部件设计设计原始数据及要求:目录1.设计题目 (4)2.设计原始数据 (4)3.设计计算说明书 (5)3.1 轴的结构设计 (5)3.1.1 轴材料的选取 (5)3.1.2初步计算轴径 (5)3.1.3结构设计 (6)3.2 校核计算 (8)3.2.1轴的受力分析 (8)3.2.2校核轴的强度 (10)3.2.3校核键的强度 (11)3.2.4校核轴承的寿命 (11)4. 参考文献 (12)1.设计题目斜齿圆柱齿轮减速器轴系部件设计2.设计原始数据3.设计计算说明书3.1 轴的结构设计3.1.1 轴材料的选取大、小齿轮均选用45号钢,调制处理,采用软齿面,大小齿面硬度为241~286HBW,平均硬度264HBW;齿轮为8级精度。
因轴传递功率不大,对重量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。
3.1.2初步计算轴径按照扭矩初算轴径:d≥=式中: d ——轴的直径,mm ; τ——轴剖面中最大扭转剪应力,MPa ; P ——轴传递的功率,kW ; n ——轴的转速,r /min ; []τ——许用扭转剪应力,MPa ;C ——由许用扭转剪应力确定的系数;根据参考文献查得106~97C =,取106C =故10635.0mm d ≥== 本方案中,轴颈上有一个键槽,应将轴径增大5%,即35(15%)36.75mm d ≥⨯+=取圆整,38d mm =。
3.1.3结构设计(1)轴承部件的支承结构形式减速器的机体采用剖分式结构。
轴承部件采用两端固定方式。
(2)轴承润滑方式螺旋角:12()arccos=162n m z z aβ+= 齿轮线速度:-338310175 2.37/6060cos 60cos16n m zn dnv m sπππβ⨯⨯⨯====因3/v m s <, 故轴承用油润滑。
哈工大机械设计大作业-轴系部件-5.1.3
一、设计题目设计带式运输机中的齿轮传动:带式运输机的传动方案如以下图所示,机器运行平稳、单向回转、成批生产,其他数据参见下方表格。
方案电动机工作功率P d/kW电动机满载转速n m/(r/min)工作机的转速n w/(r/min)第一级传动比i1轴承座中心高H/mm最短工作年限工作环境5.1.3 3 960 110 2 180 5年2班室外、有尘二、选择齿轮材料、热处理方式、精度等级考虑到带式运输机为一般机械,且仅有一级齿轮减速传动,故大、小齿轮均选用40Cr 合金钢,调质处理,采用软齿面。
大小齿面硬度为241~286HBW,平均硬度264HBW。
由要求,该齿轮传动按8级精度设计。
三、初步计算传动主要尺寸本装置的齿轮传动为采用软齿面开式传动,齿面磨损是其主要失效形式。
其设计准则按齿根疲劳强度进行设计,并考虑磨损的影响将模数增大10%~15%。
齿根弯曲疲劳强度设计公式;式中——齿形系数,反映了轮齿几何形状对齿根弯曲应力的影响。
——应力修正系数,用以考虑齿根过度圆角处的应力集中和除弯曲应力以外的其它应力对齿根应力的影响。
——重合度系数,是将全部载荷作用于齿顶时的齿根应力折算为载荷作用于单对齿啮合区上界点时的齿根应力系数。
——许用齿根弯曲应力。
1.小齿轮传递的转矩根据参考文献[2]表9.1,取。
由此2.齿数Z的初步确定为了避免根切,选小齿轮,设计要求中齿轮传动比,故,取。
此时的传动比误差为满足误差要求,故可用。
3.载荷系数K的确定由于v值未知,不能确定,故可初选载荷系数。
4.齿宽系数的确定根据参考文献[1]表8.6,齿轮在轴承上为悬臂布置,软齿面,选取齿宽系数。
5.齿形系数和应力修正系数的确定根据参考文献[1]图8.19,。
根据参考文献[2]图8.20,。
6.重合度系数的确定对于标准外啮合直齿圆柱齿轮传动,端面重合度7.许用弯曲应力的确定式中——计入了齿根应力修正系数之后,试验齿轮的齿根弯曲疲劳极限应力,根据参考文献[1]图8.28,取。
大作业5轴系部件设计
H a r b i n I n s t i t u t e o f T e c h n o l o g y机械设计大作业说明书设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:张锋设计时间:2016.11目录任务书 (1)一、选择轴的材料 (2)二、初算轴径 (2)三、结构设计 (2)3.1 轴系部件的结构型式 (2)3.2 轴段设计 (3)3.3 箱体与其他尺寸 (3)四、轴的受力分析 (4)4.1 画轴的受力简图 (4)4.2 计算支反力 (4)4.3 计算弯矩 (5)4.4 画受力简图与弯矩图、转矩图 (5)五、校核轴的弯扭合成强度 (6)六、轴的安全系数校核计算 (7)七、校核键连接的强度 (8)八、校核轴承的寿命 (9)九、轴上其他零件设计 (9)十、轴承座结构设计 (10)十一、轴承端盖(透盖) (10)参考文献 (11)任务书带式运输机的传动方案如图1所示,机器工作平稳,单向回转,成批生产,原始数据见表1。
图 1 带式运输机传动方案表 1 带式运输机中V带传动的已知数据一、选择轴的材料因传递功率不大,且单向转动、无冲击,一般机械使用,对质量结构无特殊要求,所以选45钢,调质处理。
二、初算轴径对于转轴,按扭转强度初算轴径,查参考文献[1]表9.4得=106~118C ,弯矩较大故取=118C转速1960/2480/min m n n i r === 功率1120.960.993 2.8512P P kW ηη==⨯⨯=则11821.3703d mm ≥==考虑到轴端有一个键槽,轴径加大5%,则min 21.3703 1.05=22.4388d mm =⨯ 按标准GB2822-81的10R 圆整后取125d mm =。
三、结构设计3.1 轴系部件的结构型式箱体内无传动件,不需经常拆卸,箱体采用整体式。
由轴的功能决定,该轴至少应具有带轮、齿轮的安装段,两个轴承的安装段以及两个轴承对外的密封段,共7段尺寸。
哈工大机械设计大作业轴系设计5.1.2备课讲稿
Harbin Institute of Technology大作业设计说明书课程名称:机械设计设计题目:轴系部件设计设计时间:2017.12哈尔滨工业大学设计任务原始数据如下:有冲击,室内工作,机器成批生产一.选择轴的材料、热处理方式因传递功率不大,并对质量及结构尺寸无特殊要求,故选用45号钢,调制处理。
二.按扭转强度估算轴径由大作业四P=3.84KW , =480r/min ,对于转轴,扭转强度初算轴径,查参考文献[1]表10.2得 ,考虑轴端弯矩比转矩小,故取 ,则mm n P c d 2.2148084.310633min =⨯== 其中——轴的传递功率——轴的转速——由许用扭转剪应力确定的系数由于考虑到轴的最小直径处要安装大带轮或小齿轮有键槽存在,故将其扩大为1.05倍,得mm d 26.222.2105.11=⨯≥,按标准GB2822-81的R10圆整后取d=25mm 。
三.设计轴的结构3.1确定机体和轴的结构形式箱体内无传动件,不需经常拆卸,箱体采用整体式。
由轴的功能可知,该轴应具有带轮、齿轮的安装段,两个轴承的安装段以及两个轴承对外的密封段,共7段尺寸。
由于没有轴向力的存在,且载荷、转速较低,故选用深沟球轴承。
由于传递功率小,转速不高,发热小,故轴承采用两端固定式。
由于轴转速较低,且两轴承间无传动件,所以采用脂润滑、毛毡圈密封。
确定轴的草图如图1所示:图1 确定轴的草图3.1.阶梯轴各部分直径的确定1) 轴段1和7轴段1和轴段7分别安放大带轮和小齿轮,所以其长度由带轮和齿轮轮毂长度确定,而直径由初算的最小直径得到。
所以,mm d d 2571==。
2) 轴段2和6轴段2和轴段6的确定应考虑齿轮、带轮的轴向固定和密封圈的尺寸。
由参考文献[3]图10.9计算得到轴肩高度mm h d d d )30~5.28(21162=⨯+==由参考文献[3]表14.4取毡圈油封直径mm d 29=,取轴径mm d d 3062==。
哈工大机械设大作业-轴系部件设计说明书
机械设计大作业轴系部件设计说明书题目:行车驱动装置的传动方案如下图所示。
室内工作、工作平稳、机器成批生产,其他数据见下表。
方案电动机工作功率P d/kW电动机满载转速n m/(r/min)工作机的转速n w/(r/min)第一级传动比i1轴承座中心高H/mm最短工作年限5.4.4 2.2 940 60 3.2 200 5年2班一选择轴的材料因为传递功率不大,轴所承受的扭矩不大,故选择45号钢,调质处理。
二初算轴径d min对于转轴,按扭转强度初算直径d min≥C√P n m3式中 P——轴传递的功率;C——由许用扭转剪应力确定的系数;n——轴的转速,r/min。
由参考文献[1] 表10.2查得C=106~118,考虑轴端弯矩比转矩小,故取C=106。
输出轴所传递的功率:P3=P d·ηV带·η轴承=2.2×0.96×0.99=2.09088 kW高速轴的转速:n m=n wi1=940315100=298.413 r/min代入数据,得d≥C√P n m3=106√2.09088 298.4133=20.284 mm考虑键的影响,将轴径扩大5%, d min≥20.284×(1+5%)=21.30 mm。
三结构设计1.轴承部件机体结构形式及主要尺寸为了方便轴承部件的装拆,减速器的机体采用剖分式结构。
取机体的铸造壁厚δ=8mm,机体上的轴承旁连接螺栓直径d2=12 mm,C1=18 mm,C2=16 mm,为保证装拆螺栓所需要的扳手空间,轴承座内壁至坐孔外端面距离L=δ+C1+C2+(5~8)mm=47~50 mm取L=48 mm。
2.轴的结构设计本设计方案是有6个轴段的阶梯轴,轴的径向尺寸(直径)确定,以外伸轴径d1为基础,考虑轴上零件的受力情况、轴上零件的装拆与定位固定、与标准件孔的配合、轴的表面结构及加工精度等要求,逐一确定其余各轴段的直径;而轴的轴向尺寸(长度)确定,则考虑轴上零件的位置、配合长度、支承结构情况、动静件间的距离要求等因素,通常从与传动件的轴段开始,向两边展开。
轴系部件大作业
H a r b i n I n s t i t u t e o f T e c h n o l o g y哈尔滨工业大学机械设计作业计算说明书题目:轴系部件设计院系:能源科学与工程学院班级:1002104班姓名:李敏学号:1100200420时间:2012.11.25-12.06哈尔滨工业大学目录1.任务书 (2)2.选择轴的材料、热处理方式 (3)3.初算轴径dmin ,并根据相配大带轮的尺寸确定轴径d1和长度L (3)4.结构设计 (3)5.轴的受力分析 (3)6.按照弯矩合成强度计算 (6)7.轴的安全系数校核计算 (6)8.校核键连接的强度 (7)9.校核轴承的寿命 (8)10.轴上其他零件设计 (10)11.参考文献 (11)哈尔滨工业大学机械设计作业任务书题目:行车驱动装置中的轴系部件设计设计原始数据:行车驱动装置的传动方案如图5.4所示。
室内工作、工作平稳、机器成批生产,其他数据见表5.4。
图5.4方案Pd(KW)(/min)mn r(/min)wn r1i轴承座中心高H(mm)最短工作年限L工作环境5.4.42.2 710 40 2.8 220 3年3班室内由先前的设计可知轴的输入功率P 1=2.8512KW,转矩T=29592 N ·mm ,转速n=290.91 r/min ,斜齿轮圆柱齿轮分度圆直径d=42mm ,螺旋ß=12.8386度,齿宽b=5.5mm1. 选择轴的材料及热处理方式因为传递功率不大,且对质量及结构尺寸无特殊要求,故选用常用材料45钢,调质处理。
2.初算轴径d min ,并根据相配联轴器的尺寸确定轴径d 1和长度L 1对于转轴,按扭转强度初算轴径,由文献[1]表10.2得C=106~118,考虑轴端弯矩比转矩小,故取C=106,则mm n P C d 45.157102.210633min =⨯== 考虑键槽的影响,取d min/mm=15.45⨯1.05=16.22mm ,考虑轴端1与带轮连接,按标准GB2822-81 的R10圆整后,取d 1=198mm ,L 1=28mm3.结构设计(1)确定轴承部件机体的结构形式及主要尺寸为方便轴承部件的装拆,铸造机体采用部分式结构(图1),取机体的铸造壁厚mm 8=δ,机体上轴承旁连接螺栓直径d 2=12mm ,装拆螺栓所需要的扳手空间C 1=18mm ,C 2=16mm ,故轴承旁内壁至座孔外端距离mm 50~47mm )8~5(21=+++=C C L δ,取L=50mm(2)确定轴的轴向固定方式因为行车驱动装置中的齿轮高速传动端的轴的跨距不大,且工作温度变化不大,故轴的轴向固定端采用两段固定方式(图3) (3)选择滚动轴承类型,并确定其润滑及密封方式因为轴受轴向力的作用,故选用角接触球轴承。
哈工大机械设计大作业V带传动设计完美版
Harbin Institute of Technology机械设计大作业说明书大作业名称:机械设计大作业设计题目:V带传动设计班级:设计者:学号:指导教师:设计时间:2014.10.25哈尔滨工业大学目录一、大作业任务书 ........................................................................................................................... 1 二、电动机的选择 ........................................................................................................................... 1 三、确定设计功率d P ..................................................................................................................... 2 四、选择带的型号 ........................................................................................................................... 2 五、确定带轮的基准直径1d d 和2d d ............................................................................................. 2 六、验算带的速度 ........................................................................................................................... 2 七、确定中心距a 和V 带基准长度d L ......................................................................................... 2 八、计算小轮包角 ........................................................................................................................... 3 九、确定V 带根数Z ........................................................................................................................ 3 十、确定初拉力0F ......................................................................................................................... 3 十一、计算作用在轴上的压力 ....................................................................................................... 4 十二、小V 带轮设计 .. (4)1、带轮材料选择 ..................................................................................................................... 4 2、带轮结构形式 ..................................................................................................................... 4 十二、参考文献 . (6)一、大作业任务书带式运输机的传动方案如图1所示,机器工作平稳、单向回转、成批生产,其他数据见表1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin Institute of Technology课程设计说明书课程名称:机械设计设计题目:轴系部件设计院系:班级:设计者:学号:指导教师:***设计时间:2014年11月哈尔滨工业大学目录一、选择轴的材料 (1)二、初算轴径 (1)三、轴承部件结构设计 (2)3.1轴向固定方式 (2)3.2选择滚动轴承类型 (2)3.3键连接设计 (2)3.4阶梯轴各部分直径确定 (3)3.5阶梯轴各部段长度及跨距的确定 (4)四、轴的受力分析 (5)4.1画轴的受力简图 (5)4.2计算支反力 (5)4.3画弯矩图 (6)4.4画转矩图 (6)五、校核轴的弯扭合成强度 (8)六、轴的安全系数校核计算 (9)七、键的强度校核 (10)八、校核轴承寿命 (11)九、轴上其他零件设计 (12)十、轴承座结构设计 (12)十一、轴承端盖(透盖) (13)参考文献 (13)一、 选择轴的材料通过已知条件和查阅相关的设计手册得知,该传动机所传递的功率属于中小型功率。
因此轴所承受的扭矩不大。
故选45号钢,并进行调质处理。
二、 初算轴径对于转轴,按扭转强度初算直径:d ≥√9.55×106P n10.2[τ]=C √P n13式中 d ——轴的直径;P ——轴传递的功率,kW ;n1——轴的转速,r/min;[τ]——许用扭转剪应力,MPa; C ——由许用扭转剪应力确定的系数;由大作业四知P =3.802kw所以:d ≥36.99mm本方案中,轴颈上有一个键槽,应将轴径增大5%,即d ≥36.99×(1+5%)=38.84mm按照GB2822-2005的a R 20系列圆整,取d =40 mm 。
根据GB/T1096—1990,键的公称尺寸b ×h =12×8,轮毂上键槽的尺寸 b=12mm ,1t =3.3mm 3、设计轴的结构3.1轴承机构及轴向固定方式因传递功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件的固定方式采用两端固定方式。
同时为了方便轴承部件的拆装,机体采用部分式结构。
又由于本设计中的轴需要安装联轴器、齿轮、轴承等不同的零件,并且各处受力不同。
因此,设计成阶梯轴形式。
轴段的草图见图2:图23.2选择滚动轴承类型因轴承所受轴向力很小,选用深沟球轴承,因为齿轮的线速度小于2m/s ,齿轮转动时飞溅的润滑油不足于润滑轴承,采用油脂对轴承润滑,由于该减速器的工作环境有尘,脂润滑,密封处轴颈的线速度较低,故滚动轴承采用唇形圈密封,由于是悬臂布置所以不用轴上安置挡油板。
3.3键连接设计齿轮及带轮与轴的周向连接均采用A 型普通平键连接,齿轮、带轮所在轴径相等,两处键的型号均为128GB/T 1096—1990。
3.4各轴段直径确定(1) 轴段1和轴段7轴段1和轴段7分别安放大带轮和小齿轮,所以其长度由带轮和齿轮轮毂长度确定,而直径由初算的最小直径得到。
所以,d 1=d 7=40mm 。
(2) 轴段2和轴段6轴段2和轴段6的确定应考虑齿轮、带轮的轴向固定和密封圈的尺寸。
由参考文献[1] 图10.9计算得到轴肩高度h =(0.07~0.1)d =(0.07~0.1)×40=2.8~4mmd 2=d 6=d 1+2×ℎ=40+2×(2.8~4)=45.6~48mm由参考文献[2]表14.4,唇形圈密封的轴径d =45mm ,所以取d 2=d 6=45mm .密封圈代号为B45628。
(3) 轴段3和轴段5轴段3和轴段5安装轴承,尺寸由轴承确定。
标准直齿圆柱齿轮,没有轴向力,但考虑到有较大的径向力,选用深沟球轴承。
初选轴承6310,d=50mm ,外形尺寸D=110mm ,B=27mm ,轴件安装尺寸d a =60mm 。
因为带式运输机为开式结构,所以采用脂润滑。
d 3=d 5=50mm 。
(4) 轴段4轴段4在两轴承座之间,其功能为定位固定轴承的轴肩,故取454mm a d d ==3.5 各轴段长度确定(1)轴段4:轴段4在两轴承座之间,两端支点间无传动件,应该首先确定该段跨距L 。
一般L =(2~3)d 3=(2~3)×50=100~150mm取L=120mm 。
则轴段4长度l 4=L −B =120−27=93mm(2)轴段3和轴段5:轴段3和轴段5安装轴承,轴段长度与轴承内圈宽度相同,故l 3=l 5=B =27mm(3)轴段2和轴段6:轴段2和轴段6的长度和轴承盖的选用及大带轮和小齿轮的定位轴肩的位置有关系。
选用嵌入式轴承端盖,取轴承盖凸缘厚度e =(1~2)d 螺钉=(1~2)×6=6~12mm ,m=15mm ,箱体外部传动零件的定位轴肩距轴承端盖的距离15mm K =,则轴段6长度610151540mm l m e =++∆=++=同时取2640mm l l ==(4)轴段1和轴段7:轴段1和7分别安装大带轮和小齿轮,故根据大作业3、4可知轴段1长度l 1=40mm ,轴段7长度l 7=56mm 。
(5)计算123L L L 、、L 1=88mm ,L 2=120mm ,L 3=81.5mm1=87.5mm L ,2105mm L =,377.5mm L =4、轴的受力分析4.1画轴的受力简图轴的受力简图见图3。
4.2计算支承反力传递到轴系部件上的转矩T1=9.55×106×P n 1=9.55×106×3.802960/2=75636N ·mm 齿轮圆周力F t =2T 1d 1=2×7563668=2225N 齿轮径向力F r =F t tanα=2225×tan20°=809.83N齿轮轴向力0a F N = 带轮压轴力Q =1459N带初次装在带轮上时,所需初拉力比正常工作时大得多,故计算轴和轴承时,将其扩大50%,按Q =2188.5N 计算。
在水平面上:R 1H =Q ×(L 1+L 2)−F r ×L 3L 2=2188.5×(88+120)−809.83×81.5120=3243.39N R 2H =−R 1H +Q +F r =−3243.39+2188.5+809.83=−245.06N在垂直平面上R 1V =F t L 3L 2=2225×81.5120=1511.146N R 2V =−(F t +R 1V )=−(2225+1511.146)=−3736.146N轴承1的总支承反力 R 1=√R 1H 2+R 1V 2=√3243.392+1511.1462=3578.15N轴承2的总支承反力R 2=√R 2H 2+R 2V 2=√(−245.06)2+(−3736.146)2=3744.174N4.3画弯矩图竖直面上,II-II截面处弯矩最大,M IIH=135725N∙mm;水平面上,I-I截面处弯矩最大,M IH=172891.5N∙mm;合成弯矩, I-I截面:M I=172891.5N∙mmII-II截面:M IIH=144435.4N∙mm;竖直面上和水平面上的弯矩图,及合成弯矩图如图5.4所示4.4画转矩图作用在轴上的转矩为大带轮的输入转矩T1=9.55×106×Pn1=9.55×106×3.802960/2=75636N·mm转矩图如图5.4所示图35、校核轴的强度Ⅱ-Ⅱ截面既有弯矩又有转矩,且弯矩最大,为危险截面。
按弯扭合成强度计算。
根据参考文献[1]式9.3,有σe =√(M 1W )2+4(αT 1W T )2=√(172891.54287.5)2+4(0.3×756368575)2=40.67MPa ≤[σ]−1b 式中:1M ——1-1截面处弯矩,M I =172891.5N ∙mm ;T ——1-1截面处转矩,T1=75636N ·mm ;W ——抗弯剖面模量,由参考文献[1]附表9.6,33350.10.1354287.5W d mm ==⨯=;T W ——抗扭剖面模量,由参考文献[1]附表9.6,33350.20.2358575T W d mm ==⨯=;α——根据转矩性质而定的折合系数,对于不变的转矩,3.0=α;[]b 1-σ——对称循环的许用弯曲应力,轴材料为45钢进行调制处理,由参考文献[1]表9.3查得σb =650MPa ,由表9.6查得[σ]−1b =60MPa 。
因此,校核通过6轴的安全系数校核计算弯曲应力:σb =M I W =172891.54287.5=40.32MPaσa =σb =40.32MPa ,σm =0扭剪应力:τT =T 1W T =756368575=8.82MPa τa =τm =τT 2=4.41MPa安全系数:S σ=σ−1K σβεσσa +Ψσσm =3001.8250.92×0.84×40.32+0.2×0=3.151 S τ=τ−1K τβεττa +Ψττm =1551.6250.92×0.82×4.41+0.1×4.41=15.59S =S S √S σ2+S τ2= 3.151×15.59√3.1512+15.592=3.089≥[S ]=1.5~1.8式中:σS ——只考虑弯矩时的安全系数;τS ——只考虑转矩时的安全系数; 1-σ、1-τ——材料对称循环的弯曲疲劳极限和扭转疲劳极限,由参考文献[1]表9.3,45号钢调质处理,11300,155MPa MPa στ--==;τσK K 、——键槽引起的有效应力集中系数,由参考文献[1]附表9.10、附表9.11,625.1,825.1==τσK K ;τσεε、——零件的绝对尺寸系数,由参考文献[1]附图表9.12,εσ=0.84, ετ=0.82;β——表面质量系数,β=β1β2,由参考文献[1]附表9.8、附表9.9,92.0=β; τσψψ、——把弯曲时和扭转时轴的平均应力折算为应力幅的等效系数,由参考文献[1] 9.5.3节,1.0,2.0==τσψψ;m a σσ、——弯曲应力的应力幅和平均应力,σa =40.32MPa ,σm =0; m a ττ、——扭转剪应力的应力幅和平均应力,τa =τm =τT2=4.41MPa ;[]S ——许用疲劳强度安全系数,由参考文献[1]表9.13,[]8.1~5.1=S ; 校核通过。
7校核键连接的强度由参考文献[1]式41[]p p kld T σσ≤=12式中: p σ——工作面的挤压应力,MPa ;1T ——传递的转矩,mm N ⋅;d ——轴的直径,mm ;l ——键的工作长度,mm ,A 型,l L b =-,b L 、为键的公称长度和键宽; k ——键与毂槽的接触高度,,mm /2k h =;[]p σ——许用挤压应力,MPa ,由参考文献[1]表4.1,静连接,材料为钢,有轻微冲击,[]100~120p MPa σ=,取110Mpa 。