高中数学二次函数分类讨论经典例题
二次函数知识点总结及典型例题和练习极好
二次函数知识点总结及典型例题和练习极好知识点一:二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数;)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式;2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线; 抛物线的主要特征:①有开口方向;②有对称轴;③有顶点; 3、二次函数图像的画法--------五点作图法:1先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 2求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D;将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像;当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D;由C 、M 、D 三点可粗略地画出二次函数的草图;如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像; 例1 已知函数y=x 2-2x-3,1写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点;然后画出函数图象的草图;2求图象与坐标轴交点构成的三角形的面积:3根据第1题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0知识点二:二次函数的解析式二次函数的解析式有三种形式:1一般式:)0,,(2≠++=a c b a c bx ax y 是常数,2 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=;如果没有交点,则不能这样表示;3顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁;例1 抛物线c bx ax y ++=2与x 轴交于A1,0,B3,0两点,且过-1,16,求抛物线的解析式;例2 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点-2,0和-1,0之间包括这两点,顶点C 是矩形DEFG 上包括边界和内部的一个动点,则: 1abc 0 >或<或=2a 的取值范围是例3 下列二次函数中,图象以直线x = 2为对称轴,且经过点0,1的是A .y = x − 22 + 1B .y = x + 22 + 1C .y = x − 22 − 3 D.y = x + 22 – 3知识点三:二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值或最小值,即当ab x 2-=时,ab ac y 442-=最值;如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小;例1 已知二次函数的图像0≤x≤3如图所示,关于该函数在所给自变量取值范围内, 下列说法正确的是 A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3D .有最小值-1,无最大值例2某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元x为10的正整数倍.1设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;2设宾馆一天的利润为w元,求w与x的函数关系式;3一天订住多少个房间时,宾馆的利润最大最大利润是多少元知识点四、二次函数的性质1、二次函数的性质2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab 2-c 表示抛物线与y 轴的交点坐标:0,c3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点横坐标;因此一元二次方程中的ac 4b 2-=∆,在二次函数中表示图像与x 轴是否有交点; 当∆>0时,图像与x 轴有两个交点; 当∆=0时,图像与x 轴有一个交点; 当∆<0时,图像与x 轴没有交点;例1 抛物线y=x 2-2x -3的顶点坐标是 .例2 二次函数522-+=x x y 有A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6- 例3 由二次函数1)3(22+-=x y ,可知A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大例4 已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 A.4<kB.4≤kC.4<k 且3≠kD.4≤k 且3≠k例5 下列函数中,当x >0时y 值随x 值增大而减小的是 . A .y = x 2 B .y = x -1 C . y = 错误! x D .y = 错误!例6 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是A .m =lB .m >lC .m ≥l D.m ≤l知识点五、二次函数图象的平移① 对于抛物线y=ax 2+bx+c 的平移通常先将一般式转化成顶点式()2y a x h k =-+,再遵循左加右减,上加下减的的原则化为顶点式有两种方法:配方法,顶点坐标公式法;在用顶点坐标公式法求出顶点坐标后,在写顶点式时,要减去顶点的横坐标,加上顶点的纵坐标;② c bx ax y ++=2沿y 轴平移:向上下平移m m >0个单位,c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2③ 当然,对于抛物线的一般式平移时,也可以不把它化为顶点式c bx ax y ++=2:向左右平移m m >0个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2例1 将抛物线2y x =-向左平移2个单位后,得到的抛物线的解析式是 A .2(2)y x =-+ B .22y x =-+ C .2(2)y x =-- D .22y x =--例2 将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_______. 例3 抛物线2y x =可以由抛物线()223y x =+-平移得到,则下列平移过程正确的是 A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位 C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位补抛物线y=2x 2-3x-7在x 轴上截得的线段的长度为______________ 公式抛物线y=ax 2+bx+c 在x 轴上截得的线段的长度为______________知识点六:抛物线c bx ax y ++=2中, a 、b 、c 的作用 1a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.2b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b 即a 、b 同号时,对称轴在y 轴左侧;③0<ab即a 、b 异号时,对称轴在y 轴右侧.口诀---左同,右异 a 、b 同号,对称轴在y 轴左侧 3c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点0,c :①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 例1 如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b=-1B .a -b=-1C .b<2aD .ac<0例2 已知抛物线y =ax 2+bx +ca≠0在平面直角坐标系中的位置如图所示,则下列结论中正确的是 A .a>0 B .b <0 C .c <0 D .a +b +c>0例 3 如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:1240b ac ->;2c >1;32a -b <0;4a +b +c <0;你认为其中错误..的有 A .2个 B .3个C .4个D .1个例4 如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac -b 2=4a ;④a+b+c <0.其中正确的个数是 A. 1 B. 2 C. 3 D. 4 例5 如图,是二次函数 y =ax 2+bx +ca≠0的图象的一部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的命题是 .只要求填写正确命题的序号例6 如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是A .m =n ,k >hB .m =n ,k <hC .m >n,k =hD .m <n ,k =h知识点七:中考二次函数压轴题中常用到的公式1、两点间距离公式:如图:点A 坐标为x 1,y 1,点B 坐标为x 2,y 2,则AB 间的距离,即线段AB 的长度为()()221221y y x x -+- 这实际上是根据勾股定理得出来的2、中点坐标公式:如图,在平面直角坐标系中,A 、B 两点的坐标分别为11()A x y ,,22()B x y , ,AB 中点P 的坐标为()p p x y ,.由12p p x x x x -=-,得122p x x x +=, 同理122p y y y +=,所以AB 的中点坐标为1212()22x x y y++,. 3、两平行直线的解析式分别为:y=k 1x+b 1,y=k 2x+b 2,那么k 1=k 2,也就是说当我们知道一条直线的k 值,就一定能知道与它平行的另一条直线的k 值;4、两垂直直线的解析式分别为:y=k 1x+b 1,y=k 2x+b 2,那么k 1×k 2=-1,也就是说当我们知道一条直线的k 值,就一定能知道与它垂直的另一条直线的k 值;对于这一条,只要能灵活运用就行,不需要理解以上四条,我称它们为坐标系中的“四大金刚”1x px 2x 12x x -12y y -1y 2y Py APBO yx例1 如图,在平面直角坐标系中,抛物线y=﹣x 2+2x+3与x 轴交于A .B 两点,与y 轴交于点C,点D 是该抛物线的顶点.1求直线AC 的解析式及B .D 两点的坐标;2点P 是x 轴上一个动点,过P 作直线l ∥AC 交抛物线于点Q,试探究:随着P 点的运动,在抛物线上是否存在点Q,使以点A .P 、Q 、C 为顶点的四边形是平行四边形 若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由.3请在直线AC 上找一点M,使△BDM 的周长最小,求出M 点的坐标.例2 如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A ﹣1,0,C2,3两点,与y 轴交于点N .其顶点为D .1求抛物线及直线AC 的函数关系式; 2设点M3,m,求使MN+MD 的值最小时m 的值;3若抛物线的对称轴与直线AC 相交于点B,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F,以B,D,E,F 为顶点的四边形能否为平行四边形 若能,求点E 的坐标;若不能,请说明理由; 4若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.例3 如图,抛物线423412--=x x y 与x 轴交于A,B 两点点B 在点A 的右边,与y 轴交于C,连接BC,以BC 为一边,点O 为对称中心作菱形BDEC,点P 是x 轴上的一个动点,设点P 的坐标为m,0,过P 作x 轴的垂线l 交抛物线于点Q;ADCEBOADC EBOA DCEBO1求点A 、B 、C 的坐标;2当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N;试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;3当点P 在线段EB 上运动时,是否存在点Q,使⊿BDQ 为直角三角形,若存在,请直接写出Q 点坐标;若不存在,请说明理由;练 习1、平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5 m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A .1.5 mB .1.625 mC .1.66 mD .1.67 m2、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为 A .0 B .1 C .2 D .33. 二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是 .4. 如图,已知二次函数c bx x y ++=2的图象经过点-1,0,1,-2,当y 随x 的增大而增大时,x 的取值范围是 .xyO11(1,-2)cbx x y ++=2-15. 在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是 .A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++6. 已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是A ①②③④B ②④⑤C ②③④D ①④⑤7.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如上表:从上表可知,下列说法中正确的是 .填写序号①抛物线与x 轴的一个交点为3,0; ②函数2y ax bx c =++的最大值为6; ③抛物线的对称轴是12x =; ④在对称轴左侧,y 随x 增大而增大.8. 如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标是-2,4,过点A 作AB ⊥y 轴,垂足为B ,连结OA .1求△OAB 的面积;2若抛物线22y x x c =--+经过点A .①求c 的值;②将抛物线向下平移m 个单位,使平移后得到的抛物线顶点落在△OAB 的内部不包括△OA B 的边界,求m 的取值范围直接写出答案即可.x … -2 -1 0 1 2 … y…4664…1的图象经过点Ac,-x=3;”题9、“已知函数c=+y+xbx2目中的矩形框部分是一段被墨水污染了无法辨认的文字;根据已知和结论中现有的信息,你能否求出题中的二次函数解析式若能,请写出求解过程,并画出二次函数图象;若不能,请说明理由;10、如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD= 90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A-1,0,B -1,2,D 3,0,连接DM,并把线段DM 沿DA方向平移到ON,若抛物线y=ax2+bx+c经过点D、M、N.1求抛物线的解析式2抛物线上是否存在点P.使得PA= PC.若存在,求出点P的坐标;若不存在.请说明理由;3设抛物线与x轴的另—个交点为E.点Q是抛物线的对称轴上的—个动点,当点Q在什么位置时有QE QC-最大并求出最大值;11、如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A 一1,0.⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点Mm,0是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.ABCDO E NM xy图12、在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC 分别落在x轴和y轴的正半轴上;设抛物线y=ax2+bx+ca<0过矩形顶点B、C.1当n=1时,如果a=-1,试求b的值;2当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N 两点也在抛物线上,求出此时抛物线的解析式;3将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,②直接写出a关于n的关系式.。
(完整版)自己总结很经典二次函数各种题型分类总结.doc
二次函数题型分类总结题型 1、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是.① y=x2- 4x+1;② y=2x 2;③ y=2x2+4x;④ y=- 3x;⑤ y=- 2x- 1;⑥ y=mx2+nx+p;⑦ y =(4,x) ;⑧ y=- 5x。
2+2t ,则 t = 4 秒时,该物体所经过的路2、在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=5t程为。
3、若函数 y=(m2+2m- 7)x 2+4x+5 是关于 x 的二次函数,则m的取值范围为。
4、若函数 y=(m- 2)x m-2 +5x+1 是关于x的二次函数,则m的值为。
5、已知函数 y=(m- 1) x m2 1 +5x- 3 是二次函数,求m的值。
题型 2、二次函数的对称轴、顶点、最值4ac-b 2(技法:如果解析式为顶点式y=a(x - h) 2+k,则最值为 k;如果解析式为一般式y=ax2+bx+c 则最值为4a1.抛物线 y=2x 2 +4x+m 2- m 经过坐标原点,则m的值为。
2.抛物 y=x 2+bx+c 线的顶点坐标为( 1,3),则 b=, c= .3.抛物线 y= x2+3x 的顶点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若抛物线 y= ax2- 6x 经过点 (2 ,0) ,则抛物线顶点到坐标原点的距离为( )A. 13B. 10C. 15D. 142+ bx +c( )5.若直线 y= ax+ b 不经过二、四象限,则抛物线y= axA. 开口向上,对称轴是y 轴B. 开口向下,对称轴是y 轴C. 开口向下,对称轴平行于y 轴D. 开口向上,对称轴平行于y 轴2 16.已知抛物线 y= x + (m-1)x -4 的顶点的横坐标是2,则 m的值是 _.7.抛物线 y=x 2+2x- 3 的对称轴是。
(完整版)二次函数综合题型分类训练
专题一二次函数之面积、周长最值问题y- 1 x2bx c1、如图,抛物线2与 x 轴交于 A 、 B 两点,与 y 轴交于点 C,且 OA=2 ,OC=3 . (1)求抛物线的剖析式。
(2)假设点 D(2 , 2)是抛物线上一点,那么在抛物线的对称轴上,可否存在一点 P,使得△ BDP 的周长最小,假设存在,央求出点P的坐标,假设不存在,请说明原由.22、如图,抛物线y= - x +bx+c 与素来线订交于 A 〔- 1,(1〕抛物线及直线 AC 的函数关系式;(2〕设点 M 在对称轴上一点,求使 MN+MD 的值最小时的 M的坐标;〔3〕假设 P 是抛物线上位于直线AC 上方的一个动点,求△ APC 的面积的最大值.3、如图,抛物线 y=ax 2+bx﹣ 2〔 a≠ 0〕与 x 轴交于 A 、B两点,与 y 轴交于 C 点,直线 BD 交抛物线于点 D,并且 D〔 2,3〕, tan∠ DBA= 1 2.(1〕求抛物线的剖析式;(2〕点M 为抛物线上一动点,且在第三象限,按次连接点B 、M 、C、 A ,求四边形 BMCA 面积的最大值;4、如图,在平面直角坐标系中,点 A 的坐标是〔 4,0〕,并且 OA=OC=4OB ,动点 P 在过 A ,B ,C 三点的抛物线上.(1〕求抛物线的剖析式;(2〕可否存在点 P,使得△ ACP 是以 AC 为直角边的直角三角形?假设存在,求出所有吻合条件的点 P 的坐标;假设不存在,说明原由;(3〕过动点 P 作 PE 垂直于 y 轴于点 E,交直线 AC 于点 D,过点 D 作 y 轴的垂线.垂足为 F,连接 EF,当线段EF 的长度最短时,求出点P 的坐标.y-1x2bx c5、如图 12,二次函数2的图象与 x 轴的正半轴订交于点 A 、 B,与 y 轴订交于点C,且 OC2=OA · OB .(1)求 c 的值;(2)假设△ ABC 的面积为3,求该二次函数的剖析式;(3)设 D 是 (2)中所确定的二次函数图象的极点,试问在直线 AC 上可否存在一点P 使△ PBD 的周长最小 ?假设存在,求出点P 的坐标;假设不存在,请说明原由.6、如图,在直角坐标系中,点 A 的坐标为〔- 2, 0〕,连接 OA ,将线段 OA 绕原点 O 顺时针旋转 120°,获取线段 OB.(1〕求点 B 的坐标;(2〕求经过 A 、 O、B 三点的抛物线的剖析式;〔 3〕在〔 2〕中抛物线的对称轴上可否存在点C,使△ BOC的周长最小?假设存在,求出点 C 的坐标;假设不存在,请说明原由.〔 4〕若是点P 是〔 2〕中的抛物线上的动点,且在x 轴的下方,那么△PAB面积?假设有,求出此时P 点的坐标及△ PAB 的最大面积;假设没有,请说明原由.可否有最大专题二二次函数之等腰三角形问题1、如图,抛物线 y=ax2-5ax+4 经过 ABC △的三个极点, BC∥ x 轴,点 A 在 x 轴上,点 C 在 y 轴上,且 AC=BC .〔 1〕求抛物线的对称轴;(2〕写出 A 、B 、 C 三点的坐标并求抛物线的剖析式;(3〕研究:假设点 P 是抛物线对称轴上且在 x 轴下方的动点,可否存在 PAB 是等腰三角形.假设存在,求出所有吻合条件的点P 坐标;不存在,请说明原由.2、如图,抛物线与x 轴交于A〔 -1,0〕,B〔 3,0〕两点,与y 轴交于点C〔 0,3〕.〔 1〕求抛物线的剖析式;〔 2〕设抛物线的极点为D,在其对称轴的右侧的抛物线上可否存在点P,使得△ PDC是等腰三角形?假设存在,求出吻合条件的点P 的坐标;假设不存在,请说明原由;M 〔 3〕点 M 是抛物线上一点,以 B ,C, D, M 为极点的四边形是直角梯形,试求出点的坐标.3、在平面直角坐标系 xOy 中,抛物线 y=x 2﹣〔 m+n〕x+mn〔 m> n〕与 x 轴订交于 A 、B两点〔点 A 位于点 B 的右侧〕,与 y 轴订交于点 C.(1〕假设 m=2, n=1,求 A 、 B 两点的坐标;(2〕假设 A、 B 两点分别位于 y 轴的两侧, C 点坐标是〔 0,﹣ 1〕,求∠ ACB 的大小;〔3〕假设 m=2,△ ABC 是等腰三角形,求n 的值.4、如图,抛物线y=ax 2+bx+c 与 x 轴的一个交点为A〔 3,0〕,与 y 轴的交点为 B〔 0,3〕,其极点为 C,对称轴为 x=1 .〔 1〕求抛物线的剖析式;(2〕点 M 为 y 轴上的一个动点,当△ ABM 为等腰三角形时,求点M 的坐标;(3〕将△ AOB 沿 x 轴向右平移 m 个单位长度〔 0< m< 3〕获取另一个三角形,将所得的三角形与△ABC 重叠局部的面积记为S,用 m 的代数式表示S.5、如图,抛物线经过 A 〔 1,0〕, B〔 0,3〕两点,对称轴是x= ﹣1.(1〕求抛物线对应的函数关系式;(2〕动点 Q 从点 O 出发,以每秒 1 个单位长度的速度在线段 OA 上运动,同时动点 M 从 M 从 O 点出发以每秒 3 个单位长度的速度在线段 OB 上运动,过点 Q 作 x 轴的垂线交线段 AB 于点 N,交抛物线于点 P,设运动的时间为 t 秒.①当 t 为何值时,四边形 OMPQ 为矩形;②△ AON 可否为等腰三角形?假设能,求出t 的值;假设不能够,请说明原由.6、如图,抛物线y= ﹣14 x2+bx+4 与 x 轴订交于 A 、B 两点,与 y 轴订交于点C,假设 A 点的坐标为A〔﹣2, 0〕.(1〕求抛物线的剖析式及它的对称轴方程;(2〕求点 C 的坐标,连接 AC 、BC 并求线段 BC 所在直线的剖析式;(3〕试判断△ AOC 与△ COB 可否相似?并说明原由;〔4〕在抛物线的对称轴上可否存在点 Q,使△ ACQ 为等腰三角形?假设不存在,求出吻合条件的 Q 点坐标;假设不存在,请说明原由.7、 Rt△ ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系内,使其斜边AB 与 x 轴重合〔其中OA < OB〕,直角极点在y 轴正半轴上。
二次函数各知识点、考点、典型例题及对应练习(超全)
二次函数各知识点、考点、典型例题及对应练习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)图1C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.图2ABCD图1菜园墙专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1) B.y=2a (1-x ) C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x<<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.图2图1考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1。
高中数学二次函数分类讨论经典例题
高中数学二次函数分类讨论经典例题一、二次函数的定义和基本性质二次函数是形如y=ax²+bx+c的函数,其中a、b、c都是实数且a≠0。
二次函数的图像是抛物线,其开口方向取决于a的正负性。
下面将讨论二次函数的分类及其相关的经典例题。
二、二次函数的分类讨论1. a>0的情况:抛物线开口向上当a>0时,二次函数的图像是开口向上的抛物线。
此时,函数的最值为最小值,且最小值点的横坐标为-b/2b。
例如,考虑函数y=x²+2x+1,其图像为一条开口向上的抛物线,最小值点为(-1,0)。
2. a<0的情况:抛物线开口向下当a<0时,二次函数的图像是开口向下的抛物线。
此时,函数的最值为最大值,且最大值点的横坐标为-b/2b。
例如,考虑函数y=-x²+2x+1,其图像为一条开口向下的抛物线,最大值点为(1,0)。
3. a=0的情况:一次函数当a=0时,二次函数变为一次函数,即y=bx+c。
此时,函数的图像是一条直线,且不会有最值点。
例如,考虑函数y=2x+1,其图像为一条斜率为2的直线。
三、经典例题1. 求解二次函数的最值例如,求解函数y=x²-4x+3的最值。
首先,可以将该二次函数写成标准形式y=(x-2)²-1,从中可以得知最小值点为(2,-1)。
2. 求解二次函数与坐标轴的交点例如,求解函数y=2x²-5x+2与x轴和y轴的交点。
首先,将y=0代入函数方程得到2x²-5x+2=0,然后可以通过因式分解或者求解一元二次方程的方法求解得到x的值。
进而可以求得函数与x轴的交点。
类似地,可以将x=0代入函数方程得到y的值,从而求得函数与y轴的交点。
3. 求解二次函数的对称轴例如,求解函数y=-x²+4x-3的对称轴。
对称轴是过抛物线最高点(或最低点)的一条直线,其方程可以通过x=-b/2b得到。
对于该函数,对称轴方程为x=-2。
(完整版)二次函数专题
专题训练(三) 与函数有关的最值问题类型之一由不等关系确定的最值问题1.某工厂以每吨3000元的价格购进50吨原料进行加工,两种加工方式如下表:现将这50吨原料全部加工完.(粗加工与精加工不能同时进行)(1)设其中粗加工x吨,共获利y元,求y与x的函数关系式;(不要求写出自变量的取值范围)(2)如果必须在20天内加工完,如何安排生产才能获得最大利润?最大利润是多少?类型之二由一次函数确定的最值问题2.某工厂计划为地震灾区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5 m3,一套B型桌椅(一桌三椅)需木料0.7 m3,工厂现有库存木料302 m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往地震灾区,已知每套A型桌椅的生产成本为100元,运费为2元;每套B型桌椅的生产成本为120元,运费为4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)类型之三由二次函数确定的最值问题3.一个边长为4的正方形截去一个角后成为五边形ABCDE(如图Z-3-1),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.图Z-3-14.[2015·青岛] 如图Z-3-2,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=-16x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3 m时,到地面OA的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?图Z-3-2类型之四用换元法求最值5.求函数y=x-1-2x的最值.类型之五用数形结合法求最值6.函数y=x2-4x+13+x2-12x+37的最小值是________.类型之六自变量x在某一范围内的最值7.求二次函数y=-4x2+8x-3在-2≤x≤2上的最大值和最小值.8.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y =x2-6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2-6x+7的图象的对称轴为直线x=3,∴由对称性可知,当x=1和x=5时的函数值相等.∴若1≤m<5,则当x=1时,y的最大值为2;若m≥5,则当x=m时,y的最大值为m2-6m+7.请你参考小明的思路,解答下列问题:(1)当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为________.图Z-3-3 专题训练(五) 巧用抛物线的对称性妙解题类型之一利用对称性比较函数值的大小1.点A(-2,y1),B(3,y2)是二次函数y=2(x-1)2-1的图象上的两点,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定2.已知二次函数y=ax2+bx+c(a>0)的图象过点A(1,n),B(3,n),若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c(a>0)的图象上,则下列结论正确的是( ) A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2类型之二利用对称性求交点坐标3.如图5-ZT-1,已知抛物线y=x2+bx+c的对称轴为直线x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A 的坐标为(0,3),则点B的坐标为()图5-ZT-1A.(2,3) B.(3,2)C.(3,3) D.(4,3)4.如图5-ZT-2,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( )图5-ZT-2A.0 B.-1C.1 D.25.抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),求该抛物线上纵坐标为-8的另一点的坐标.类型之三利用对称性求长度6.如图5-ZT-3是一个抛物线形拱桥的示意图,桥的跨度AB为100 m,支撑桥的是一些等距的立柱,相邻立柱间的水平距离为10 m(不考虑立柱的粗细),其中距点A10 m处的立柱FE 的高度为3.6 m.(1)求正中间的立柱OC的高度;(2)是否存在一根立柱,其高度恰好是OC高度的一半?请说明理由.图5-ZT-3类型之四巧用对称性求二次函数的表达式7.已知二次函数的函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为直线x=-3,此二次函数的表达式为________________.8.已知二次函数的图象与x轴的两个交点A,B关于直线x =-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为____________________.9.二次函数的图象经过点A(0,0),B(12,0),且顶点P到x轴的距离为3,求该二次函数的表达式.类型之五利用对称性求面积10.二次函数y=-x2+2(m-1)x+2m-m2的图象关于y 轴对称,顶点A和它的x轴的两个交点B,C所构成的△ABC的面积为( )A.1 B.2 C.12D.3211.已知二次函数y=2x2+m(m为常数).(1)若点(2,y1)与(3,y2)在此二次函数的图象上,则y1________y2(填“>”“=”“<”);(2)如图5-ZT-4,此二次函数y=2x2+m的图象经过点(0,-4),正方形ABCD的顶点A,B在抛物线上,顶点C,D在x 轴上,求图中阴影部分的面积之和.图5-ZT-4类型六 利用对称性求不等式的解集或字母的取值范围12.如图5-ZT -5是二次函数y =ax 2+bx +c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx +c <0的解集是______________.图5-ZT -513.二次函数y =ax 2+bx +c 的图象上部分点的对应值如下表:则当y <0时,x 的取值范围为____________. 类型之七 利用对称性解决线段和最短问题14.如图5-ZT -6,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A ,B 之间(C 不与A ,B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________(用含a 的式子表示).图5-ZT -615.[2015·酒泉] 如图5-ZT -7,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.(1)求抛物线的表达式和对称轴.(2)在抛物线的对称轴上是否存在一点P ,使△PAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)连接AC ,在直线AC 下方的抛物线上,是否存在一点N ,使△NAC 的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.图5-ZT -7专题训练(四) 二次函数图象信息专题 类型之一 根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.已知b <0,二次函数y =ax 2+bx +a 2-1的图象为下列四个图象之一.试根据图象分析,a 的值应等于()图4-ZT -1A .-2B .-1C .1D .22.二次函数y =ax 2+bx +c 的图象如图4-ZT -2所示,则abc ,b 2-4ac ,2a +b ,a +b +c 这四个式子中,值为正数的有()图4-ZT -2A .4个B .3个C .2个D .1个3.[2016·广安] 已知二次函数y =ax 2+bx +c(a ≠0)的图象如图4-ZT -3所示,并且关于x 的一元二次方程ax 2+bx +c -m =0有两个不相等的实数根.下列结论:①b 2-4ac <0;②abc>0;③a-b+c<0;④m>-2.其中,正确的个数为( )图4-ZT-3A.1 B.2 C.3 D.4类型之二利用二次函数的图象比较大小4.[2016·兰州] 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3类型之三利用二次函数的图象求方程或不等式的解5.如图4-ZT-4,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于点A,则一元二次方程ax2+bx +c=0的正数解的范围是()图4-ZT-4A.2<x<3 B.3<x<4C.4<x<5 D.5<x<66.如图4-ZT-5,抛物线y=x2+1与双曲线y=kx的交点A的横坐标是1,则关于x的不等式x2+1<kx的解集是( )图4-ZT-5A.x>1 B.x<0C.0<x<1 D.-1<x<07.已知二次函数y=ax2+bx+c(a≠0)的图象如图4-Z-6所示,则方程ax2+bx+c=0的两个根是______________.图4-ZT-68.如图4-ZT-7是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是______________.图4-ZT-7类型之四根据抛物线的特征确定一次函数或反比例函数的图象9.二次函数y=ax2+bx+c的图象如图4-ZT-8所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的大致图象为()图4-ZT-8图4-ZT-910.二次函数y=-x2+bx+c的图象如图4-Z-10所示,则一次函数y=bx+c的图象不经过第________象限.图4-ZT-10类型之五有关二次函数的综合题11.如图4-ZT-11,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=x23(x≥0)的图象于B,C两点,过点C作y轴的平行线交y1的图象于点D,过点D作直线DE∥AC,交y2的图象于点E,则DEAB=________.图4-ZT-1112.如图4-ZT-12,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)设二次函数的图象交y轴于点C,求△ABC的面积.图4-ZT-1213.已知抛物线y=x2-(k+2)x+5k+24和直线y=(k+1)x +(k+1)2.(1)求证:无论k取何实数值,抛物线与x轴都有两个不同的交点;(2)抛物线与x轴交于点A,B,直线与x轴交于点C,设A,B,C三点的横坐标分别是x1,x2,x3,求x1·x2·x3的最大值;(3)如图4-ZT-13所示,如果抛物线与x轴交于点A,B,点A,B在原点的右边,直线与x轴交于点C,点C在原点的左边,又抛物线、直线分别交y轴于点D,E,直线AD交直线CE 于点G,且CA·GE=CG·AB,求抛物线的函数表达式.图4-ZT-13。
二次函数经典例题及答案
二次函数经典例题及答案1.已知抛物线的顶点为P(-4,-),与x轴交于A、B两点,与y轴交于点C,其中B点坐标为(1,0)。
(1)求这条抛物线的函数关系式;(2)若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ADQ为等腰三角形?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.y=x2+4x - ;存在点Q1(-1,-4),Q2(2-9,-),Q3(-,-).试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a(x+4)2-,然后把点B的坐标代入解析式求出a的值,即可得解;(2)先根据顶点坐标求出点D的坐标,再根据抛物线解析式求出点A、C 的坐标,从而得到OA、OC、AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出∠OAC的正弦值与余弦值,再分①AD=Q1D时,过Q1作Q1E1⊥x轴于点E1,根据等腰三角形三线合一的性质求出AQ1,再利用∠OAC的正弦求出Q1E1的长度,根据∠OAC的余弦求出AE1的长度,然后求出OE1,从而得到点Q1的坐标;②AD=AQ2时,过Q2作Q2E2⊥x轴于点E2,利用∠OAC的正弦求出Q2E2的长度,根据∠OAC的余弦求出AE2的长度,然后求出OE2,从而得到点Q2的坐标;③AQ3=DQ3时,过Q3作Q3E3⊥x轴于点E3,根据等腰三角形三线合一的性质求出AE3的长度,然后求出OE3,再由相似三角形对应边成比例列式求出Q3E3的长度,从而得到点Q3的坐标.试题解析:(1)∵抛物线顶点坐标为(-4,-),∴设抛物线解析式为y=a(x+4)2-∵抛物线过点B(1,0),∴a(1+4)2-=0,解得a=,所以,抛物线解析式为y=(x+4)2-,即 y=x2+4x-;(2)存在点Q1(-1,-4),Q2(2-9,-),Q3(-,-).理由如下:∵抛物线顶点坐标为(-4,-),∴点D的坐标为(-4,0),令x=0,则y=-,令y=0,则x2+4x-=0,整理得,x2+8x-9=0,解得x1=1,x2=-9,∴点A(-9,0),C(0,-),∴OA=9,OC=,AD=-4-(-9)=-4+9=5,在Rt△AOC中,根据勾股定理,AC=∴sin∠OAC=cos∠OAC=,①AD=Q1D时,过Q1作Q1E1⊥x轴于点E1,根据等腰三角形三线合一的性质,AQ1=2•ADcos∠OAC=2×5×,Q1E1=AQ1•sin∠OAC=×=4,AE1=AQ1•cos∠OAC=×=8,所以,OE1=OA-AE1=9-8=1,所以,点Q1的坐标为(-1,-4);②AD=AQ2时,过Q2作Q2E2⊥x轴于点E2,Q2E2=AQ2•sin∠OAC=5×=,AE2=AQ2•cos∠OAC=5×=2,所以,OE2=OA-AE2=9-2,所以,点Q2的坐标为(2-9,-);③AQ3=DQ3时,过Q3作Q3E3⊥x轴于点E3,则AE3=AD=×5=,所以,OE3=9-=,∵Q3E3⊥x轴,OC⊥OA,∴△AQ3E3∽△ACO,∴,即,解得Q3E3=,所以,点Q3的坐标为(-,-),综上所述,在线段AC上存在点Q1(-1,-4),Q2(2 -9,-),Q3(-,-),使得△ADQ为等腰三角形.2.如图,直线y=﹣x+3与x轴,y轴分别交于B,C两点,抛物线y=﹣x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.(1)求B、C两点坐标;(2)求此抛物线的函数解析式;(3)在抛物线上是否存在点P,使S△PAB=S△CAB,若存在,求出P点坐标,若不存在,请说明理由.1)B(3,0)C(0,3)(2)此抛物线的解析式为y=﹣x2+2x+3.(3)存在这样的P点,其坐标为P(0,3),(2,3)(1+,﹣3)或(1﹣,﹣3).试题分析:(1)已知了过B、C两点的直线的解析式,当x=0时可求出C 点的坐标,当y=0是可求出B点的坐标.(2)由于抛物线的解析式中只有两个待定系数,因此将B、C两点的坐标代入抛物线中即可求出抛物线的解析式.(3)根据(2)的抛物线的解析式可得出A点的坐标,由此可求出AB的长,由于S△PAB=S△CAB,而AB边为定值.由此可求出P点的纵坐标,然后将P点的纵坐标代入抛物线的解析式中即可求出P点的坐标.试题解析:(1)∵直线y=﹣x+3经过B、C∴当x=0时y=3当y=0时x=3∴B(3,0)C(0,3)(2)∵抛物线y=﹣x2+bx+c经过B、C∴.∴b=2,c=3.∴此抛物线的解析式为y=﹣x2+2x+3.(3)当y=0时,﹣x2+2x+3=0;x1=﹣1,x2=3.∴A(﹣1,0)设P(x,y)∵S△PAB=S△CAB∴×4×|y|=×4×3∴y=3或y=﹣3①当y=3时,3=﹣x2+2x+3∴x1=0,x2=2P(0,3)或(2,3)②当y=﹣3时,﹣3=﹣x2+2x+3∴x1=1+,x2=1﹣∴P(1+,﹣3)或(1﹣,﹣3).因此存在这样的P点,其坐标为P(0,3),(2,3)(1+,﹣3)或(1﹣,﹣3).3.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(1)所求抛物线的函数表达式是y=x2﹣x+2.(2)当x=3时,线段PQ的长度取得最大值.最大值是1.(3)P(3,0)或P(,)或P(,).试题分析:(1)已知了A,B的坐标,可用待定系数法求出函数的解析式.(2)①QP其实就是一次函数与二次函数的差,二次函数的解析式在(1)中已经求出,而一次函数可根据B,C的坐标,用待定系数法求出.那么让一次函数的解析式减去二次函数的解析式,得出的新的函数就是关于PQ,x的函数关系式,那么可根据函数的性质求出PQ的最大值以及相对应的x的取值.(3)分三种情况进行讨论:当∠QOA=90°时,Q与C重合,显然不合题意.因此这种情况不成立;当∠OAQ=90°时,P与A重合,因此P的坐标就是A的坐标;当∠OQA=90°时,如果设QP与x轴的交点为D,那么根据射影定理可得出DQ2=OD•DA.由此可得出关于x的方程即可求出x的值,然后将x代入二次函数式中即可得出P的坐标.试题解析:(1)∵抛物线过A(3,0),B(6,0),∴,解得:,∴所求抛物线的函数表达式是y=x2﹣x+2.(2)①∵当x=0时,y=2,∴点C的坐标为(0,2).设直线BC的函数表达式是y=kx+b.则有,解得:.∴直线BC的函数表达式是y=﹣x+2.∵0<x<6,点P、Q的横坐标相同,∴PQ=y Q﹣y P=(﹣x+2)﹣(x2﹣x+2)=﹣x2+x=﹣(x﹣3)2+1∴当x=3时,线段PQ的长度取得最大值.最大值是1.②解:当∠OAQ=90°时,点P与点A重合,∴P(3,0)当∠QOA=90°时,点P与点C重合,∴x=0(不合题意)当∠OQA=90°时,设PQ与x轴交于点D.∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,∴∠OQD=∠QAD.又∵∠ODQ=∠QDA=90°,∴△ODQ∽△QDA.∴,即DQ2=OD•DA.∴(﹣x+2)2=x(3﹣x),10x2﹣39x+36=0,∴x1=,x2=,∴y1=×()2﹣+2=;y2=×()2﹣+2=;∴P(,)或P(,).∴所求的点P的坐标是P(3,0)或P(,)或P(,).4.如图所示,在平面直角坐标系中,抛物线()经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(,),△PBE的面积为,求与的函数关系式,写出自变量的取值范围.(1),D(1,4);(2)().试题分析:(1)本题需先根据抛物线经过A(﹣1,0)、B(3,0)两点,分别求出a、b的值,再代入抛物线即可求出它的解析式.(2)本题首先设出BD解析式,再把B、D两点坐标代入求出k、b的值,得出BD解析式,再根据面积公式即可求出最大值.试题解析:(1)∵抛物线()经过A(﹣1,0)、B(3,0)两点∴把(﹣1,0)B(3,0)代入抛物线得:,,∴抛物线解析式为:,∵=,∴顶点D的坐标为(1,4);(2)设直线BD解析式为:(),把B、D两点坐标代入,得:,解得5.如图,抛物线与x轴相交于B,C两点,与y轴相交于点A,点P(,)(a是任意实数)在抛物线上,直线经过A,B两点.(1)求直线AB的解析式;(2)平行于y轴的直线交直线AB于点D,交抛物线于点E.①直线(0≤t≤4)与直线AB相交F,与抛物线相交于点G.若FG∶DE=3∶4,求t的值;②将抛物线向上平移m(m>0)个单位,当EO平分∠AED时,求m的值.1);(2)①1或3;②.试题分析:(1)根据点P的坐标,可得出抛物线解析式,然后求出A、B、C的坐标,利用待定系数法求出直线AB的解析式;(2)①根据点E(2,5),D(2,1),G(,),F(,),表示出DE、FG,再由FG:DE=3:4,可得出t的值;②设点A(0,2+m),则点E(2,5+m),作AH⊥DE,垂足为H,在Rt△AEH中利用勾股定理求出AE,根据EO平分∠AED及平行线的性质可推出∠AEO=∠AOE,AO=AE,继而可得出m的值.试题解析:(1)∵P(,)(a是实数)在抛物线上,∴抛物线的解析式为=﹣,当时,即,解得,,当x=0时,y=2.∴A(0,2),B(4,0),C(,0),将点A、B的坐标代入,得:∴,解得:,故直线AB的解析式为;(2)①∵点E(2,5),D(2,1),G(,),F(,),∴DE=4,FG==,∵FG:DE=3:4,∴,解得,.②设点A(0,2+m),则点E(2,5+m),作AH⊥DE,垂足为H,∴=,即AE=,∵EO平分∠AED,∴∠AEO=∠DEO,∵AO∥ED,∴∠DEO=∠AOE,∴∠AEO=∠AOE,∴AO=AE,即,解得m=.6.如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(–1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当P,Q运动t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状并求说明理由.(3)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由(1)y=x2﹣x﹣4.C(0,﹣4);(2)四边形APDQ为菱形;(3)存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).试题分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.(3)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.试题解析:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)四边形APDQ为菱形.理由如下:如图,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形(3)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,∵当点P运动到B点时,点Q停止运动,AB=4,∴AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得 x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,1.当E在A点左边时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).2.当E在A点右边时,∵OA+AE=3+4=7,∴E(7,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0)或(7,0).7.如图,已知抛物线与x轴的一个交点为A(-1,0),另一个交点为B,与y轴的交点为C(0,-3),其顶点为D,对称轴为直线.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标;(3)将△OBC沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形△EFG,将△EFG与△BCD重叠部分的面积记为S,用含m的代数式表示S.(1);(2)M的坐标为,,;(3).试题分析:(1)抛物线与x轴的一个交点为A(-1,0),对称轴为直线,得到抛物线与x轴的另一个交点为B(3,0),把A、B、C的坐标代入抛物线,即可得到抛物线的解析式;(2)①当AC=AM时C、M关于x轴对称,得到M;②当AC=CM时,AC=,以C为圆心,AC为半径作圆与y轴有两个交点,为M或M;(3)分别求出直线BC、BD的解析式,分两段计算重叠的面积:①,②.试题解析:(1)由题意可知,抛物线与x轴的另一个交点为B(3,0),则,,解得,故抛物线的解析式为:;(2)①当AC=AM时C、M关于x轴对称,得到M;②当AC=CM时,AC=,以C为圆心,AC为半径作圆与y轴有两个交点,为M 或M;所以,点M的坐标为,,;(3)记平移后的三角形为△EFG.设直线BC的解析式为y=kx+b,则:,解得:,则直线BC的解析式为,△OBC沿x轴向右平移m个单位长度(0<m<3)得到△EFG,易得直线FG的解析式为.设直线BD的解析式为y=k′x+b′,则:,解得,则直线BD的解析式为,连结CG,直线CG交BD于H,则H(,-3).在△OBC沿x轴向右平移的过程中,①当时,如图1所示.设EG交BC于点P,GF交BD于点Q,则CG=BF=m,BE=PE=3﹣m,联立,解得,即点Q(3﹣m,-2m),==②当时,如图2所示.设EG交BC于点P,交BD于点N,则OE=m,BE=PE=3﹣m,又因为直线BD的解析式为,所以当x=m时,得y=2m﹣6,所以点N(m,2m-6).===,综上所述,.8.如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(2,0)和点B(-6,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与轴交于点M ,在对称轴上存在点P,使△CMP为等腰三角形,请直接写出所有符合条件的点P的坐标.(3)设点Q是抛物线对称轴上的一个动点,当点Q满足最大时,求出Q点的坐标.(4)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.(1)y=-x2-2x+6;(2)P(-2,)或P(-2,2)或P(-2,-2)或P(-2,12);(3)当Q在(-2,12)的位置时,|QB-QC|最大;(4)最大值为;E坐标为(-3,).试题分析:(1)将点A(2,0)和点B(-6,0)分别代入y=ax2+bx+6,得到关于a、b的二元一次方程组,解方程组求出a、b的值,进而得到抛物线的解析式;(2)根据(1)的函数解析式得出抛物线的对称轴为x=-2,再求出M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,6),根据M、C的坐标求出CM的距离.然后分三种情况进行讨论:①CP=PM;②CM=MP;③CM=CP;(3)由抛物线的对称性可知QB=QA,故当Q、C、A三点共线时,|QB-QC| 最大,连结AC并延长,交对称轴于点Q,利用待定系数法求出直线AC的解析式,再将x=-2代入,求出y的值,进而得到Q点的坐标;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO-OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.试题解析:(1)由题知:,解得:,故所求抛物线解析式为:y=-x2-2x+6;(2)∵抛物线解析式为:y=-x2-2x+6,∴对称轴为x=,设P点坐标为(-2,t),∵当x=0时,y=6,∴C(0,6),M(-2,0),∴CM2=(-2-0)2+(0-6)2=40.①当CP=PM时,(-2)2+(t-6)2=t2,解得t=,∴P点坐标为:P1(-2,);②当CM=PM时,40=t2,解得t=±2,∴P点坐标为:P2(-2,2)或P3(-2,-2);③当CM=CP时,由勾股定理得:40=(-2)2+(t-6)2,解得t=12,∴P点坐标为:P4(-2,12).综上所述,存在符合条件的点P,其坐标为P(-2,)或P(-2,2)或P(-2,-2)或P(-2,12);(3)∵点A(2,0)和点B(-6,0)关于抛物线的对称轴x=-2对称,∴QB=QA,∴|QB-QC|=|QA-QC|,要使|QB-QC|最大,则连结AC并延长,与直线x=-2相交于点Q,即点Q为直线AC与直线x=-2的交点,设直线AC的解析式为y=kx+m,∵A(2,0),C(0,6),∴,解得,∴y=-3x+6,当x=-2时,y=-3×(-2)+6=12,故当Q在(-2,12)的位置时,|QB-QC|最大;(4)过点E作EF⊥x轴于点F,设E(n,-n2-2n+6)(-6<n<0),则EF=-n2-2n+6,BF=n+6,OF=-n,S四边形BOCE=BF•EF+(OC+EF)•OF=(n+6)•(-n2-2n+6)+(6-n2-2n+6)•(-n)=-n2-9n+18=-(n+3)2+,所以当n=-3时,S四边形BOCE最大,且最大值为此时,点E坐标为(-3,).9.如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.(1);(2)P点的坐标为,的最大值为;(3)Q(-,0)或(,0)或(,0)或(,0)或(1,0).试题分析:(1)设抛物线的解析式为,根据已知得到C(0,﹣3),A(﹣1,0),代入得到方程组,求出方程组的解即可;(2)过点P作y轴的平行线与AG交于点F,求出点G的坐标(2,﹣3),设直线AG为,代入得到,求出方程组的解得出直线AG为,设P(x,),则F(x,﹣x﹣1),PF,根据三角形的面积公式求出△APG的面积,化成顶点式即可;(3)存在.根据MN∥x轴,且M、N在抛物线上,得到M、N关于直线x=1对称,设点M为(m,)且m>1,得到MN=2(m﹣1),当∠QMN=90°,且MN=MQ时,由△MNQ为等腰直角三角形,得到,求出m的值,得出点M和点Q的坐标;当∠QNM=90°,且MN=NQ 时,同理可求点Q的坐标,当∠NQM=90°,且MQ=NQ时,过Q作QE⊥MN于点E,则QE=MN,根据抛物线及等腰直角三角形的轴对称性,得到点Q的坐标.试题解析:(1)设抛物线的解析式为,由已知得:C(0,﹣3),A(﹣1,0),∴,解得,∴抛物线的解析式为;(2)过点P作y轴的平行线与AG交于点Q,由,令x=2,则y=-3,∴点G为(2,-3),设直线AG为,∴,解得:,即直线AG为,设P(x,),则F(x,-x-1),PF.∵,∴当时,△APG的面积最大,此时P点的坐标为,(3)存在.∵MN∥x轴,且M、N在抛物线上,∴M、N关于直线x=1对称,设点M为(,)且,∴,当∠QMN=90°,且MN=MQ时,△MNQ为等腰直角三角形,∴MQ⊥MN 即MQ⊥x轴,∴,即或,解得,(舍)或,(舍),∴点M为(,)或(,),∴点Q为(,0)或(,0),当∠QNM=90°,且MN=NQ时,△MNQ为等腰直角三角形,同理可求点Q为(-,0)或(,0),当∠NQM=90°,且MQ=NQ时,△MNQ为等腰直角三角形,过Q作QE⊥MN于点E,则QE=MN,,∵方程有解,∴由抛物线及等腰直角三角形的轴对称性知点Q为(1,0),综上所述,满足存在满足条件的点Q,分别为(-,0)或(,0)或(,0)或(,0)或(1,0).0,AD = 2,BC = 6,10.在梯形ABCD中,AD∥BC,BA⊥AC,∠ABC = 45以BC所在直线为x轴,建立如图所示的平面直角坐标系,点A在y轴上.(1)求过A、D、C三点的抛物线的解析式;(2)求△ADC的外接圆的圆心M的坐标,并求⊙M的半径;(3)E为抛物线对称轴上一点,F为y轴上一点,求当ED+EC+FD+FC最小时,EF的长;(4)设Q为射线CB上任意一点,点P为对称轴左侧抛物线上任意一点,问是否存在这样的点P、Q,使得以P、Q、C为顶点的三角形与△ADC相似?若存在,直接写出点P、Q的坐标,若不存在,则说明理由.(1)由题意知C(3,0)、A(0,3).如图1,过D作x轴垂线,由矩形性质得D(2,3).由抛物线的对称性可知抛物线与x轴另一交点为(﹣1,0).设抛物线的解析式为y=a(x+1)(x﹣3).将(0,3)代入得a=﹣1,所以.(2)由外接圆知识知M为对称轴与AC中垂线的交点.由等腰直角三角形性质得OM平分∠AOC,即yOM=x,∴M(1,1).连MC得MC=,即半径为.(3)如图2,由对称性可知:当ED+EC+FD+FC最小时,E为对称轴与AC交点,F为BD与y 轴交点,∵∠B=45°,∠AOB=90°,∴AO=BO=3,故B点坐标为:(﹣3,0),再利用D(2,3),代入y=ax+b,得:,解得:,故BD直线解析式为:,当x=0,y=,根据对称轴为直线x=1,则y=2,故F(0,)、E(1,2),EF===.(4)可得△ADC中,AD=2,AC=,DC=.假设存在,显然∠QCP<90°,则∠QCP=45°或∠QCP=∠CAD.如图3,当∠QCP=45°时,OR=OC=3,则R点坐标为(0,﹣3),将C,R代入y=ax+b得出:,解得:,这时直线CP的解析式为y=x﹣3,同理可得另一解析式为:y=﹣x+3.当直线CP的解析式为y=x﹣3时,则,解得:,可求得P(﹣2,﹣5),故PC==.设CQ=x,则,解得:x=或x=15.∴Q (,0)或(﹣12,0).当y=﹣x+3即P与A重合时,CQ=y,则=,即=,或=,解得CQ=2或9,故Q (1,0)或(﹣6,0).如图4,当∠QCP=∠ACD时,设CP交y轴于H,连接ED,则ED⊥AC,∴DE=,EC=,易证:△CDE∽△CHQ,所以=,∴HO=.可求HC的解析式为.联解,得P,PC=.设CQ=x,知,∴x=或x=,∴Q或.同理当H在y轴正半轴上时,HC的解析式为.∴P’,∴PC=∴,∴CQ=或。
二次函数经典例题与解答
⎧⎪⎨⎪⎩二次函数一、中考导航图1.二次函数的意义;2.二次函数的图象;3.二次函数的性质⎧⎪⎪⎨⎪⎪⎩顶点对称轴开口方向增减性顶点式:y=a(x-h)2+k(a ≠0) 4.二次函数 待定系数法确定函数解析式 一般式:y=ax 2+bx+c(a ≠0) 两根式:y=a(x-x 1)(x-x 2)(a ≠0)5.二次函数与一元二次方程的关系。
6.抛物线y=ax 2+bx+c 的图象与a 、b 、c 之间的关系。
三、中考知识梳理1.二次函数的图象在画二次函数y=ax 2+bx+c(a ≠0)的图象时通常先通过配方配成y=a(x+b 2a )2+ 4a 24ac-b 的形式,先确定顶点(-b 2a ,4a 24ac-b ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质抛物线的开口方向由a 的符号来确定,当a>0时,在对称轴左侧y 随x 的增大而减小;在对称轴的右侧,y随x的增大而增大;简记左减右增,这时当x=-b2a 时,y最小值=4a24ac-b;反之当a<•0时,简记左增右减,当x=-b2a 时y最大值=4a24ac-b.3.待定系数法是确定二次函数解析式的常用方法一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax2+bx+c,然后组成三元一次方程组来求解;在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k;在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴,则可设解析式为y=a(x-x1)(x-x2)来求解.4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c当y=0时抛物线便转化为一元二次方程ax2+bx+c=0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等实根;当抛物线y=ax2+bx+c与x轴有一个交点,方程ax2+bx+c=0有两个相等实根;当抛物线y=ax2+bx+c与x轴无交点,•方程ax2+bx+c=0无实根.5.抛物线y=ax2+bx+c中a、b、c符号的确定a的符号由抛物线开口方向决定,当a>0时,抛物线开口向上;当a<0时,•抛物线开口向下;c的符号由抛物线与y轴交点的纵坐标决定.当c>0时,抛物线交y轴于正半轴;当c<0时,抛物线交y轴于负半轴;b的符号由对称轴来决定.当对称轴在y•轴左侧时,b的符号与a的符号相同;当对称轴在y轴右侧时,b的符号与a的符号相反;•简记左同右异.6.会构建二次函数模型解决一类与函数有关的应用性问题,•应用数形结合思想来解决有关的综合性问题.四、中考题型例析1. 二次函数解析式的确定例1 求满足下列条件的二次函数的解析式(1)图象经过A(-1,3)、B(1,3)、C(2,6);(2)图象经过A(-1,0)、B(3,0),函数有最小值-8;(3)图象顶点坐标是(-1,9),与x 轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式.可根据已知条件中的不同条件分别设出函数解析式,列出方程或方程组来求解.(1)解:设解析式为y=ax 2+bx+c,把A(-1,3)、B(1,3)、C(2,6)各点代入上式得3,3,642.a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩解得1,0,2.a b c =⎧⎪=⎨⎪=⎩∴解析式为y=x 2+2.(2)解法1:由A(-1,0)、B(3,0)得抛物线对称轴为x=1,所以顶点为(1,-8).•设解析式为y=a(x-h)2+k,即y=a(x-1)2-8.把x=-1,y=0代入上式得0=a(-2)2-8,∴a=2.即解析式为y=2(x-1)2-8,即y=2x 2-4x-6.解法2:设解析式为y=a(x+1)(x-3),确定顶点为(1,-8)同上,把x=1,y=-8•代入上式得-8=a(1+1)(1-3).解得a=2,xy O∴解析式为y=2x 2-4x-6.解法3:∵图象过A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax 2-2ax-3a. ∵函数有最小值-8.∴24(3)(2)4a a a a---=-8. 又∵a ≠0,∴a=2.∴解析式为y=2(x+1)(x-3)=2x 2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是x=-1,又∵图象与x 轴两交点的距离为6,即AB=6.由抛物线的对称性可得A 、B 两点坐标分别为A(-4,0),B(2,0),设出两根式y=a(x-x 1)·(x-x 2),将A(-4,0),B(2,0)代入上式求得函数解析式为y=-x 2-2x+8.点评:一般地,已知三个条件是抛物线上任意三点(或任意3对x,y 的值)可设表达式为y=ax 2+bx+c,组成三元一次方程组来求解;•如果三个已知条件中有顶点坐标或对称轴或最值,可选用y=a(x-h)2+k 来求解;若三个条件中已知抛物线与x 轴两交点坐标,则一般设解析式为y=a(x-x 1)(x-x 2).2. 二次函数的图象例2 (2003·孝感)y=ax 2+bx+c(a ≠0)的图象如图所示,则点M(a,bc)在( • ).A.第一象限B.第二象限C.第三象限D.第四象限分析:由图可知:抛物线开口向上⇒a>0.002y c bx y b a ⇒<=-⇒<⎫⎪⎬⎪⎭抛物线与轴负半轴相交对称轴在轴右侧⇒bc>0. ∴点M(a,bc)在第一象限.答案:A.点评:本题主要考查由抛物线图象会确定a 、b 、c 的符号.例3 (2003·岳阳)已知一次函数y=ax+c 二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系中的大致图象是( ).分析:一次函数y=ax+c,当a>0时,图象过一、三象限;当a<0时,图象过二、•四象限;c>0时,直线交y 轴于正半轴;当c<0时,直线交y 轴于负半轴;•对于二次函数y=•ax 2+bx+c(a ≠0)来讲:⎧⎪⎪⎪⎨⎪⎪⎪⎩开口上下决定a的正负左同右异(即对称轴在y轴左侧,b的符号与a的符号相同;)来判别b的符号抛物线与y轴的正半轴或负半轴相交确定c 的正负解:可用排除法,设当a>0时,二次函数y=ax 2+bx+c 的开口向上,而一次函数y=•ax+c 应过一、三象限,故排除C;当a<0时,用同样方法可排除A;c 决定直线与y 轴交点;也在抛物线中决定抛物线与y 轴交点,本题中c 相同则两函数图象在y 轴上有相同的交点,故排除B. 答案:D.3. 二次函数的性质例4 (2002·杭州)对于反比例函数y=-2x与二次函数y=-x 2+3,•请说出他们的两个相同点:①_________,•②_________;•再说出它们的两个不同点:••①________,••②_________.分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③最值④自变量取值范围⑤交点等.解:相同点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1);不同点:①图象形状不同,②自变量取值范围不同,③一个有最大值,一个没有最大值. 点评:本题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命题的热点.4. 二次函数的应用例5 (2003·厦门)已知抛物线y=x 2+(2k+1)x-k 2+k,(1)求证:此抛物线与x 轴总有两个不同的交点.(2)设x1、x2是此抛物线与x轴两个交点的横坐标,且满足x12+x22=-2k2+2k+1.①求抛物线的解析式.②设点P(m1,n1)、Q(m2,n2)是抛物线上两个不同的点,•且关于此抛物线的对称轴对称.求m+m的值.分析:(1)欲证抛物线与x轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令y=0,证△>0即可.(2)①根据二次函数的图象与x轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出k的值,可确定抛物线解析式;•②由P、Q关于此抛物线的对称轴对称得n1=n2,由n1=m12+m1,n2=m22+m2得m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0可求得m1+m2=-1.解:(1)证明:△=(2k+1)2-4(-k2+k)=4k2+4k+1+4k2-4k=8k2+1.∵8k2+1>0,即△>0,∴抛物线与x轴总有两个不同的交点.(2)①由题意得x1+x2=-(2k+1), x1· x2=-k2+k.∵x12+x22=-2k2+2k+1,∴(x1+x2)2-2x1x2=-2k2+2k+1,即(2k+1)2-2(-k2+k)=-2k2+k+1,4k2+4k+1+2k2-2k=-2k2+2k+1.∴8k2=0,∴k=0,∴抛物线的解析式是y=x2+x.②∵点P、Q关于此抛物线的对称轴对称,∴n1=n2.又n1=m12+m1,n2=m22+m2.∴m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0.∵P、Q是抛物上不同的点,∴m1≠m2,即m1-m2≠0.∴m1+m2+1=0即m1+m2=-1.点评:本题考查二次函数的图象(即抛物线)与x轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.基础达标验收卷一、选择题:1.(2003·大连)抛物线y=(x-2)2+3的对称轴是( ).A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004·重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,c)在( ).aA.第一象限;B.第二象限;C.第三象限;D.第四象限3.(2004·天津)已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有( ).A.b2-4ac>0B.b2-4ac=0C.b2-4ac<0D.b2-4ac≤04.(2003·杭州)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有( ).A.b=3,c=7B.b=-9,c=-15C.b=3,c=3D.b=-9,c=215.(2004·河北)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ).6.(2004·昆明)已知二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,•图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ).A.4+mB.mC.2m-8D.8-2m二、填空题1.(2004·河北)若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=_______.2.(2003·新疆)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______.3.(2003·天津)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________.4.(2004·武汉)已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________.5.(2003·黑龙江)已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c=_____.6.(2002·北京东城)有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:三、解答题1.已知函数y=x2+bx-1的图象经过点(3,2).(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值范围.x2+(6- 与x轴有A、B两个交点,且A、B两点关于y轴2.已知抛物线y=- 12对称.(1)求m的值;(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.一、学科内综合题1.如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,•与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,•求这个二次函数的解析式.二、实际应用题3.某公司推出了一种高效环保型洗涤用品,年初上市后,•公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)•刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象(图)提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?4.如图,有一座抛物线形拱桥,在正常水位时水面AB•的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,•忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否完全通过此桥?若能,请说明理由;若不能,•要使货车安全通过此桥,速度应超过每小时多少千米?答案:基础达标验收卷一、1.D 2.D 3.A 4.A 5.B 6.C二、1.(x-1)2+2 2.图象都是抛物线或开口向上或都具有最低点(最小值)3.y=-12x2+2x+524.如y=-x2+15.16.y=15x2-85x+3或y=-15x2+85x-3或y=-17x2-87x+1或y=-17x2+87x-1三、1.解:(1)∵函数y=x2+bx-1的图象经过点(3,2),∴9+3b-1=2,解得b=-2.∴函数解析式为y=x2-2x-1.(2)y=x 2-2x-1=(x-1)2-2.图象略.图象的顶点坐标为(1,-2).(3)当x=3时,y=2,根据图象知,当x ≥3时,y ≥2.∴当x>0时,使y ≥2的x 的取值范围是x ≥3.2.(1)设A(x 1,0) B(x 2,0).∵A 、B 两点关于y 轴对称.∴12120,0.x x x x +=⎧⎨≤⎩∴2(60,2(3)0.m ⎧⎪=⎨--≤⎪⎩ 解得m=6.(2)求得y=-12x 2+3.顶点坐标是(0,3) (3)方程-12x 2)x+m-3=0的两根互为相反数(或两根之和为零等). 3.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC; ②抛物线CBE; ③抛物线DEB; ④抛物线DEC; ⑤抛物线DBC.(2)在(1)中存在抛物线DBC,它与直线AE 不相交.设抛物线DBC 的解析式为y=ax 2+bx+c.将D(-2, 92),B(1,0),C(4,0)三点坐标分别代入,得942,20,164.a b c a b c a b c ⎧-+=⎪⎪++=⎨⎪++=⎪⎩解这个方程组,得a=14,b=-54,c=1. ∴抛物线DBC 的解析式为y=14x 2-54x+1.【另法:设抛物线为y=a(x-1)(x-4),代入D(-2,92),得a=14也可.】 又将直线AE 的解析式为y=mx+n.将A(-2,0),E(0,-6)两点坐标分别代入,得20,6.m n n -+=⎧⎨=-⎩ 解这个方程组,得m=-3,n=-6.∴直线AE 的解析式为y=-3x-6.能力提高练习一、1.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴在y 轴的左侧,∴-2b a<0,∴b>0. 又∵抛物线交于y 轴的负半轴.∴c<0.(2)如图,连结AB、AC.∵在Rt△AOB中,∠ABO=45°,∴∠OAB=45°.∴OB=OA.∴B(-3,0). 又∵在Rt△ACO中,∠ACO=60°, ∴OC=OA·cot60°=3,∴C(3,0). 设二次函数的解析式为y=ax2+bx+c(a≠0).由题意930,330,3.a b ca b cc-+=⎧⎪++=⎨⎪=-⎩3,31,3.abc⎧=⎪⎪⎪⇒=-⎨⎪=-⎪⎪⎩∴所求二次函数的解析式为y=33x2+ (3-1)x-3.3.解:(1)设s与t的函数关系式为s=at2+bt+c由题意得1.5,422,255 2.5;a b ca b ca b c++=-⎧⎪++=-⎨⎪++=⎩或1.5,422,0.a b ca b cc++=-⎧⎪++=-⎨⎪=⎩解得1,22,0.abc⎧=⎪⎪=-⎨⎪=⎪⎩∴s=12t2-2t.(2)把s=30代入s=12t2-2t, 得30=12t2-2t.解得t1=0,t2=-6(舍).答:截止到10月末公司累积利润可达到30万元.(3)把t=7代入,得s=12×72-2×7=212=10.5;把t=8代入,得s=12×82-2×8=16.16-10.5=5.5.答:第8个月公司获利润5.5万元.4.解:(1)设抛物线的解析式为y=ax2,桥拱最高点O到水面CD的距离为hm,则D(5,-h),B(10,-h-3).∴25,100 3.a ha h=-⎧⎨=--⎩解得1,251.ah⎧=-⎪⎨⎪=⎩抛物线的解析式为y=-125x2.(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时). 货车按原来速度行驶的路程为:40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥.设货车速度提高到xkm/h.当4x+40×1=280时,x=60.∴要使货车完全通过此桥,货车的速度应超过60km/h.。
二次函数经典例题及解答
定义
一般形式为$y = ax^2 + bx + c$ ($a neq 0$)的函数称为二次函 数。
图像特征
二次函数的图像是一条抛物线, 开口方向由系数$a$决定,当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
对称轴与顶点坐标求解
对称轴
对于一般形式的二次函数$y = ax^2 + bx + c$,其对称轴为 直线$x = -frac{b}{2a}$。
05
当$-2 leq x < 1$时,由$a geq frac{x^2 + 3}{x - 1}$恒 成立,得$a geq (frac{x^2 + 3}{x - 1})_{max}$。
03
当$x = 1$时,不等式恒成立,$a in R$;
06
综合以上情况,可求得$a$的取值范围。
转化思想在恒成立问题中运用
对称轴和顶点坐标公式记忆错误。避免策略
通过多做练习加深记忆,同时理解公式的推导过程。
判别式 $Delta$ 使用不当,导致…
正确理解判别式的含义和使用方法,结合二次函数的图像进行分析。
忽略二次函数图像与性质的综合运用。避免策略
在解题时注重数形结合,充分利用二次函数的图像和性质进行分析和 求解。
拓展延伸:高阶导数在二次函数研究中的应用
第四步
求极限。根据单调性,求出开 区间上的极限值,即为最值。
含参数最值问题处理方法
第一步
确定参数范围。根据题目条件,确定参数的取 值范围。
01
第三步
求导数。对新函数进行求导,得到导 函数。
03
第五步
判断单调性。根据二次函数的开口方向和临 界点的位置,判断新函数在参数范围内的单
专题14 二次函数的分类讨论问题(解析版)
专题14 二次函数的分类讨论问题1、已知抛物线y =﹣16x 2﹣23x +2与x 轴交于点A ,B 两点,交y 轴于C 点,抛物线的对称轴与x 轴交于H 点,分别以OC 、OA 为边作矩形AECO . (1)求直线AC 的解析式;(2)如图2,P 为直线AC 上方抛物线上的任意一点,在对称轴上有一动点M ,当四边形AOCP 面积最大时,求|PM ﹣OM |的最大值.(3)如图3,将△AOC 沿直线AC 翻折得△ACD ,再将△ACD 沿着直线AC 平移得△A 'C ′D '.使得点A ′、C '在直线AC 上,是否存在这样的点D ′,使得△A ′ED ′为直角三角形?若存在,请求出点D ′的坐标;若不存在,请说明理由.【答案】(1) y =13x +2;(2) 点M 坐标为(﹣2,53)时,四边形AOCP 的面积最大,此时|PM ﹣OM |有最大值√616; (3)存在,D ′坐标为:(0,4)或(﹣6,2)或(−35,195).【解析】(1)令x =0,则y =2,令y =0,则x =2或﹣6,△A (﹣6,0)、B (2,0)、C (0,2),函数对称轴为:x =﹣2,顶点坐标为(﹣2,83),C 点坐标为(0,2),则过点C 的直线表达式为:y =kx +2,将点A 坐标代入上式,解得:k =13,则:直线AC 的表达式为:y =13x +2; (2)如图,过点P 作x 轴的垂线交AC 于点H .四边形AOCP 面积=△AOC 的面积+△ACP 的面积,四边形AOCP 面积最大时,只需要△ACP 的面积最大即可,设点P 坐标为(m ,−16m 2−23m +2),则点G 坐标为(m ,13m +2),S △ACP =12PG •OA =12•(−16m 2−23m +2−13m ﹣2)•6=−12m 2﹣3m ,当m =﹣3时,上式取得最大值,则点P 坐标为(﹣3,52).连接OP 交对称轴于点M ,此时,|PM ﹣OM |有最大值,直线OP 的表达式为:y =−56x ,当x =﹣2时,y =53,即:点M 坐标为(﹣2,53),|PM ﹣OM |的最大值为:|√(−3+2)2+(52−53)2−√22+(53)2|=√616. (3)存在.△AE =CD ,△AEC =△ADC =90°,△EMA =△DMC ,△△EAM △△DCM (AAS ),△EM =DM ,AM =MC ,设:EM =a ,则:MC =6﹣a .在Rt△DCM 中,由勾股定理得:MC 2=DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a =83,则:MC =103,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt△DMC 中,12DH •MC =12MD •DC ,即:DH ×103=83×2,则:DH =85,HC =√DC 2−DH 2=65,即:点D 的坐标为(−65,185);设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣6√10√10),点D ′坐标为(−65+√10185+√10),而点E 坐标为(﹣6,2),则A′D′2=(−6+65)2+(185)2=36,A′E 2=(√10)2+(√102)2=m 2√104,ED′2=(245+√10)2+(85+√10)2=m 2√101285.若△A ′ED ′为直角三角形,分三种情况讨论:△当A′D′2+A′E 2=ED′2时,36+m 2−√104=m 2+√101285,解得:m =2√105,此时D ′(−65+√10185+√10)为(0,4);△当A′D′2+ED′2=A′E 2时,36+m 2+10+1285=m 210+4,解得:m =−8√105,此时D ′(−6510185+10)为(-6,2);△当A′E 2+ED′2=A′D′2时,m 2√10+4+m 2√101285=36,解得:m =−8√105或m =√105,此时D ′(−65√10185√10)为(-6,2)或(−35,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(−35,195).2、已知抛物线1l :212y ax =-的项点为P ,交x 轴于A 、B 两点(A 点在B 点左侧),且sin ABP ∠=.(1)求抛物线1l 的函数解析式;(2)过点A 的直线交抛物线于点C ,交y 轴于点D ,若ABC ∆的面积被y 轴分为1: 4两个部分,求直线AC 的解析式;(3)在(2)的情况下,将抛物线1l 绕点P 逆时针旋转180°得到抛物线2l ,点M 为抛物线2l 上一点,当点M 的横坐标为何值时,BDM ∆为直角三角形?【答案】(1)21128y x =-;(2)直线AC 的解析式为114y x =+;(3)点M 横坐标为16-+16--16-+16--BDM ∆为Rt ∆.【解析】(1)当0x =时,2122y ax =-=- △顶点()0,2P -,2OP = △90BOP ∠=︒,△sin OP ABP BP ∠==△BP ==△4OB ===△()4,0B ,代入抛物线1l 得:1620a -=,解得18a =,△抛物线1l 的函数解析式为21128y x =- (2)△知抛物线1l 交x 轴于A 、B 两点 △A 、B 关于y 轴对称,即()4,0-A △8AB =设直线AC 解析式:y kx b =+点A 代入得:40k b -+= △4b k =△直线AC :4y kx k =+,()0,4D k △14|4|8||2AOD BOD S S k k ∆∆==⨯⨯= △21248x kx k -=+,整理得:2832160x kx k ---= △128x x k += △14x =-△284C x x k ==+,()284488C y k k k k k =++=+△2(84,88)C k k k ++ △21||32||2ABC C S AB y k k ∆=⋅=+ △若0k >,则:=1:4AOD OBCD S S ∆四边形 △15AOD ABC S S ∆∆= △()218325k k k =⨯+ 解得:10k =(舍去),214k = △直线AC 的解析式为114y x =+ △若k 0<,则8AOD BOD S S k ∆∆==-,()232ABC S k k ∆=-+△()218|32|5k k k -=⨯-+解得:10k =(舍去),214k =(舍去)综上所述,直线AC 的解析式为114y x =+. (3)由(2)得:()0,1D ,()4,0B△抛物线1l 绕点P 逆时针旋转180︒得到抛物线2l △抛物线2l 解析式为:22128y x =-- 设点M 坐标为21(,2)8m m --△若90BDM ∠=︒,如图1,则0m < 过M 作MN y ⊥轴于点N△90MND BOD BDM ∠=∠=∠=︒,MN m =-,22111(2)388DN m m =---=+ △90MDN BDO MDN DMN ∠+∠=∠+∠=︒ △BDO DMN ∠=∠ △BDO DMN ∆∆△BO ODDN MN=,即BO MN DN OD ⋅=⋅ △21438m m -=+解得:116m =-+,216m =--△若90DBM ∠=︒,如图2,过点M 作MQ x ⊥轴于点Q△90BQM DBM BDM ∠=∠=∠=︒,4BQ m =-,2211(2)288MQ m m =---=+ △90BMQ MBQ MBQ DBO ∠+∠=∠+∠=︒△BMQ DBO ∠=∠ △BMQ DBO ∆∆△BQ MQDO BO=,即BQ BO MQ OD ⋅=⋅△()214428m m -=+解得:116m =-+216m =--△若90BMD ∠=︒,则点M 在以BD 为直径的圆除点B 、D 外的圆周上 显然以AB 为真径的圆与抛物线2l 无交点,故此情况不存在满足的m综上所述,点M 横坐标为16-+16--16-+16--BDM ∆为Rt ∆. 3、已知:如图,一次函数y=12x+1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y=12x 2+bx+c 的图象与一次函数y=12x+1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0) (1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P 使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值,若不存在,请说明理由. (4)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值,若不存在,说明理由.【答案】△y =12x 2−32x +1;(2)92;(3)t =1或3;(4)a =23√5或65√5【解析】(1)将B (0,1),D (1,0)的坐标代入y=12x 2+bx+c , 得:{c =1b +c +12=0,解得:{b =−32c =1故解析式y=12x 2−32x +1;(2)设C (x 0,y 0), 则有 {y 0=12x 0+1y 0=12x 02−32x 0+1 , 解得{x 0=4y 0=3, △C (4,3),由图可知:S=S △ACE -S △ABD ,又由对称轴为x=32可知E (2,0),△S=12AE•y 0-12AD×OB=12×4×3-12×3×1=92; (3)设符合条件的点P 存在,令P (t ,0): 当P 为直角顶点时,如图:过C 作CF△x 轴于F ;△Rt△BOP△Rt△PCF , △BOPF=OP CF ,即 14−t =t3, 整理得t 2-4t+3=0, 解得a=1或a=3; 故可得t=1或3.(4)存在符合条件的a 值,使△APQ 与△ABD 相似, △当△APQ△△ABD 时,AP AB=AQAD , 解得:a=6√55;△当△APQ△△ADB 时,AP AD=AQ AB , 解得:a=2√53,△存在符合条件的a 值,使△APQ 与△ABD 相似,a=6√55或2√53.4、已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使P A +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭.【思路引导】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则CM =,AC ==AM =AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【解析】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+.当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则CM =,AC ==AM =分三种情况考虑:①当90AMC ∠=时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【方法总结】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=、ACM 90∠=和CAM 90∠=三种情况,列出关于m 的方程.5、如图,动直线 y =kx+2(k >0)与 y 轴交于点 F ,与抛物线 y =14x 2+1 相交于A ,B 两点,过点 A ,B 分别作 x 轴的垂线,垂足分别为点 C ,D ,连接 CF ,DF ,请你判断△CDF 的形状,并说明理由.【答案】△CFD 是直角三角形.见解析。
二次函数知识点总结及相关典型题目(含答案)
二次函数知识点总结及相关典型题目第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121第二部分 典型习题1.抛物线y =x 2+2x -2的顶点坐标是 ( D )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( C )A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0CA EF BD第2,3题图 第4题图3.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( D ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >04.如图,已知∆ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则∆DEF 的面积y 关于x 的函数的图象大致为( D )DO424O424O 424O 424yx2482,484EF xEF x y x x -=⇒=-∴=-+ 5.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 4 .6.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y >0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤22114k x x +-,其中所有正确的结论是 ①③④ (只需填写序号).7.已知直线()02≠+-=b b x y 与x 轴交于点A ,与y 轴交于点B ;一抛物线的解析式为()c x b x y ++-=102.(1)若该抛物线过点B ,且它的顶点P 在直线b x y +-=2上,试确定这条抛物线的解析式;(2)过点B 作直线BC ⊥AB 交x 轴交于点C ,若抛物线的对称轴恰好过C 点,试确定直线b x y +-=2的解析式.解:(1)102-=x y 或642--=x x y将0)b (,代入,得c b =.顶点坐标为21016100(,)24b b b +++-,由题意得21016100224b b b b +++-⨯+=-,解得1210,6b b =-=-.(2)22--=x y8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . (2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x .9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答: ⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? ⑵第三天12时这头骆驼的体温是多少? ⑶兴趣小组又在研究中发现,图中10时到 22时的曲线是抛物线,求该抛物线的解 析式.解:⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时 ⑵第三天12时这头骆驼的体温是39℃⑶()22102421612≤≤++-=x x x y 10.已知抛物线4)334(2+++=x a ax y 与x 轴交于A 、B 两点,与y 轴交于点C .是否存在实数a ,使得 △ABC 为直角三角形.若存在,请求出a 的值;若不 存在,请说明理由.解:依题意,得点C 的坐标为(0,4).设点A 、B 的坐标分别为(1x ,0),(2x ,0),由04)334(2=+++x a ax ,解得 31-=x ,ax 342-=. ∴ 点A 、B 的坐标分别为(-3,0),(a34-,0). ∴ |334|+-=aAB ,522=+=OC AO AC , =+=22OC BO BC 224|34|+-a. ∴ 9891693432916|334|2222+-=+⨯⨯-=+-=aa a a a AB , 252=AC ,1691622+=a BC . 〈ⅰ〉当222BC AC AB +=时,∠ACB =90°. 由222BC AC AB +=,得)16916(259891622++=+-a a a . 解得 41-=a .∴ 当41-=a 时,点B 的坐标为(316,0),96252=AB ,252=AC ,94002=BC . 于是222BC AC AB +=. ∴ 当41-=a 时,△ABC 为直角三角形. 〈ⅱ〉当222BC AB AC +=时,∠ABC =90°. 由222BC AB AC +=,得)16916()98916(2522+++-=aa a . 解得 94=a . 当94=a 时,3943434-=⨯=-a ,点B (-3,0)与点A 重合,不合题意.〈ⅲ〉当222AB AC BC +=时,∠BAC =90°. 由222AB AC BC +=,得)98916(251691622+-+=+aa a . 解得 94=a .不合题意. 综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当41-=a 时,△ABC 为直角三角形. 11.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且ABm 的值; (2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值.解: (1)A(x 1,0),B(x 2,0) . 则x 1 ,x 2是方程 x 2-mx +m -2=0的两根. ∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即m <2 ;又AB =∣x 1 — x 2=∴m 2-4m +3=0 .解得:m=1或m=3(舍去) , ∴m 的值为1 . (2)M(a ,b),则N(-a ,-b) . ∵M 、N 是抛物线上的两点,∴222,2.a ma m b a ma m b ⎧-+-+=⎪⎨---+=-⎪⎩①②①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 . ∴当m <2时,才存在满足条件中的两点M 、N.∴2a m =- .这时M 、N 到y 2m -又点C 坐标为(0,2-m ),而S △M N C = 27 , ∴2×12×(2-m 2m -∴解得m=-7 .12.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0). (1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 解法一:(1)依题意,抛物线的对称轴为x =-2. ∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1, 0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=. ∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++= 上, ∵ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴ 9)(21=OD CD AB ⋅+.∴ 93)42(21=+a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =.(3)设点E 坐标为(0x ,0y ).依题意,00<x ,00<y , 且2500=x y .∴ 0025x y =-.①设点E 在抛物线342++=x x y 上,∴340200++=x x y .解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45). 设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小. ∵ AE 长为定值,∴ 要使△APE 的周长最小,只须PA +PE 最小. ∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点. 设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y .∴ 把x =-2代入上式,得21=y . ∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =.解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++. ∴ △<0 . ∴ 此方程无实数根. 综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小. 解法二:(1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a .∴ a ax ax y 342++=.令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x . ∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0).(2)由a ax ax y 342++=,得D (0,3a ). ∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∴ C (-4,3a ).∴ AB =2,CD =4. ∵ 梯形ABCD 的面积为9,∴ 9)(21=+OD CD AB ⋅.解得OD =3. ∴ 33=a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .(3)同解法一得,P 是直线BE 与对称轴x =-2的交点. ∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F .由PF ∥EQ ,可得EQ PF BQ BF =.∴ 45251PF =.∴ 21=PF .∴ 点P 坐标为(-2,21).以下同解法一.13.已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标.(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设NQ 的长为l ,四边形NQAC 的面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).解:(1)设抛物线的解析式)2)(1(-+=x x a y ,∴ )2(12-⨯⨯=-a .∴ 1=a .∴ 22--=x x y .其顶点M 的坐标是⎪⎭⎫ ⎝⎛-4921,.(2)设线段BM 所在的直线的解析式为b kx y +=,点N 的坐标为N (t ,h ),∴ ⎪⎩⎪⎨⎧+=-+=.214920b k b k ,.解得23=k ,3-=b . ∴ 线段BM 所在的直线的解析式为323-=x y . ∴ 323-=t h ,其中221<<t .∴ t t s )3322(212121-++⨯⨯=121432+-=t t . ∴ s 与t 间的函数关系式是121432+-=t t S ,自变量t 的取值范围是221<<t . (3)存在符合条件的点P ,且坐标是1P ⎪⎭⎫ ⎝⎛4725,,⎪⎭⎫ ⎝⎛-45232,P . 设点P 的坐标为P )(n m ,,则22--=m m n . 222)1(n m PA ++=,5)2(2222=++=AC n m PC ,.分以下几种情况讨论:i )若∠PAC =90°,则222AC PA PC +=.∴ ⎪⎩⎪⎨⎧+++=++--=.5)1()2(222222n m n m m m n , 解得:251=m ,12-=m (舍去). ∴ 点⎪⎭⎫ ⎝⎛47251,P . ii )若∠PCA =90°,则222AC PC PA +=.∴ ⎪⎩⎪⎨⎧+++=++--=.5)2()1(222222n m n m m m n , 解得:02343==m m ,(舍去).∴ 点⎪⎭⎫ ⎝⎛45232,-P . iii )由图象观察得,当点P 在对称轴右侧时,AC PA >,所以边AC 的对角∠APC 不可能是直角.(4)以点O ,点A (或点O ,点C )为矩形的两个顶点,第三个顶点落在矩形这边OA (或边OC )的对边上,如图a ,此时未知顶点坐标是点D (-1,-2),以点A ,点C 为矩形的两个顶点,第三个顶点落在矩形这一边AC 的对边上,如图b ,此时未知顶点坐标是E ⎪⎭⎫ ⎝⎛-5251,,F ⎪⎭⎫ ⎝⎛-5854,.图a 图b14.已知二次函数22-=ax y 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与x 轴的交点的个数.解:根据题意,得a -2=-1.∴ a =1. ∴ 这个二次函数解析式是22-x y =.因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与x 轴有两个交点.15.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB =5 cm ,拱高OC =0.9 cm ,线段DE 表示大桥拱内桥长,DE ∥AB ,如图(1).在比例图上,以直线AB 为x 轴,抛物线的对称轴为y 轴,以1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域; (2)如果DE 与AB 的距离OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据:4.12≈,计算结果精确到1米).解:(1)由于顶点C 在y 轴上,所以设以这部分抛物线为图象的函数解析式为1092+=ax y . 因为点A (25-,0)(或B (25,0))在抛物线上, 所以109)25(02+=-⋅a ,得12518=-a . 因此所求函数解析式为)2525(109125182≤≤-x x y +=-. (2)因为点D 、E 的纵坐标为209, 所以109125182092+-x =,得245±=x .所以点D 的坐标为(245-,209),点E 的坐标为(245,209). 所以225)245(245=-=-DE . 因此卢浦大桥拱内实际桥长为385227501.011000225≈⨯⨯=(米). 16.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2(a ≠0)的图象经过点A 、B ,与y 轴相交于点C .(1)a 、c 的符号之间有何关系?(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值.解:(1)a 、c 同号. 或当a >0时,c >0;当a <0时,c <0.(2)证明:设点A 的坐标为(1x ,0),点B 的坐标为(2x ,0),则210x x <<. ∴ 1x OA =,2x OB =,c OC =.据题意,1x 、2x 是方程)0(02≠=a c bx ax ++的两个根. ∴ a c x x =⋅21. 由题意,得2OC OB OA =⋅,即22c c a c==. 所以当线段OC 长是线段OA 、OB 长的比例中项时,a 、c 互为倒数.(3)当4-=b 时,由(2)知,0421>==-+a a b x x ,∴ a >0.解法一:AB =OB -OA =21221124)(x x x x x x -+=-,∴ aa ac a c a AB 32416)(4)4(22=-==-. ∵ 34=AB , ∴ 3432=a .得21=a .∴ c =2. 解法二:由求根公式,a a a ac x 322416424164±-±-±===,∴ a x 321-=,a x 322+=. ∴ a a a x x OA OB AB 32323212=--=-=-=+. ∵ 34=AB ,∴ 3432=a ,得21=a .∴ c =2. 17.如图,直线333+-=x y 分别与x 轴、y 轴交于点A 、B ,⊙E 经过原点O 及A 、B 两点. (1)C 是⊙E 上一点,连结BC 交OA 于点D ,若∠COD =∠CBO ,求点A 、B 、C 的坐标;(2)求经过O 、C 、A 三点的抛物线的解析式:(3)若延长BC 到P ,使DP =2,连结AP ,试判断直线PA 与⊙E 的位置关系,并说明理由.解:(1)连结EC 交x 轴于点N (如图).∵ A 、B 是直线333+-=x y 分别与x 轴、y 轴的交点.∴ A (3,0),B )3,0(. 又∠COD =∠CBO . ∴ ∠CBO =∠ABC .∴ C 是的中点. ∴ EC ⊥OA .∴ 232,2321====OB EN OA ON . 连结OE .∴ 3==OE EC . ∴ 23=-=EN EC NC .∴ C 点的坐标为(23,23-). (2)设经过O 、C 、A 三点的抛物线的解析式为()3-=x ax y .∵ C (23,23-). ∴)323(2323-⋅=-a .∴ 392=a . ∴ x x y 8329322-=为所求. (3)∵ 33tan =∠BAO , ∴ ∠BAO =30°,∠ABO =50°. 由(1)知∠OBD =∠ABD .∴ ︒=︒⨯-∠=∠30602121ABO OBD . ∴ OD =OB ·tan30°-1.∴ DA =2.∵ ∠ADC =∠BDO =60°,PD =AD =2.∴ △ADP 是等边三角形.∴ ∠DAP =60°.∴∠BAP=∠BAO+∠DAP=30°+60°=90°.即PA⊥AB.即直线PA是⊙E的切线.。
二次函数分类综合及详细解答
二次函数超级分类综合题及详细解答(一)求线段最大值及根据面积求点坐标1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.2.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值(二)求三角形周长及面积的最值问题3.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.(三)为等腰或直角三角形是求点坐标5.如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.(四)四边形与二次函数问题6、如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.答案1.分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ 为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).点评:本题是二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法.(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键.2.分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.解答:解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.所以点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.3.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;故△PBC周长的最小值为3+.(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AG=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础.4.分析:(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x 的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.解答:解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).点评:本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题.5.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6)(不合题意舍去),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在4个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣1)使△ABM为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.6分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点A的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x ﹣;(2)∵抛物线的解析式为:y=x2﹣2x ﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,11①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作ND⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.12。
高中数学二次函数分类讨论经典例题
精品文档例1(1)关于的方程有两个实根,且一个大0??14)x?2mx?2(m?3x2于1,一个小于1,求的取值范围;m(2)x?2(m?3)x?2m?14?0mx),4[02的取值范围;关于有两实根都在的方程内,求??2外,求m的取值范围⑶关于x的方程有两实根在31,0(m?3)x?m?14?2x?2(4)关于的方程有两实根,且一个大于4,一个小0?14?x(m?3)?2m?mx2x2于4,求的取值范围.m3例求实数,上的最大值为13已知函数在区间3a?)?1x2?ax)(fx?(a]2?[,22的值。
精品文档.精品文档解(1)令,∵对应抛物线开口向上,∴方程有14?2m?3)x?f(x)?x?2(m2两个实根,且一个大于1,一个小于1等价于(思考:需要吗?),0)?f(10??21即.??m4(2)令,原命题等价于14m?)x?2)?x?2(m?3f(x2f(0)?0?2m?14?0??f(4)?0??0??14)?2m16?8(m?327??????m??5.2(m?3)???7?m??350???4??2??m??5,m?1??4(m?3)?4(2m?14)?02?(3)令,原命题等价于14??2m2(m?3)xf(x)?x?2f(1)?01?2(m?3)?2m?14?0??21即得.??m??4f(3)?09?6(m?3)?2m?14?0??(4)令,依题得142m??3)x??g(x)?mx2(m2m?0m?0??19或得.0?m??,??g(4)?0g(4)?013??例2(1)已知函数,若有解,求实数的取值22?ax??af(x)0)?f(xa范围;(2)已知,当时,若恒成立,求实数的取2x?x4f(x)??a?f(x?[?1,1])xa值范围。
2有解有解,即有解解:(1)222??1?a(x)0ax?a?2?0)?(fx??a 2?1x2有解所以.?|2|a??).,2?(??a max21x?时,(2)当时,又当恒成立?]ax)?,1?x?[1x?[?1,]1f(.?x)]a[f(min,所以).?5?(??,a5??1)??[f(x)]f(min【评注】“有解”与“恒成立”是很容易搞混的两个概念。
二次函数经典难题(含精解)
二次函数经典难题(含精解)一.选择题(共1小题)1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6二.填空题(共12小题)2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是_________.3.抛物线关于原点对称的抛物线解析式为_________.4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________.5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为_________.6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________.7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________.8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=_________;若抛物线与x轴有两个交点,则a 的范围是_________.9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a=_________.10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是_________.11.若抛物线的顶点在x轴上方,则m的值是_________.12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C 也在该抛物线上,则a•c的值是_________.13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为_________.三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标_________;(2)阴影部分的面积S=_________;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式_________,伴随直线的解析式_________;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是_________;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.20.如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B 成中心对称时,求C3的解析式.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(Ⅰ)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(Ⅱ)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(Ⅲ)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S△ABC的值.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.29.如果抛物线m的顶点在抛物线n上,同时抛物线n的顶点在抛物线m上,那么我们就称抛物线m 与n为交融抛物线.(1)已知抛物线a:y=x2﹣2x+1.判断下列抛物线b:y=x2﹣2x+2,c:y=﹣x2+4x﹣3与已知抛物线a是否为交融抛物线?并说明理由;(2)在直线y=2上有一动点P(t,2),将抛物线a:y=x2﹣2x+1绕点P(t,2)旋转180°得到抛物线l,若抛物线a与l为交融抛物线,求抛物线l的解析式;(3)M为抛物线a;y=x2﹣2x+1的顶点,Q为抛物线a的交融抛物线的顶点,是否存在以MQ为斜边的等腰直角三角形MQS,使其直角顶点S在y轴上?若存在,求出点S的坐标;若不存在,请说明理由;(4)通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你提出一个有关交融抛物线的问题.30.如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.(1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)参考答案与试题解析一.选择题(共1小题)1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6考点:二次函数图象与几何变换.分析:根据题目意思,求出A和B的坐标,再求三角形的面积则可.解答:解:当x=0时,y=3,所以A的坐标是(0,3),y=x2﹣2x+3=(x﹣1)2+2,把它绕顶点P旋转180°得到一个新的抛物线是y=﹣(x﹣1)2+2=﹣x2+2x+1,x=0时,y=1,所以B的坐标是(0,1),P的坐标是(1,2),△PAB的面积=×2×(3﹣2)=1.故选A.点评:本题考查了抛物线与坐标轴交点的求法,和考查抛物线将一般式转化顶点式的能力,难度较大.二.填空题(共12小题)2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是y=﹣2(x﹣1)2+2.考点:二次函数图象与几何变换.专题:应用题.分析:根据题意易得抛物线C的顶点,进而可得到抛物线B的坐标,根据顶点式及平移前后二次项的系数不变可得抛物线B的解析式,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C1所对应的函数表达式.解答:解:根据题意易得抛物线C的顶点为(﹣1,﹣1),∵是向左平移2个单位,向上平移1个单位得到抛物线C的,∴抛物线B的坐标为(1,﹣2),可设抛物线B的坐标为y=2(x﹣h)2+k,代入得:y=2(x﹣1)2﹣2,易得抛物线A的二次项系数为﹣2,顶点坐标为(1,2),∴抛物线A的解析式为y=﹣2(x﹣1)2+2,故答案为y=﹣2(x﹣1)2+2.点评:本题主要考查了讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.3.抛物线关于原点对称的抛物线解析式为.考点:二次函数图象与几何变换.分析:根据关于原点对称的点的坐标特点进行解答即可.解答:解:∵关于原点对称的点的横纵坐标互为相反数,∴抛物线y=﹣x2+x+2关于原点对称的抛物线的解析式为:﹣y=﹣(﹣x)2+(﹣x)+2,即y=x2+x ﹣2.故答案为:y=x2+x﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知关于原点对称的点的坐标特点是解答此题的关键.4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.考点:二次函数图象与几何变换.分析:根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.解答:解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.点评:考查根据二次函数的图象的变换求抛物线的解析式.5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为5﹣5.考点:二次函数综合题.分析:首先建立平面坐标系:过点G作GM⊥x轴于点M,进而得出抛物线解析式,进而表示出G点坐标,再利用FG+MG=10,进而求出即可.解答:解:如图建立平面坐标系:过点G作GM⊥x轴于点M,设抛物线解析式为:y=ax2,∵正方形ABCD边长为10,∴B点坐标为:(5,﹣10),将B点代入y=ax2,则﹣10=25a,解得:a=﹣,设G点坐标为:(a,﹣a2),则GF=2a,∴MG=10﹣GF,即a2=10﹣2a,整理的:a2+5a﹣25=0,解得:a1=,a2=(不合题意舍去),∴正方形EFGH的边长FG=2a=5﹣5.故答案为:5﹣5.点评:此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.考点:列表法与树状图法;抛物线与x轴的交点.分析:由系数a、b、c为绝对值不大于1的整数,可得系数a、b、c为:0,1,﹣1;然后根据题意画树状图,由树状图求得所有等可能的结果与该抛物线的“抛物线三角形”是等腰直角三角形的情况,再利用概率公式即可求得答案.解答:解:∵系数a、b、c为绝对值不大于1的整数,∴系数a、b、c为:0,1,﹣1;画树状图得:∵共有18种等可能的结果,该抛物线的“抛物线三角形”是等腰直角三角形的有:(1,0,﹣1),(﹣1,0,1),∴该抛物线的“抛物线三角形”是等腰直角三角形的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率与二次函数的性质.注意用到的知识点为:概率=所求情况数与总情况数之比.7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是﹣<a<0或0<a<.考点:二次函数的性质.专题:压轴题.分析:根据点A、B的坐标求出OA、OB的长,再求出△ACO和△CBO相似,根据相似三角形对应边成比例列式求出OC的长,再根据二次函数的对称性求出对称轴,设对称轴与直线BC相交于P,与x轴交于Q,利用∠ABC的正切值求出点P到x轴的距离PQ,设抛物线的交点式解析式y=a (x+1)(x﹣4),整理求出顶点坐标,再根据抛物线的顶点在△ABC的内部分两种情况列式求出a的取值范围即可.解答:解:∵点A(﹣1,0),B(4,0),∴OA=1,OB=4,易得△ACO∽△CBO,∴=,即=,解得OC=2,∵抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),∴对称轴为直线x==,设对称轴与直线BC相交于P,与x轴交于Q,则BQ=4﹣=2.5,tan∠ABC==,即=,解得PQ=,设抛物线的解析式为y=a(x+1)(x﹣4),则y=a(x2﹣3x﹣4)=a(x﹣)2﹣a,当点C在y轴正半轴时,0<﹣a<,解得﹣<a<0,当点C在y轴负半轴时,﹣<﹣a<0,解得0<a<,所以,a的取值范围是﹣<a<0或0<a<.故答案为:﹣<a<0或0<a<.点评:本题考查了二次函数的性质,相似三角形的判定与性质,把二次函数的解析式用交点式形式表示更加简便,注意要分点C在y正半轴和负半轴两种情况讨论.8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=9;若抛物线与x轴有两个交点,则a的范围是a<9.考点:抛物线与x轴的交点.分析:顶点在x轴上即抛物线与x轴只有一个交点,则判别式等于0,若抛物线与x轴有两个交点,则△>0,据此即可求解.解答:解:△=36﹣4a,则定点在x轴上,则36﹣4a=0,解得:a=9;抛物线与x轴有两个交点,则36﹣4a>0,解得:a<9.故答案是:9;a<9.点评:本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a=2.考点:待定系数法求二次函数解析式.专题:压轴题.分析:根据抛物线顶点的纵坐标等于2,列出方程,求出a的值,注意要有意义.解答:解:因为抛物线的顶点坐标为(﹣,)所以=2解得:a1=2,a2=﹣1又因为要有意义则a≥0所以a=2.点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a≥0.10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是4.考点:二次函数的性质.分析:根据抛物线顶点的横坐标等于2,列出方程,求出a的值,注意要有意义.解答:解:因为抛物线的顶点坐标为(﹣,),所以﹣=2,解得:a1=4,a2=﹣4,又因为要有意义,则a≥0,所以a=4.故答案为4.点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a≥0.11.若抛物线的顶点在x轴上方,则m的值是2.考点:二次函数的性质;二次函数的定义.专题:计算题.分析:先列出关于m的等式,再根据抛物线的顶点在x轴上方,求得m,所以只需令顶点纵坐标大于0即可.解答:∴m2﹣2=2,解得m=±2,∵抛物线的顶点在x轴上方.∴0﹣8(m+2)<0,∴m>﹣2,∴m=2.故答案为:2.点评:本题考查了二次函数的定义和性质,将函数与一元二次方程结合起来,有一定的综合性.12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C 也在该抛物线上,则a•c的值是﹣2.考点:二次函数的性质;正方形的性质.分析:抛物线y=ax2+c的顶点B点坐标为(0,c),由四边形ABCO是正方形,则C点坐标为标为(﹣,),代入抛物线即可解答.解答:解:∵抛物线y=ax2+c的顶点B点坐标为(0,c),四边形ABCO是正方形,∴∠COB=90°,CO=BC,∴△COB是等腰直角三角形,∴C点横纵坐标绝对值相等,且等于BO长度一半,∴C点坐标为(﹣,),将点C代入抛物线方程中得ac=﹣2.故答案为:﹣2点评:本题将几何图形与抛物线结合了起来,同学们要找出线段之间的关系,进而求得问题的答案.13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为10.考点:二次函数图象上点的坐标特征.专题:整体思想.分析:把点(2,5)代入抛物线求出2a+b的值,然后整体代入进行计算即可得解.解答:解:∵抛物线y=ax2+bx﹣1经过点(2,5),∴4a+2b﹣1=5,∴2a+b=3,∴6a+3b+1=3(2a+b)+1=3×3+1=10.故答案为:10.点评:本题考查了二次函数图象上点的坐标特征,把点的坐标代入函数解析式求出a、b的关系式是解题的关键,主要利用了整体思想.三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:利用关于x轴对称的点的坐标为横坐标不变,纵坐标互为相反数解答即可.解答:解:抛物线C2与抛物线C1关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=2x2﹣4x+5,因此所求抛物线C2的解析式是y=﹣2x2+4x﹣5.点评:利用轴对称变换的特点可以解答.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:先求出抛物线C1的顶点坐标,再根据对称性求出抛物线C2的顶点坐标,然后根据旋转的性质写出抛物线C2的顶点式形式解析式,再把抛物线C1的顶点坐标代入进行即可得解.解答:解:∵y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∴绕点P(t,2)旋转180゜得到抛物线C2的顶点坐标为(2t+1,6),∴抛物线C2的解析式为y=﹣(x﹣2t﹣1)2+6,∵抛物线C1的顶点在抛物线C2上,∴﹣(﹣1﹣2t﹣1)2+6=﹣2,解得t1=3,t2=﹣5,∴抛物线C2的解析式为y=﹣(x﹣7)2+6或y=﹣(x+9)2+6.点评:本题考查了二次函数图象与几何变换,难度较大,求出旋转后的抛物线C2的顶点坐标是解题的关键,也是本题的难点.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标(1,2);(2)阴影部分的面积S=2;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.考点:二次函数图象与几何变换.分析:直接应用二次函数的知识解决问题.解答:解:(1)读图找到最高点的坐标即可.故抛物线y2的顶点坐标为(1,2);(2分)(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;(6分)(3)由题意可得:抛物线y3的顶点与抛物线y2的顶点关于原点O成中心对称.所以抛物线y3的顶点坐标为(﹣1,﹣2),于是可设抛物线y3的解析式为:y=a(x+1)2﹣2.由对称性得a=1,所以y3=(x+1)2﹣2.(10分)点评:考查二次函数的相关知识,考查学生基础知识的同时还考查了识图能力.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式y=﹣2x2+1,伴随直线的解析式y=﹣2x+1;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是y=x2﹣2x﹣3;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM的解析式;(2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式;(3)方法同(1);(4)本题要考虑的a、b、c满足的条件有:抛物线和伴随抛物线都与x轴有两个交点,因此△>0,①由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.②根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件.解答:解:(1)y=﹣2x2+1,y=﹣2x+1;(2)将y=﹣x2﹣3和y=﹣x﹣3组成方程组得,,解得,或.则原抛物线的顶点坐标为(1,﹣4),与y轴的交点坐标为(0,﹣3).设原函数解析式为y=n(x﹣1)2﹣4,将(0,﹣3)代入y=n(x﹣1)2﹣4得,﹣3=n(0﹣1)2解得,n=1,则原函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.(3)∵伴随抛物线的顶点是(0,c),∵设它的解析式为y=m(x﹣0)2+c(m≠0),∵此抛物线过P(﹣,),∴=m•(﹣)2+c,解得m=﹣a,∴伴随抛物线解析式为y=﹣ax2+c;设伴随直线解析式为y=kx+c(k≠0),P(﹣,)在此直线上,∴,∴k=,∴伴随直线解析式为y=x+c;(4)∵抛物线L与x轴有两交点,∴△1=b2﹣4ac>0,∴b2>4ac;∵x2>x1>0,∴x2+x1=﹣>0,x1•x2=>0,∴ab<0,ac>0.对于伴随抛物线有y=﹣ax2+c,有△2=0﹣(﹣4ac)=4ac>0,由﹣ax2+c=0,得x=±.∴C(﹣,0),D(,0),CD=2,又AB=x2﹣x1====,∵AB=CD,则有:2=,即b2=8ac,综合b2=8ac,b2﹣4ac>0,ab<0,ac>0可得a、b、c需满足的条件为:b2=8ac且ab<0(或b2=8ac且bc<0).点评:本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.考点:抛物线与x轴的交点;二次函数图象与几何变换.专题:计算题.分析:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据抛物线与x轴的交点的距离公式得到=2,解得m=3b﹣3a2,则平移所得抛物线的解析式为y=x2+2ax+4b﹣3a2;(2)先确定y=x2+2ax+b的顶点坐标为(﹣a,b﹣a2),由于通过(1)中所得抛物线与x轴的两个交点,则可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),然后把(﹣a,b﹣a2)代入可求出t=.解答:解:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据题意得=2,解得m=3b﹣3a2,所以平移所得抛物线的解析式为y=x2+2ax+b+3b﹣3a2=x2+2ax+4b﹣3a2;(2)y=x2+2ax+b=(x+a)2+b﹣a2,其顶点坐标为(﹣a,b﹣a2),∵新抛物线的表达式过抛物线y=x2+2ax+4b﹣3a2与x轴两交点,∴可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),把(﹣a,b﹣a2)代入得b﹣a2=t(a2﹣2a2+4b﹣3a2),解得t=,所以新抛物线的表达式过抛物线y=x2+ax+b﹣a2.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c (a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.考点:二次函数综合题;点的坐标;待定系数法求二次函数解析式;旋转的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)先连接AB,根据A点是抛物线C的顶点,且C交x轴于O、B,得出AO=AB,再根据∠AOB=60°,得出△ABO是等边三角形,再过A作AE⊥x轴于E,在Rt△OAE中,求出OD、AE的值,即可求出顶点A的坐标,最后设抛物线C的解析式,求出a的值,从而得出抛物线C 的解析式;(2)先过A作AE⊥OB于E,根据题意得出OE=OB=2,再根据直线OA的解析式为y=x,得出AE=OE=2,求出点A的坐标,再将A、B、O的坐标代入y=ax2+bx+c(a<0)中,求出a的值,得出抛物线C的解析式,再根据抛物线C、C′关于原点对称,从而得出抛物线C′的解析式;(3)先作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由(2)知,抛物线C′的顶点为A′(﹣2,﹣2),得出A′B的中点M的坐标,再作MH⊥x轴于H,得出△MHN∽△BHM,则MH2=HN•HB,求出N点的坐标,再根据直线l过点M(1,﹣1)、N(,0),得出直线l的解析式,求出x的值,再根据抛物线C上存在两点使得PB=PA',从而得出P1,P2坐标,再根据抛物线C′上也存在两点使得PB=PA',得出P3,P4的坐标,即可求出答案.解答:解:(1)连接AB.∵A点是抛物线C的顶点,且抛物线C交x轴于O、B,∴AO=AB,又∵∠AOB=60°,∴△ABO是等边三角形,过A作AD⊥x轴于D,在Rt△OAD中,∴OD=2,AD=,∴顶点A的坐标为(2,)设抛物线C的解析式为(a≠0),将O(0,0)的坐标代入,求得:a=,∴抛物线C的解析式为.(2)过A作AE⊥OB于E,∵抛物线C:y=ax2+bx+c(a<0)过原点和B(4,0),顶点为A,∴OE=OB=2,∴AE=OE=2,∴点A的坐标为(2,2),将A、B、O的坐标代入y=ax2+bx+c(a<0)中,∴a=,∴抛物线C的解析式为,又∵抛物线C、C′关于原点对称,∴抛物线C′的解析式为;(3)作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由前可知,抛物线C′的顶点为A′(﹣2,﹣2),故A′B的中点M的坐标为(1,﹣1).作MH⊥x轴于H,∴△MHN∽△BHM,则MH2=HN•HB,即12=(1﹣n)(4﹣1),∴,即N点的坐标为(,0).∵直线l过点M(1,﹣1)、N(,0),∴直线l的解析式为y=﹣3x+2,,解得.∴在抛物线C上存在两点使得PB=PA',其坐标分别为P1(,),P2(,);解得,.∴在抛物线C′上也存在两点使得PB=PA',其坐标分别为P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).∴点P的坐标是:P1(,),P2(,),P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).点评:本题是二次函数的综合,其中涉及到的知识点有旋转的性质,点的坐标,待定系数法求二次函数等知识点,难度较大,综合性较强.20.(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.分析:根据抛物线的解析式,易求得C点的坐标,即可得到OC的长;可分别在Rt△OBC和Rt△OAC 中,通过解直角三角形求出OB、OA的长,即可得到A、B的坐标,进而可运用待定系数法求得抛物线和直线的解析式.解答:解:由题意得C(0,)在Rt△COB中,∵∠CBO=60°,∴OB=OC•cot60°=1∴B点的坐标是(1,0);(1分)在Rt△COA中,∵∠CAO=45°,∴OA=OC=∴A点坐标(,0)由抛物线过A、B两点,得解得∴抛物线解析式为y=x2﹣()x+(4分)设直线BC的解析式为y=mx+n,得n=,m=﹣∴直线BC解析式为y=﹣x+.(6分)点评:此题主要考查的是用待定系数法求一次函数及二次函数解析式的方法.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.。
二次函数经典题型(含答案)
二次函数经典题型(启东教育)1.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.2.已知函数y =x 2+bx -1的图象经过点(3,2) (1) 求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x >0时,求使y ≥2的x 的取值范围.3.已知抛物线y =-x 2+mx -m +2.(1)若抛物线与x 轴的两个交点A 、B 分别在原点的两侧,并且AB =5,试求m 的值;(2)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于27,试求m 的值.4.如图,已知点A (tan α,0),B (tan β,0)在x 轴正半轴上,点A 在点B 的左边,α、β 是以线段AB 为 斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角.(1)若二次函数y =-x 2-25kx +(2+2k -k 2)的图象经过A 、B 两点,求它的解析式;(2)点C 在(1)中求出的二次函数的图象上吗请说明理由.5.已知抛物线2y x kx b =++经过点(23)(10)P Q --,,,. (1)求抛物线的解析式.(2)设抛物线顶点为N ,与y 轴交点为A .求sin AON ∠的值.(3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.6.已知抛物线y=ax 2+bx+c 经过A ,B ,C 三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax 2+bx+c 当x<0时的图象;(3)利用抛物线y=ax 2+bx+c,写出x 为何值时,y>0.7.已知抛物线c bx ax y ++=2与y轴的交点为C ,顶点为M ,直线CM 的解析式 y=-x+2 并且线段CM 的长为22(1) 求抛物线的解析式。
二次函数重难题型归类 (解析版)
二次函数重难题型归类【考向速览】【考向突破】考向1 二次函数含参问题1.若函数()221f x ax x =+-在区间(,6)-∞上单调递增,则实数a 的取值范围是( )A .1,06⎡⎤-⎢⎥⎣⎦B .1,06⎛⎫- ⎪⎝⎭C .1,6⎛⎫-+∞ ⎪⎝⎭D .1,16⎛⎫- ⎪⎝⎭【答案】A【分析】讨论a 的取值,可知a =0符合题意,当0a ≠ 时,结合二次函数的性质可得不等式组,求得a 的范围,综合可得答案.【详解】当a =0时,函数()21f x x =-在R 上单调递增, 所以()f x 在(,6)-∞上单调递增,则a =0符合题意;当0a ≠ 时,函数()f x 是二次函数,又()f x 在(,6)-∞上单调递增, 由二次函数的性质知,160aa ⎧-≥⎪⎨⎪<⎩ ,解得106a -≤<. 综上,实数a 的取值范围是1,06⎡⎤-⎢⎥⎣⎦,故选:A.2.若函数()221f x x ax a =-+-在[]0,2上的最小值为-1,则=a ( )A .2或65B .1或65C .2D .1【答案】D【分析】先求出二次函数的对称轴,然后讨论对称轴与区间[]0,2的关系,求出其最小值,列方程可求出a 的值【详解】函数2()21f x x ax a =-+-图象的对称轴为x a =,图象开口向上,(1)当0a ≤时,函数()f x 在[]0,2上单调递增.则()(0)1min f x f a ==-,由11a -=-,得2a =,不符合0a ≤; (2)当02a <<时.则222()()211min f x f a a a a a a ==-+-=--+,由211a a --+=-,得2a =-或1a =,又02a <<,1a 符合;(3)当2a ≥时,函数2()21f x x ax a =-+-在[]0,2上单调递减,()()244155min f x f a a a ∴==-+-=-,由551a -=-,得65a =, 又2a ≥,∴65a =不符合, 综上可得1a =. 故选:D3.()224f x x x =--定义域为[]0,m ,值域为[]5,4--,则m 的取值范围是( )A .{}1B .[)1,+∞C .[]1,2D .[)1,2【答案】C【分析】由二次函数的性质知()f x 开口向上且顶点为(1,5)-,且(0)(2)4f f ==-,结合闭区间对应值域即可确定m 的范围.【详解】由2()(1)5f x x =--,其开口向上且顶点为(1,5)-, 当()4f x =-时,可得0x =或2x =,因为()f x 定义域为[]0,m 对应值域为[]5,4--, 所以12m ≤≤. 故选:C.4.已知函数2()4(0)f x ax ax b a =-+>在[0,3]上的最大值为3,最小值为1-. (1)求()f x 的解析式;(2)若(1,)∃∈+∞x ,使得()f x mx <,求实数m 的取值范围.【答案】(1)()243f x x x =-+(2)234m >-【分析】(1)根据()f x 的最值列方程组,解方程组求得,a b ,进而求得()f x . (2)利用分离常数法,结合基本不等式求得m 的取值范围. (1)()f x 的开口向上,对称轴为2x =,所以在区间[]0,3上有:()()()()min max 2,0f x f f x f ==,即481133a a b a b b -+=-=⎧⎧⇒⎨⎨==⎩⎩,所以()243f x x x =-+.(2)依题意(1,)∃∈+∞x ,使得()f x mx <,即2343,4x x mx m x x-+<>+-, 由于1x >,33424234x x x x+-≥⋅-=-, 当且仅当33x x x=⇒=时等号成立. 所以234m >-.5.已知函数()2442f x x mx m =-++.(1)若()f x 的图象与x 轴的两个不同交点的横坐标分别为1x ,2x ,求2212x x +的取值范围;(2)若()2442f x x mx m =-++在(],1-∞上是减函数,且对任意的1x ,[]22,1x m ∈-+,总有()()1264f x f x -≤成立,求实数m 的取值范围. 【答案】(1)1,2⎛⎫+∞ ⎪⎝⎭(2)【分析】(1)0∆>求得m 的范围,利用韦达定理代入()2221212122x x x x x x +=+-,然后配方求得答案; (2)()f x 在(],1-∞上是减函数求得m 的范围,转化为()()max min 64f x f x -≤,求出()max f x 、()min f x ,然后解不等式可得答案.(1)由题意可知方程24420x mx m -++=有两个不相等的实数根1x ,2x , 由韦达定理得12x x m +=,1224m x x +=, 所以()()244420m m ∆=--⨯+>,解得2m >或1m <-,()22222121212211722416m x x x x x x m m +⎛⎫+=+-=-=-- ⎪⎝⎭,令()2117416m g m ⎛⎫-- ⎪⎝⎭=,则当2m >时,()211722416g m ⎛⎫--= ⎪⎝⎭>,当1m <-时,()2117114162g m ⎛⎫---= ⎪⎝⎭>,所以()12g m >,所以221212x x +>,即2212x x +的取值范围为1,2⎛⎫+∞ ⎪⎝⎭. (2)函数()2442f x x mx m =-++图象的对称轴为直线2mx =,()f x 在(],1-∞上是减函数, 所以有12m≥,即2m ≥, 又因为对任意的1x ,[]22,1x m ∈-+,总有()()()()12max min f x f x f x f x -≤-, 要使()()1264f x f x -≤成立,则必有()()max min 64f x f x -≤,在区间[]2,1m -+上,()f x 在2,2m ⎡⎤-⎢⎥⎣⎦上单调递减,在,12m m ⎡⎤+⎢⎥⎣⎦上单调递增,又()1222m m m +-<--,所以()()max 2918f x f m =-=+,()2min 22m f x f m m ⎛⎫==-++ ⎪⎝⎭,所以有()2918264m m m +--++≤,即28480m m +-≤,解得124m -≤≤,综上,实数m 的取值范围是.考向2 二次函数与幂函数的复合问题1.函数322()(6)f x x x =--的单调递减区间为( ) A .1[,2]2-B .1[3,]2--C .1[,)2-+∞D .1(,]2-∞-【答案】A 【分析】()32()6f x x x =--,由260x x --≥结合函数26y x x =--的递减区间可得结果.【详解】()()33222()66f x x x x x =--=--,由260x x --≥得32x -≤≤,又22125624x x x ⎛⎫--=-++ ⎪⎝⎭,所以函数()f x 的单调递减区间为1,22⎡⎤-⎢⎥⎣⎦.故选:A .2.(多选)关于函数()241y x =-+ ) A .在区间[]1,0-上单调递减 B .单调递增区间为[]3,1-- C .最大值为2 D .没有最小值【答案】ABC【分析】先求出函数定义域,令()241t x =-+,根据二次函数的性质,由已知解析式,逐项判断,即可得出结果.【详解】由()2410x -+≥得31x -≤≤,即函数()241y x =-+的定义域为[]3,1-,令()241t x =-+,则()241t x =-+的图象是开口向下,对称轴为x =-1的抛物线, 所以函数()241t x =-+在[]3,1--上单调递增,在[]1,1-上单调递减,又y t =单调递增,所以()241y x =-+在[]3,1--上单调递增,在[]1,1-上单调递减,故A ,B 正确;()2max 4112y =--+=,当x =-3时,()24310y =--+=,当x =1时,()24110y =-+=,则min 0y =,故C 正确,D 错误. 故选:ABC.3.若函数241y ax x =++[)0,∞+,则a 的取值范围为( ) A .()0,4 B .()4,+∞C .[]0,4D .[)4,+∞【答案】C【分析】当0a =时易知满足题意;当0a ≠时,根据()f x 的值域包含[)0,∞+,结合二次函数性质可得结果.【详解】当0a =时,410y x =+≥,即值域为[)0,∞+,满足题意;若0a ≠,设()241f x ax x =++,则需()f x 的值域包含[)0,∞+,0Δ1640a a >⎧∴⎨=-≥⎩,解得:04a <≤; 综上所述:a 的取值范围为[]0,4. 故选:C.4.已知函数f (x )()221mx m x m =--+-[0,+∞),则实数m 的取值范围是__. 【答案】2303⎡⎤⎢⎥⎣⎦,【分析】将m 分为000m m m =><,, 三种情况讨论:当0m =时,()210f x x =-≥ 满足条件;当0m <时,由二次函数知开口向下,不满足条件;当0m >时,只需二次函数的0∆≥即可,解出m 的取值范围,综上得m 的取值范围.【详解】解:当0m =时,()()22121f x mx m x m x =--+-=-,值域是[0,+∞),满足条件;令()()221g x mx m x m =--+- ,()()0g x ≥当m <0时,()g x 的图象开口向下,故f (x )的值域不会是[0,+∞),不满足条件;当m >0时,()g x 的图象开口向上,只需()2210mx m x m --+-=的0∆≥,即(m ﹣2)2﹣4m (m ﹣1)≥0, ∴232333m -≤≤,又0m > ,所以2303m <≤ 综上,2303m ≤≤, ∴实数m 的取值范围是:2303⎡⎤⎢⎥⎣⎦,,故答案为:2303⎡⎤⎢⎥⎣⎦,.5.已知幂函数()()22317m f x m m x -=--的图像关于y 轴对称.(1)求()f x 的解析式;(2)求函数()()2243g x f x x =-+在[]1,2-上的值域.【答案】(1)()4f x x =(2)11,2434⎡⎤⎢⎥⎣⎦【分析】(1)根据幂函数的定义和性质求出m 的值即可;(2)由(1)求出函数()g x 的解析式,结合二次函数的性质即可得出结果. (1)因为()()22317m f x m m x -=--是幂函数,所以23171m m --=,解得6m =或3m =-. 又()f x 的图像关于y 轴对称,所以6m =,故()4f x x =.(2)由(1)可知,()()2242222111164316431684g x x x xx x ⎛⎫=-+=-+=-+ ⎪⎝⎭.因为[]1,2x ∈-,所以[]20,4x ∈,又函数21111684y x ⎛⎫=-+ ⎪⎝⎭在1(,)8-∞上单调递减,在1(,)8+∞上单调递增,所以221111116,243844x ⎛⎫⎡⎤-+∈ ⎪⎢⎥⎝⎭⎣⎦.故()g x 在[]1,2-上的值域为11,2434⎡⎤⎢⎥⎣⎦.考向3 二次函数与指数函数的复合问题1.函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.【答案】(]0,4【分析】先求得22x -的取值范围,再利用指数函数的性质即得.【详解】由于222x -≥-,12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以222110422x --⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭, 所以函数2212x y -⎛⎫= ⎪⎝⎭的值域为(]0,4.故答案为:(]0,4.2.若函数()22312ax x f x -+⎛⎫= ⎪⎝⎭的最大值是2,则=a ( ) A .14B .14-C .12D .12-【答案】A【分析】根据()f x 有最大值及指数复合函数的单调性,可得223u ax x =-+在定义域上先减后增,再由二次函数性质求参数即可.【详解】由1()2uy =在定义域上递减,要使()f x 有最大值,则223u ax x =-+在定义域上先减后增, 当max ()2f x =,则223u ax x =-+的最小值为1-, 所以0131a a>⎧⎪⎨-=-⎪⎩,可得14a =.故选:A3.已知函数()11124x xf x a ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,且()314f =,当[]3,2x ∈-时,函数()y f x m =+存在零点,则实数m的取值范围为( ) A .[]57,1-- B .357,4⎡⎤--⎢⎥⎣⎦C .157,4⎡⎤--⎢⎥⎣⎦D .157,5⎡⎤--⎢⎥⎣⎦【答案】B【分析】先根据条件算出参数a ,函数存在零点等价于方程有解,即()f x m =-有解,故只需要求()f x 在[]3,2-上的值域即可.【详解】由题意得,()1311244a f =++=,则1a =-,()11124x x f x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,令12xt ⎛⎫= ⎪⎝⎭,因为[]3,2x ∈-,所以1,84t ⎡⎤∈⎢⎥⎣⎦,因此()f x 可转化为()21h t t t =-+,1,84t ⎡⎤∈⎢⎥⎣⎦,其对称轴为12t =,()min 1324h t h ⎛⎫== ⎪⎝⎭,()()max 857h t h ==,所以()f x 在[]3,2-上的值域为3,574⎡⎤⎢⎥⎣⎦.函数()y f x m =+存在零点,等价于方程()f x m =-有解,所以实数m 的取值范围是357,4⎡⎤--⎢⎥⎣⎦.故选:B4.已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.【答案】()4,+∞【分析】设()20,x t =∈+∞,可转化为()2210t a t +-+=有两个正解,进而可得参数范围.【详解】设()20,xt =∈+∞,由()212221x x xf x a +=+-+有两个零点,即方程()2210t a t +-+=有两个正解,所以()21212Δ2402010a t t a t t ⎧=-->⎪+=->⎨⎪=>⎩,解得4a >,即()4,a ∈+∞, 故答案为:()4,+∞.5.要使函数124x x y a =++⋅在(],1x ∈-∞时恒大于0,则实数a 的取值范围是______. 【答案】3,4⎛⎫-+∞ ⎪⎝⎭【分析】利用分离参数法得到124x x a +>-在(],1x ∈-∞时恒成立,令()124xx f x +=-,求出()f x 的值域,即可求出实数a 的取值范围.【详解】因为函数124x x y a =++⋅在(],1x ∈-∞时恒大于0, 所以124xx a +>-在(],1x ∈-∞时恒成立.令()124xx f x +=-,则()221412111142222x xx x x f x ⎡⎤+⎛⎫⎛⎫⎛⎫=-=--=-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎥⎦+⎢⎣.因为(],1x ∈-∞,所以11,2 2x⎛⎫⎡⎫∈+∞ ⎪⎪⎢⎝⎭⎣⎭.令21111,(), ,2242xt g t t t ⎛⎫⎛⎫⎡⎫==-++∈+∞ ⎪ ⎪⎪⎢⎝⎭⎝⎭⎣⎭.因为()g t 在1,2⎡⎫+∞⎪⎢⎣⎭上为减函数,所以21111()()()222443g t g ≤=-++=-,即3(),4g t ⎛⎤∈-∞- ⎥⎝⎦因为()a g t >恒成立,所以3,4a ⎛⎫∈-+∞ ⎪⎝⎭.故答案为:3,4⎛⎫-+∞ ⎪⎝⎭6.已知函数()423x xf x a =+⋅+,a R ∈.(1)当4a =-,且[]0,2x ∈时,求函数()f x 的值域; (2)若函数()f x 在[]0,2的最小值为1,求实数a 的值; 【答案】(1)[]1,3- (2)22a =-【分析】(1)令[]21,4xt =∈,结合二次函数的性质可求得最值,由此可得()f x 值域;(2)令[]21,4x t =∈,可得()()23f x g t t at ==++,分别在12a -≤、142a <-<和42a-≥的情况下,根据二次函数单调性确定最小值点,由最小值可构造方程求得结果. (1)当4a =-时,()4423x xf x =-⋅+;令2x t =,则当[]0,2x ∈时,[]1,4t ∈,243y t t =-+在[]1,2上单调递减,在[]2,4上单调递增,()min 44231f x ∴=-⨯+=-,()max 161633f x =-+=,()f x ∴的值域为[]1,3-.(2)令2x t =,则当[]0,2x ∈时,[]1,4t ∈,()()23f x g t t at ==++,对称轴为2a t =-;当12a-≤,即2a ≥-时,()g t 在[]1,4上单调递增,()()min 141g t g a ∴==+=, 解得:3a =-(舍); 当142a <-<,即82a -<<-时,()g t 在1,2a ⎡⎫-⎪⎢⎣⎭上单调递减,在,42a ⎛⎤- ⎥⎝⎦上单调递增,()2min3124a a g t g ⎛⎫∴=-=-+= ⎪⎝⎭,解得:22a =(舍)或22a =-;当42a-≥,即8a ≤-时,()g t 在[]1,4上单调递减,()()min 41941g t g a ∴==+=, 解得:92a =-(舍);综上所述:22a =-.7.已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值. 【答案】(1)()5,-+∞ (2)12a =或2a =【分析】(1)利用换元法,设x t a =,则20,45t y t t >=+-,然后利用二次函数的性质可求得函数的值域, (2)分01a <<和1a >两种情况求解即可 (1)设x t a =,则220,45(2)9t y t t t >=+-=+-. 因为0t >,所以22t +>,所以2(2)4t +>, 所以495y >-=-, 即()f x 的值域为()5,-+∞. (2)函数245y t t =+-图象的对称轴为直线2t =-. 当01a <<时,21a t a -,所以245y t t =+-在21,a a -⎡⎤⎣⎦上单调递增,则()211457a a --+-=,解得12a -=或16a -=-(舍去)所以12a =; 当1a >时,12a t a -,所以245y t t =+-在12,a a -⎡⎤⎣⎦上单调递增,则()222457a a +-=,解得22a =或26a =-(舍去), 因为1a >,所以2a =. 综上,12a =或2a =. 8.已知函数()33x x af x b+=+.(1)当5a =,3b =-时,求满足()3xf x =的x 的值;(2)当1b =时,若函数()y f x =是定义在R 上的奇函数,函数()g x 满足()()(31)3x x g x f x -=++ ①求()f x 及()g x 的表达式;②若对任意x ∈R 且0x ≠,不等式()()210g x m g x ≥⋅-恒成立,求实数m 的最大值. 【答案】(1)3log 5x =(2)①()3131-=+x x f x ,()331x xg x -=+-;②422+【分析】(1)代入5a =,3b =-得到()234350x x -⋅-=,再因式分解求解即可;(2)①由定义在R 上的奇函数满足()00f =可得1a =-,进而得到()f x 及()g x ;②化简可得()()233333110x x x x m --+-≥+--,令33x x t -=+,再参变分离根据基本不等式求解范围即可(1)因为5a =,3b =-时,()3533x x f x +=-,又因为()3xf x =,所以()234350x x -⋅-=(1x ≠)所以()()35310x x-+=,所以35x =,即3log 5x =;(2)①因为()f x 是定义在R 上的奇函数,所以()00f =, 10a ∴+=,1a =-,所以()3131-=+x x f x所以()331x xg x -=+-,②由①可得()()2222331333x x x x g x --=+-=+-,因为()()210g x m g x ≥⋅-对任意0x ≠恒成立,所以()()233333110x x x x m --+-≥+--对任意0x ≠恒成立,令33xxt -=+(()2,t ∈+∞),所以271t m t +≥-, 又因为()()()2212187812111t t t t t t t -+-++==-++--- 由对勾函数8y x x=+(1x >)的单调性可知,22x =时y 有最小值42, 所以)27422,1t t +⎡∈++∞⎣-,所以(,422m ⎤∈-∞+⎦,所以m 的最大值为422+. 9.已知函数()2x xa tf x a +=(0a >,1a ≠)是奇函数.(1)若()10f <,对任意[]0,1x ∈有()212f x kx k a a-->-恒成立,求实数k 的取值范围; (2)设()()22log x xm g x a a mf x -⎡⎤=+-⎣⎦(0m >,1m ≠),若()312f =,问是否存在实数m 使函数()g x 在[]21,log 3上的最大值为0?若存在,求出m 的值;若不存在,说明理由. 【答案】(1)32k >; (2)不存在,理由见解析.【分析】(1)根据定义域为R 及奇函数性质(0)0f =求参数t ,可得()f x 的解析式并判断出单调性,根据1(1)f a a -=-,将不等式转化为2211x k x +<+在[0,1]x ∈恒成立,即可求k 范围;(2)先用()f x 表示函数()g x ,根据3(1)2f =求得()f x 的解析式,根据单调性利用换元法求得()f x 的值域,结合对数的定义域求m 的范围,根据对数型复合函数的单调性判断在m 的取值范围内能否取到最大值0. (1)由题设,(0)10f t =+=,解得1t =-,故21()x x x xa f x a a a--==-, 而1(1)0f a a=-<(0)a >,解得01a <<, 所以()x x f x a a -=-在R 上单调递减且1(1)f a a-=-,所以21(2)f x kx k a a-->-等价于()2(2)1f x kx k f -->-,即221x kx k --<-, 所以2211x k x +<+在[0,1]x ∈恒成立,整理可得()322121x k x ⎛⎫⎪++-< ⎪+⎪⎝⎭, 由对勾函数的性质知:()332212[2(62),]12x x ⎛⎫⎪++-∈- ⎪+⎪⎝⎭,所以32k >.(2)不存在实数m ,理由如下:22()log ()x xm g x a a mf x -⎡⎤=+-⎣⎦2log ()()2m f x mf x ⎡⎤=-+⎣⎦,因为3(1)2f =(0)a >,代入得132a a -=,解得2a =或12a =-(舍), 所以()22x xf x -=-,易知()f x 在R 上为单调递增函数,令()22x x t f x -==-,当[]21,log 3x ∈时()131222f -=-=,()22log 3log 328log 3223f -=-=, 所以38,23t ⎡⎤∈⎢⎥⎣⎦,对于()g t ,220t mt -+>在38,23t ⎡⎤∈⎢⎥⎣⎦上恒成立,即在38,23t ⎡⎤∈⎢⎥⎣⎦上2min2t m t ⎛⎫+< ⎪⎝⎭, 令()2h t t t =+,38,23t ⎡⎤∈⎢⎥⎣⎦,所以min 33417()2236h x h ⎛⎫==+= ⎪⎝⎭,即176m <,又0,1m m >≠,所以()170,11,6m ⎛⎫∈⋃ ⎪⎝⎭,对于二次函数()22d t t mt =-+:开口向上且对称轴为2m t =11170,,2212⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭, 所以对称轴位于38,23⎡⎤⎢⎥⎣⎦的左侧,即()d t 在38,23⎡⎤⎢⎥⎣⎦内单调递增,所以()min 3317224d x d m ⎛⎫==-+ ⎪⎝⎭,()max 8882339d x d m ⎛⎫==-+ ⎪⎝⎭,假设存在满足条件的实数m 且max ()0g x =,则当()0,1m ∈时,()g t 为减函数,()()2min min 21d t t mt =-+=,即33171224d m ⎛⎫=-+= ⎪⎝⎭,解得()130,16m =∉舍去,当171,6m ⎛⎫∈ ⎪⎝⎭时,()g t 为增函数,()()2max max 21d t t mt =-+=,即88821339d m ⎛⎫=-+= ⎪⎝⎭,解得73171,246m ⎛⎫=∉ ⎪⎝⎭舍去,综上,不存在实数m 满足条件成立. 【点睛】关键点点睛:(1)由奇函数性质求出参数t ,再由()2(2)1f x kx k f -->-,将问题转化为2211x k x +<+在[0,1]x ∈恒成立; (2)根据已知条件求出()f x 解析式并求出值域,结合对数函数的性质:在38,23t ⎡⎤∈⎢⎥⎣⎦上2min2t m t ⎛⎫+< ⎪⎝⎭求m的范围,最后讨论m 的范围,利用二次函数、对数复合函数的单调性判断m 的存在性.10.已知函数()2226f x x mx m =-++,()2xg x =.(1)求()()g f m 的值;(2)若方程()()128g f x =在区间[]1,2-上有唯一的实数解,求实数m 的取值范围;(3)对任意m R ∈,若关于x 的不等式()()()()()()f g x f g x t g x g x +-≥+-⎡⎤⎣⎦在R 上恒成立,求实数t 的取值范围.【答案】(1)64 (2)[)(]2,01,3-(3)(,25-∞⎤⎦【分析】(1)根据题意得()f m 的值,代入求解即可; (2)根据题意得222762=2xmx m -++,所以()()110x m x m ---+=,根据零点位置和区间端点位置判断即可求解; (3)根据题意得22222222+212220xxxx x xm m t ,化简得22(2)(2)22222x x x x t --++≤+,构造()22(2)(2)2222x x x xx ϕ--++=+求解即可.(1) 因为222266f m m m m ,所以()()()66264g f m g ===(2)由()()128g f x =,得222762=2x mx m -++,即22267x mx m -++=,即22210x mx m -+-=,因式分解得()()110x m x m ---+=, 解得1x m =+或1x m =-,因为方程()()128g f x =在区间[]1,2-上有唯一的实数解, 注意到11m m +>-,所以11212m m -≤-≤⎧⎨+>⎩或11112m m -<-⎧⎨-≤+≤⎩解得13m <≤,或20m -≤<.所以m 的取值范围是[)(]2,01,3-.(3)由()()()()()()f g x f g x t g x g x +-≥+-⎡⎤⎣⎦, 所以2222222+6+222+622xx x xx xm m m m t ,整理得22222222+212220xxxx x xm m t ①因为①式对任意m R ∈恒成立, 所以222222422+212220x xx x x xt 恒成立,所以()()()()2222222+212220x xxx x x t ---⎡⎤+-⨯+-+≤⎢⎥⎣⎦,整理得222222+222xxx x t ,即22(2)(2)22222x x x xt --++≤+ ② 记()22(2)(2)2222x x x xx ϕ--++=+, 因为②式在x ∈R 上恒成立,所以()2min t x ϕ≤恒成立, 令22x x u -=+,因为1122222222x x x xx x-+=+≥⨯=, 当且仅当0x =时,等号成立,所以2u ≥ 则()()22020+45u x h u u u uϕ+===≥, 当且仅当[)252,u =∈+∞时,等号成立,所以()45min x ϕ=. 所以245t ≤,即25t ≤,所以实数t 的取值范围是(,25-∞⎤⎦.11.已知函数()()2log 41xf x ax =++是偶函数,函数()()22222f x x xg x m -=++⋅的最小值为3-,则实数m 的值为( )A .3B .52-C .2-D .43【答案】B【分析】利用函数的奇偶性求出参数,在利用换元法把问题转化为含参的二次函数问题,再通过讨论参数来处理二次函数轴动区间定的问题进行求解.【详解】因为函数()()2log 41xf x ax =++是偶函数,所以()()f x f x -=,即()()22log 41log 41x x ax ax -+-=++,所以()()222log 41log 410x x ax -++-+=,其中()()()()()22222241441441log 41log 41log log log log 424141414x x x x x xxx x x x xx ---+⋅+⋅++-+=====+++⋅,所以220ax x +=,解得1a =-,所以()()2log 41xf x x =+-,所以()()2log 414122222x x xf x x x x +--+===+,故函数()()222222x x x xg x m --=+++的最小值为3-.令22x x t -+=,则2t ≥,故函数()()222222x x x x g x m --=+++的最小值为3-等价于()()222h t t mt t =+-≥的最小值为3-,等价于()222223m h m ⎧-≤⎪⎨⎪=+=-⎩或2222324m m m h ⎧->⎪⎪⎨⎛⎫⎪-=--=- ⎪⎪⎝⎭⎩,解得52m =-.故A ,C ,D 错误. 故选:B .12.已知函数()()41log 412x f x x =+-,x ∈R .(1)证明:()f x 为偶函数;(2)若函数()()2421xf x xg x m +=+⋅-,[]20,log 3x ∈,是否存在m ,使()g x 最小值为0.若存在,求出m 的值;若不存在,说明理由. 【答案】(1)证明见解析 (2)1m =-【分析】(1)根据偶函数的定义证明即可;(2)首先得到()2(2)2x xg x m =+⋅,令2x t =,则2y t mt =+,[]1,3t ∈,根据二次函数的性质分类讨论,分别计算可得; (1) 证明:41()log (41)2x f x x =+-定义域为R ,()()f x f x ∴--4411log (41)log (41)22x x x x -=++-++ 444111log log (41)422x x x x x +=+-++()44411log 41log 4log (41)22x x x x x =+-+-++ 44log (41)log (41)0x x x x =+--++=,即为()()f x f x -=, 则()f x 为偶函数; (2)解:4l ()(41)o 2g ()421421xxf x x xg x m m ++=+⋅-=+⋅-2(2)2x x m =+⋅,当[]20,log 3x ∈时,[]21,3x∈,令2x t =,则2y t mt =+,[]1,3t ∈, 当12m-≤时,即2m ≥-,2y t mt =+在[]1,3上单调递增, 所以1t =时,min 10y m =+=,解得1m =-,当132m <-<时即62m -<<-,2m t =-时,2min 04m y =-=, 解得:0m =不成立; 当32m-≥时,即6m -,2y t mt =+在[]1,3上单调递减,所以3t =时,min 390y m =+=, 解得3m =-不成立. 故存在满足条件的1m =-.考向4 二次函数与对数函数的复合问题1.(1)若函数()()22log 1f x ax ax =++的定义域为R ,则实数a 的取值范围是___________;(2)若函数()()22log 1f x ax ax =++的值域为R ,则实数a 的取值范围是___________.【答案】 [)0,4 [4,)+∞【分析】(1)由题可得210ax ax ++>恒成立,分类讨论结合二次函数的性质即得; (2)由题可得210ax ax ++>的解包含所有的正数,分类讨论结合二次函数的性质即得. 【详解】(1)当0a =时,0f x符合题意;当0a ≠时,欲使210ax ax ++>在R 上恒成立,则240a a a >⎧⎨∆=-<⎩, 解得04a <<,综上,实数a 的取值范围是[)0,4; (2)当0a =时,0f x,不符合题意;当0a ≠时,欲使21ax ax ++取遍所有正数,只须使2040a a a >⎧⎨∆=-≥⎩, 解得4a ≥,综上,实数a 的取值范围是[4,)+∞. 故答案为:[)0,4;[4,)+∞.2.函数213log (68)y x x =-+的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【答案】D【分析】这是一个内层函数是二次函数,外层函数是对数函数的复合函数, 其单调性由这两个函数的单调性共同决定,即“同增异减”. 【详解】先考虑定义域:2680x x -+>,解得4x >或2x <, 268u x x =-+是开口向上的抛物线,对称轴为x =3,在(),3-∞上单调递增,在()3,+∞上单调递减,函数()()213log 68f x x x =-+是由 13log y u=和268u x x =-+复合而成的,13log y u=是减函数,根据复合函数同增异减的原理,当(),2x ∈-∞ 时()f x 是增函数, 故选:D.3.(多选)若函数()()2ln 1=-+f x x ax 在区间[)2,+∞上单调递增,则下列实数可以作为a 值的是( )A .4B .52C .2D .0【答案】CD【分析】设()21g x x ax =-+,由复合函数单调性可确定()g x 单调性和()0g x >在[)2,+∞上恒成立,结合二次函数性质可构造不等式组求得a 的范围,结合选项可得结果.【详解】设()21g x x ax =-+,要使()()2ln 1f x x ax =-+在区间[)2,+∞上单调递增,则需()g x 在[)2,+∞上单调递增,且()0g x >在[)2,+∞上恒成立, ()222520ag a ⎧≤⎪∴⎨⎪=->⎩,解得:52a <,则选项中可以作为a 的值的是2和0.故选:CD.4.若函数212()log f x ax x =-在(2,3)单调递增,则实数a 的取值范围为________.【答案】[]3,4【分析】根据复合函数单调性性质将问题转化为二次函数单调性问题,注意真数大于0. 【详解】令2t ax x =-,则12log y t=,因为12log y t=为减函数,所以()f x 在2,3()上单调递增等价于2t ax x =-在2,3()上单调递减,且20ax x ->,即22390aa ⎧≤⎪⎨⎪-≥⎩,解得34a ≤≤.故答案为:[]3,45.已知函数()()2log 24a f x ax x =-+(0a >,且1a ≠)在区间1,32⎛⎫ ⎪⎝⎭上单调递增,则a 的取值范围______.【答案】[)21,2,93⎡⎤⋃+∞⎢⎥⎣⎦【分析】分01a <<、1a >两种情况讨论即可.【详解】函数()()2log 24a f x ax x =-+是由log a y t =和224t ax x =-+复合而成,当1a >时log a y t =单调递增,若函数()()2log 24a f x ax x =-+(0a >,且1a ≠)在区间1,32⎛⎫ ⎪⎝⎭上单调递增,则224t ax x =-+在1,32⎛⎫ ⎪⎝⎭上单调递增,且2240t ax x =-+>在1,32⎛⎫⎪⎝⎭上恒成立,224t ax x =-+的对称轴为1x a=所以11121404a a a⎧⎪>⎪⎪≤⎨⎪⎪-+≥⎪⎩解得:2a ≥, 当01a <<时log a y t =单调递减,若函数()()2log 24a f x ax x =-+(0a >,且1a ≠)在区间1,32⎛⎫ ⎪⎝⎭上单调递增,则224t ax x =-+在1,32⎛⎫ ⎪⎝⎭上单调递减,且2240t ax x =-+>在区间1,32⎛⎫⎪⎝⎭上恒成立,224t ax x =-+的对称轴为1x a=所以01139640a a a <<⎧⎪⎪≥⎨⎪-+≥⎪⎩解得:2193a ≤≤, 综上所述:a 的取值范围是[)21,2,93⎡⎤⋃+∞⎢⎥⎣⎦,故答案为:[)21,2,93⎡⎤⋃+∞⎢⎥⎣⎦6.若函数()212log 2f x ax x =++的最大值为0,则实数a 的值为___________.【答案】14【分析】因为()f x 的最大值为0,所以()22h x ax x =++应有最小值1,利用二次函数的性质列式即可求解.【详解】因为()f x 的最大值为0,所以()22h x ax x =++应有最小值1,因此应有0811,4a a a>⎧⎪-⎨=⎪⎩解得14a =.故答案为:14. 7.函数()()()22log 2log 4f x x x =⋅的最小值为( ) A .1 B .13C .12-D .14-【答案】D【分析】根据对数的运算法则,化简可得2231()log 24f x x ⎛⎫=+- ⎪⎝⎭,分析即可得答案.【详解】由题意得()()()()222222231log 1log 2log 3log 2log 24f x x x x x x ⎛⎫=++=++=+- ⎪⎝⎭,当23log 2x =-时,()f x 的最小值为14-.故选:D8.已知函数33()log log 327x xf x =⋅,若()()12f x f x =(其中12x x ≠),则1219x x +的最小值为( ).A .34B .32C .2D .23【答案】D【分析】根据二次函数的性质及对数的运算可得1281x x ⋅=,利用均值不等式求最值即可. 【详解】()2333333log log (log 1)(log 3)log 4log 3327x x f x x x x x =⋅=--=-+, 由()()12f x f x =, 3132log log 4x x ∴+=,即1281x x ⋅=,1212199122233x x x x ∴+≥=⨯=,当且仅当1219x x =,即123,27x x ==时等号成立,故选:D.9.已知函数()22()log 2log 8a xf x x =(常数R a ∈). (1)当1,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为−1,求a 的值;(2)当1a =时,设1m ,若对任意[)2,x ∞∈+,不等式()()()22441x x x xf m f ---<+-恒成立,求实数m 的取值范围. 【答案】(1)-1; (2)241(1,)60.【分析】(1)依题意,令2log t x =,原函数转化为2()(3)3g t t a t a =+--,其对称轴方程为3322a at --=-=,根据[2t ∈-,3],与对称轴的位置关系分类讨论,可求得a 的值;(2)当1a =时,22()(1log )(log 3)f x x x =+-,令2log t x =,由21x t ⇒,运用换元法,参数分离m ,得44122x x x xm --+-<-,再利用二次函数和对勾函数的单调性,可求得实数m 的范围. (1)()()()()()222222log 2log log log 8log log 3a f x x x x a x --=+=+,可令2log t x =,当1[4x ∈,8]时,[2t ∈-,3],则2()()(3)(3)3y g t t a t t a t a ==+-=+--,其对称轴方程为32at -=, ①当322a --,即7a 时,()g t 在[2-,3]上递增,min ()(2)42(3)35101g t g a a a =-=---=-+=-,解得115a =,不符合题意; ②当332a-,即3a -时,()g t 在[2-,3]上递减,min ()g t g =(3)(3)(33)01a =+-=≠-,不符合题意;③当3232a --<<,即37a -<<时,min 333()()()(3)1222a a ag t g a ---==+-=-,解得1a =-. 综上,a =-1; (2)当1a =时,22()(log 1)(log 3)f x x x =+-, 令2log t x =,∵2x ,则1t , ∵223y t t =--的对称轴为1t =,∴223y t t =--在[1,)∞+递增,即()f x 在[2,)∞+递增, ∵22x x y -=-和441x x y -=+-在2x 时均为增函数, ∴152224x x-->,4412x x -+->, ∵1m ,∴(22)2x x m -->,∵((22))(441)xxxxf m f ---<+-,∴(22)441xxxxm ---<+-,即44122x x x xm --+-<-,∵2441(22)1x x x x --+-=-+,∴12222x xx xm --<-+-,∵15224x x--,1y x x=+在x >1时为增函数, ∴根据复合函数的单调性知12222x x x xy --=-+-在x ≥2时为增函数,∴1154241222241560x x xx---++=-,故24160m <, ∵1m ,∴m 的取值范围是241(1,)60. 10.已知函数2()log 1f x x =-的定义域为[1,16],函数()22()[()]2g x f x af x =++,a ∈R .(1)求函数g (x )的定义域;(2)求函数g (x )的最小值M (a )的表达式. 【答案】(1)[1,4](2)()23,?12,1133,? 1a a M a a a a a a -≥⎧⎪=-++-<<⎨⎪+≤-⎩【分析】(1)列不等式组,即可求出定义域;(2)求出()g x 的解析式,利用换元法令2log t x =,得到2()(22)3F t t a t a =+--+,[0,2]t ∈.对a 分类讨论,分别利用单调性求出最小值,即可得到M (a )的表达式. (1)因为2116116x x ≤≤⎧⎨≤≤⎩,所以14x ≤≤, 所以函数g (x )的定义域为[1,4]. (2)2()log 1f x x =-,[1,16]x ∈,则()()22222()[()]2log (22)log 3g x f x af x x a x a =++=+--+,[1,4]x ∈.令2log t x =,222()(22)3[(1)]2F t t a t a t a a a =+--+=---++,[0,2]t ∈. 当1a ≥时,F (t )在[0,2]上是增函数,所以当t =0时,min ()3F t a =-;当-1<a <1时,F (t )在[0,1-a ]上单调递减,在[1-a ,2]上单调递增,所以当t =1-a 时,2min ()2F t a a =-++;当1a ≤-时,F (t )在[0,2]上是减函数,所以当t =2时,min ()33F t a =+.综上,()()2min3,?12,1133,? 1a a M a g x a a a a a -≥⎧⎪==-++-<<⎨⎪+≤-⎩11.已知函数()232log f x x =-,()2log g x x =.(1)求函数()()22y f x fx g x =⋅+在[]1,4上的零点;(2)若函数()()()1h x f x g x k =+⋅-⎡⎤⎣⎦在[]1,4上有零点,求实数k 的取值范围. 【答案】(1)2x = (2)[]0,2.【分析】(1)通过换元法将复合函数转化为以t 为自变量的二次函数,整理之后求出令函数为0的t 值,求出对应x 值即为其零点;(2)求出()0h x =时k 的表达式,通过换元法用t 表示k ,根据t 的取值范围判断k 的取值范围即可. (1)由()()()220f x fx g x ⋅+=,得()()22234log3log 2log 0x x x --+=.令2log t x =,因为[]1,4x ∈,所以[]0,2t ∈,则原式可转化为()()34320t t t --+=,化简为241390t t -+=, 解得1t =或94t =(舍去),所以2log 1x =,所以2x =, 即函数()()()22y f x fx g x =⋅+在[]1,4上的零点为2x =.(2)()()()222242log log 2log 12h x x x k x k =-⋅-=--+-,令2log t x =,因为[]1,4x ∈,所以[]0,2t ∈, 令()0h x =,得()2212k t =--+,因为[]0,2t ∈,所以()[]22120,2t --+∈,即实数k 的取值范围为[]0,2.12.已知函数21()log 4(1)22x xf x k k k ⎡⎤=⋅--++⎢⎥⎣⎦.(1)当2k =时,求函数()f x 在[0,)+∞的值域;(2)已知01k <<,若存在两个不同的正数a ,b ,当函数()f x 的定义域为[],a b 时,()f x 的值域为[1,1]a b ++,求实数k 的取值范围.【答案】(1)27log ,2∞⎡⎫+⎪⎢⎣⎭(2)13,23⎛⎫⎪ ⎪⎝⎭【分析】(1)换元法,结合复合函数单调性求解函数值域;(2)换元后,结合二次函数对称轴得到()f x 单调递增,从而得到方程组()()22log 21log 21a bh a h b ⎧=+⎪⎨=+⎪⎩,从而得到2,2a b可看作方程()21102k t k t k ⋅-+++=的两个根,利用二次函数根的分布得到不等式组,求出实数k 的取值范围. (1)当2k =时,25()log 2422x xf x ⎛⎫=⋅-+ ⎪⎝⎭,[0,)x ∈+∞令[)21,xt ∞=∈+,则22225119()log 2log 2248g t t t t ⎡⎤⎛⎫⎛⎫=-+=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,根据复合函数单调性可知,22119()log 248g t t ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦在[)1,t ∈+∞上单调递增,故()27()1log 2g t g ≥=,所以函数()f x 在[0,)+∞的值域为27log ,2∞⎡⎫+⎪⎢⎣⎭(2)因为函数()f x 的定义域为[],a b ,令2x t =,则22,2x a bt ⎡⎤=∈⎣⎦,则()()2112h t kt k t k =--++因为01k <<,所以对称轴102k t k-=<, 故()()2112h t kt k t k =--++在2,2a b ⎡⎤⎣⎦上单调递增,则()f x 单调递增, 因为()f x 的值域为[1,1]a b ++,所以()()22log 21log 21a b h a h b ⎧=+⎪⎨=+⎪⎩,即()()2121121222121222a a a b b b k k k k k k ++⎧⋅--++=⎪⎪⎨⎪⋅--++=⎪⎩,故2,2a b 可看作方程()21102k t k t k ⋅-+++=的两个根, 由于,a b 为正数,所以21,21a b >>,则要满足()Δ010h >⎧⎨>⎩,解得:1323k <<,故实数k 的取值范围是13,23⎛⎫⎪ ⎪⎝⎭。
二次函数典型例题50题
选择1.二次函数y=(x-3)(x+2)的图象的对称轴是 ( )A.x=3B.x=-2C.x=-12D.x=122. 抛物线y=2x 2-5x+3与坐标轴的交点共有 ( )A . 1个 B. 2个 C. 3个 D. 4个3.二次函数y= a (x+m)2-m (a ≠0) 无论m 为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上 D.x 轴上4. 如图2,抛物线,OA=OC ,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=cC .bc+1=aD .b a+1=c5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近( ).A.4B.163 C.2π D.86.如图7,记抛物线21y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点2y ax bx c =++2122y x =-+1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122PP Q 的面积分别为1S ,2S ,这样就有21312n S n -=,22342n S n -=,…;记121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是( )A. 23B. 12C. 13 D.147.定义[]为函数的特征数, 下面给出特征数为 [2m ,1 – m , –1– m]的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(,);② 当m > 0时,函数图象截x 轴所得的线段长度大于;③ 当m < 0时,函数在x >时,y 随x 的增大而减小;④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( )A. ①②③④B. ①②④C. ①③④D. ②④8. (2010宿迁改编)如图11,在矩形ABCD 中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段MP=A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是( ),,a b c 2y ax bx c =++31382341CBAD9. 已知点11()x y ,,均在抛物线上,下列说法中正确的是( )A .若,则B .若,则C .若,则D .若,则10. 不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0B.a>0, △<0C.a<0, △<0D.a<0, △<011. 若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( ) A.1a > B.1a <C.1a ≥ D.1a ≤12.若一次函数的图像过第一、三、四象限,则函数( )A.有最大值B..有最大值C.有最小值D.有最小值13.二次函数2y ax bx c =-+的图象过点(-1,0).则a b cb c c a a b+++++的值是( ) A 、-3B 、3C 、12D 、12-14.已知二次函数()2211y kx k x =+--与x 轴交点横坐标为()1212,,x x x x <.给出下列结论:①当2x =-时,1y =;②当2x x >时,0y >;③方程()22110kx k x +--=有两不相等的实数根12,x x .④121,1x x <->-.⑤21x x -=.其中正确的结论是( )22()x y ,21y x =-12y y =12x x =12x x =-12y y =-120x x <<12y y >120x x <<12y y >A 、①③B 、①②③C 、①③⑤D 、①②③④15.已知二次函数2y ax bx c =++,且0,0a a b c <-+>,则一定有( ) A 、240b ac -> B 、240b ac -=C 、240b ac -<D 、240b ac -≤16. 已知1a <-,点()()1231,,,,(1,)a y a y a y -+都在函数2y x =的图象上,则( ) A 、123y y y << B 、132y y y << C 、321y y y << D 、213y y y <<17. 二次函数2y ax b =+与一次函数y ax b =+在同一坐标系中的图象,可能是( )18.如图所示,抛物线2yx bx c =++与x 轴交于A 、B 两点与y 轴交于点C ,45OBC ∠=︒.则下列各式成立的是( ) A 、10b c --=B 、10b c +-=C 、10b c -+=D 、10b c ++=19.抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=220若抛物线22y x x a =++图像于x 轴的交点位于Y 轴两侧,则a 的取值范围为填空21. 如图,二次函数c bx ax y ++=2的图象开口向上,图象经过点(-1,2)和(1,0),且与y 轴交于负半轴.给出四个结论:①abc <0;②2a+b >0;③a+c=1; ④a>1.其中正确结论的序号是 (将你认为正确结论的序号都填上) .c bx x y ++=2322--=x x yAx BCDx22. 已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛物线;当m 时,抛物线过坐标原点.23. 把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为24. .二次函数的图象顶点坐标为(2,1),形状开口与抛物线y= - 2x 2相同,这个函数解析式为________。
(完整版)二次函数综合题分类讨论带答案
二次函数综合题分类讨论一、 直角三角形分类讨论:1、 已知点A(1,0),B (-5,0),在直线221+-=x y 上存在点C ,使得ABC ∆为直角三角形,这样的C 点你能找到 个2、 如图1,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相较于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后得到抛物线C 3,C ,3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C ,3的解析式;(3)如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转ο180后得到抛物线C ,4,抛物线C ,4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标。
(2013汇编P56+P147)3、如图,矩形A’BC’O’是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B 点逆时针旋转得到的.O’点在x轴的正半轴上,B点的坐标为(1,3).(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O、O’两点且图象顶点M的纵坐标为—1.求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得ΔPOM为直角三角形?若存在,请求出P点的坐标和ΔPOM的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.练习(09成都28)已知抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M ,若直线MC 的函数表达式为y=kx-3 ,与x 轴的交点为N ,且cos ∠BCO =(3√(10) /10).(1)求此抛物线的解析式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标;(3)过点A 作x 轴的垂线,交直线MC 于点Q. 若将抛物线沿其对称轴上下平移,使 抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度? 543211234564224681012141618ANMBP二、 等腰三角形分类讨论1、如图,已知Rt ,30,90,︒=∠︒=∠∆BAC ACB ABC Rt 在直线BC 或直线AC 上取一点P ,使得PAB ∆是等腰三角形,则符合条件的P 点有 个2、①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标. (4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.解:(1)有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =,2(1y x =--.(2)设抛物线2l 的函数表达式为2y x bx c =++,Q 点(12)A ,,(31)B ,在抛物线2l 上,12931b c b c ++=⎧∴⎨++=⎩,解得9211.2b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线2l 的函数表达式为291122y x x =-+. (3)229119722416y x x x ⎛⎫=-+=-+ ⎪⎝⎭,C ∴点的坐标为97416⎛⎫⎪⎝⎭,.过A B C ,,三点分别作x 轴的垂线,垂足分别为D E F ,,, 则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =. ABC ADEB ADFC CFEB S S S S ∴=--△梯形梯形梯形.117517315(21)22122164216416⎛⎫⎛⎫=+⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭. 延长BA 交y 轴于点G ,设直线AB 的函数表达式为y mx n =+,Q 点(12)A ,,(31)B ,在直线AB 上,213.m n m n =+⎧∴⎨=+⎩,解得125.2m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的函数表达式为1522y x =-+.G ∴点的坐标为502⎛⎫⎪⎝⎭,.x图①x图②x图③x2设K 点坐标为(0)h ,,分两种情况: 若K 点位于G 点的上方,则52KG h =-.连结AK BK ,. 151553122222ABK BKG AKG S S S h h h ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭△△△.1516ABK ABC S S ==Q △△,515216h ∴-=,解得5516h =.K ∴点的坐标为55016⎛⎫ ⎪⎝⎭,. 若K 点位于G 点的下方,则52KG h =-.同理可得,2516h =. K ∴点的坐标为25016⎛⎫⎪⎝⎭,.(4)作图痕迹如图③所示. 由图③可知,点P 共有3个可能的位置.2、如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A(10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当是腰长为5的等腰三角形时,点P 的坐标为3、在菱形ABCD 中,对角线AC ,BD 相交于点O ,以O 为坐标原点,以BD 所在直线为x 轴,CA 所在直线为y 轴建立如图所示的坐标系,且AC=12,BD=16,E 为AD 的中点,点P 在线段BD 上移动,若为等腰三角形,则所有符合条件的点P 的坐标为 三、 最值问题类型一:两点之间线段最短 1、请写出()()42813222+-++-m m 的最小值为2、如图,四边形ABCD 是正方形,ABE ∆是等边三角形,对角线BD 上任一点,将BM 绕点B 逆时针旋转︒60,得到BN ,连EN 、AM 、CM ,求证:(1)ENB AMB ∆≅∆,(2)M 点在何处时,AM+CM 值最小,(3)AM+BM+CN 最小值为13+时,求正方形的边长(2012汇编P52+P137)xyEDCBAy xDOB C A P EADM Nx O y2l B A3、(2010年天津25)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB=4,D 为边OB 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围;
(2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围
(4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围.
解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(<f (思考:需要0>∆吗?),即.4
21-<m (2)令142)3(2)(2++++=m x m x x f ,原命题等价于
.55271,5370142)3(81601420)142(4)3(442)3(200)4(0)0(2-≤<-⇔⎪⎪⎩⎪⎪⎨⎧≥-≤-<<->++++≥+⇔⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于
⎩⎨⎧<<0)3(0)1(f f 即⎩⎨⎧<++++<++++0
142)3(690142)3(21m m m m 得.421-<m (4)令142)3(2)(2++++=m x m mx x g ,依题得
⎩⎨⎧<>0)4(0g m 或,0
)4(0⎩⎨⎧><g m 得.01319<<-m 例2(1)已知函数2)(2-+=a ax
x f ,若0)(<x f 有解,求实数a 的取值范围;
(2)已知x x x f 4)(2+-=,当]1,1[-∈x 时,若a x f >)(恒成立,求实数a 的取
值范围。
解:(1)0)(<x f 有解,即022<-+a ax 有解2)1(2<+⇔x a 有解1
22+<⇔x a 有解⇔.2|12|max 2=+<x a 所以).2,(-∞∈a
(2)当]1,1[-∈x 时,a x f >)(恒成立⇔.)]([min a x f >又当]1,1[-∈x 时,
5)1()]([min -=-=f x f ,所以).5,(--∞∈a
【评注】“有解”与“恒成立”是很容易搞混的两个概念。
一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立⇔a x f >min )]([;(2)a x f <)(恒成立⇔a x f <max )]([;(3)a x f >)(有解⇔a x f >max )]([;(4)a x f <)(有解⇔.)]([min a x f <
例3已知函数3)12()(2--+=x a ax x f 在区间]2,2
3[-上的最大值为1,求实数a 的值。
分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴a a x 2210-=的位置有关,但f(x)的最大值只可能在端点或顶点处取得,解答时必须用讨论法。
解、0=a 时,3)(--=x x f ,
)(x f 在]2,2
3[-上不能取得1,故0≠a . )0(3)12()(2≠--+=a x a ax x f 的对称轴方程为.2210a
a x -= (1)令1)2
3
(=-f ,解得3
10-=a , 此时]2,23[20230-∈-=x , 因为0<a ,)(0x f 最大,所以1)23(=-f 不合适。
(2)令1)2(=f ,解得43=
a , 此时]2,23[310-∈-=x , 因为]2,2
3[31,0430-∈-=>=
x a ,且距右端点2较远,所以)2(f 最大,合适。
(3)令1)(0=x f ,得)223(2
1±-=a , 验证后知只有)223(2
1--=a 才合适。
综上所述,43=a ,或).223(21+-=a。