人教版八年级数学上全等三角形专题讲解.docx

合集下载

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

人教版初中八年级数学上册第十二章《全等三角形》知识点总结(含答案解析)(1)

人教版初中八年级数学上册第十二章《全等三角形》知识点总结(含答案解析)(1)

一、选择题1.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】 根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.2.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA C解析:C【分析】 根据题中的已知条件确定有三组边对应相等,由此证明△OMC ≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.5.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20°B解析:B【分析】根据正方形的性质得到AB=AD ,∠BAD=90︒,由旋转的性质推出ADE ≌ABF ,求出∠FAE=∠BAD=90︒,即可得到答案.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90︒,由旋转得ADE ≌ABF ,∴∠FAB=∠EAD ,∴∠FAB+∠∠BAE=∠EAD+∠BAE ,∴∠FAE=∠BAD=90︒,∴旋转角的度数是90︒,故选:B .【点睛】 此题考查旋转的性质,全等三角形的性质,熟记全等三角形的性质是解题的关键. 6.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ B 解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P 到OB 的距离为5,再根据垂线段最短解答.【详解】∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,∴点P 到OB 的距离为5,∵点Q 是OB 边上的任意一点,∴PQ≥5.故选:B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.7.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF C解析:C【分析】 由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.8.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 9.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OBB .AC =BC C .∠A =∠BD .∠1=∠2B解析:B【分析】根据题意可以得到∠AOC=∠BOC,OC=OC,然后即可判断各个选项中条件是否能判定△AOC≌△BOC,从而可以解答本题.【详解】解:由已知可得,∠AOC=∠BOC,OC=OC,∴若添加条件OA=OB,则△AOC≌△BOC(SAS),故选项A不符合题意;若添加条件AC=BC,则无法判断△AOC≌△BOC,故选项B符合题意;若添加条件∠A=∠B,则△AOC≌△BOC(AAS),故选项C不符合题意;若添加条件∠1=∠2,则∠ACO=∠BCO,则△AOC≌△BOC(ASA),故选项D不符合题意;故选:B.【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.10.如图,△ACB≌△A'CB',∠BCB'=25°,则∠ACA'的度数为()A.35°B.30°C.25°D.20°C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB,再利用等式的性质可得答案.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB,∴∠ACA′=∠BCB′=25°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.二、填空题11.如图,AC=BC,请你添加一个条件,使AE=BD.你添加的条件是:________.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE∠AEC=∠BDC可得△ADC与△解析:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.0,3,另12.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C的坐标为()8,8,则点A的坐标为____________一个顶点B的坐标为()(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ根据全等三角形的判定与性质可得AQCQ根据线段的和差可得OQ可得答案【详解】解:作BP⊥y轴AQ⊥y轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ,根据全等三角形的判定与性质,可得AQ,CQ,根据线段的和差,可得OQ,可得答案.【详解】解:作BP⊥y轴,AQ⊥y轴,如图,∴∠BPC=∠AQC=90°∵BC=AC,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.13.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD 再求出AD 的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键.14.如图,在Rt ABC △中,90B ∠=︒,12AB =,5BC =,射线AP AB ⊥于点A ,点E 、D 分别在线段AB 和射线AP 上运动,并始终保持DE AC =,要使ABC 和DAE △全等,则AE 的长为______.5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE此时AE=BC=5可据此求出E 点的位置②Rt △CBA ≌Rt △DAE 此时AE=AB=12EB 重合【详解】解:①当AE=CB 时∵∠B=∠EA解析:5或12【分析】本题要分情况讨论:①Rt △ABC ≌Rt △DAE ,此时AE=BC=5,可据此求出E 点的位置.②Rt △CBA ≌Rt △DAE ,此时AE=AB=12,E 、B 重合.【详解】解:①当AE=CB 时,∵∠B=∠EAP=90°,在Rt △ABC 与Rt △DAE 中,AE CB DE AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △DAE (HL ),即AE=BC=5;②当E 运动到与B 点重合时,AE=AB ,在Rt △CBA 与Rt △DAE 中,AE AB DE AC =⎧⎨=⎩, ∴Rt △CBA ≌Rt △DAE (HL ),即AE=AB=12,∴当点E 与点B 重合时,△CBA 才能和△DAE 全等.综上所述,AE=5或12.故答案为:5或12.【点睛】本题考查了三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.15.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF 成为解答本题的关键.16.如图所示,己知ABC ∆的周长是22,,OB OC 分别平分ABC ∠和ACB OD BC D ∠⊥,于,且3OD =,则ABC ∆的面积是__________.【分析】连接OA 过O 作OE ⊥AB 于EOF ⊥AC 于F 根据角平分线上的点到角的两边的距离相等可得点O 到ABACBC 的距离都相等(即OE =OD =OF )从而可得到△ABC 的面积等于周长的一半乘以3代入求出即 解析:33【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等(即OE =OD =OF ),从而可得到△ABC 的面积等于周长的一半乘以3,代入求出即可.【详解】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D∴OE=OF=OD=3,∵△ABC的周长是22,∴S△ABC=12×AB×OE+12×BC×OD+12×AC×OF=12×(AB+BC+AC)×3=12×22×3=33.故答案为:33.【点睛】本题考查了角平分线的性质和三角形的面积求法,熟知角平分线的性质,并根据题意合理添加辅助线是解题关键.17.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP交BC于T利用全等三角形的性质证明AP=PT即可解决问题【详解】解:如图延长AP交BC于T∵BP⊥AT∴∠BPA=∠BPT=90°∵BP=BP∠PBA=∠PBT∴△BPA≌解析:12cm2【分析】如图,延长AP交BC于T.利用全等三角形的性质证明AP=PT即可解决问题.【详解】解:如图,延长AP交BC于T.∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==, 1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.18.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.30【分析】根据∠ACB =∠DCE =90°可得∠ACD =∠BCE 利用三角形全等判定可得△ACD ≌△BCE 则BE =AD ∠DAC =∠EBC 再证明∠DBE =90°根据三角形面积计算公式便可求得结果【详解】解析:30【分析】根据∠ACB =∠DCE =90°,可得∠ACD =∠BCE ,利用三角形全等判定可得△ACD ≌△BCE ,则BE =AD ,∠DAC =∠EBC ,再证明∠DBE =90°,根据三角形面积计算公式便可求得结果.【详解】解:∵∠ACB =∠DCE =90°,∴∠ACB -∠DCB =∠DCE -∠DCB .即∠ACD =∠BCE .∵AC =BC ,∠ADC =∠BEC ,∴△ACD ≌△BCE .∴BE =AD ,∠DAC =∠EBC .∵∠DAC +∠ABC =90°,∴∠EBC +∠ABC =90°.∴△BDE 为直角三角形.∵AB =17,BD =5,∴AD =AB -BD =12.∴S △BDE =12BD ⋅BE =30. 故答案为:30.【点睛】本题考查了全等三角形的判定与性质,通过分析题意找出三角形全等的条件并能结合全等性质解决相应的计算问题是解题的关键.19.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.20.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.8【分析】由题意可得进而证明结合已知条件证明故根据分别求出与的面积即可【详解】在和中故答案为:【点睛】本题主要考查全等三角形的判定与性质熟记全等三角形的判定定理是解题关键解析:8【分析】由题意可得90ADC CEA ∠=∠=︒,进而证明EAH HCD ∠=∠,结合已知条件证明BEC HEA ∆≅∆,故8EC EA == ,根据AHC AEC AEH S S S ∆∆∆=-分别求出AEH S ∆与AEC S ∆的面积即可.【详解】AD BC ⊥,CE AB ⊥,90ADC CEA ∴∠=∠=︒,AHE CHD ∠=∠,EAH CEH HCD ADC ∴∠+∠=∠+∠,EAH HCD ∴∠=∠,在BEC △和HEA △中,90BEC HEA HCD EAHEB EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC HEA AAS ∴≅,EC EA ∴=,8EA =,8EC ∴=,6EH =,11862422AEH S AE EH ∆∴=⨯⋅=⨯⨯=, 11883222AEC S AE EC ∆=⋅=⨯⨯=,32248AHC AEC AEH S S S ∆∆∆∴=-=-=.故答案为:8.【点睛】本题主要考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题关键.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.解析:见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.如图,AD CB =,AB CD =.求证:ABC CDA ∠=∠.解析:见解析【分析】根据SSS 可证明△ABD ≌△CDB ,即可得∠ABD =∠CDB ,∠ADB =∠CBD ,进而可证明结论.【详解】在ABD ∆和CDB ∆中AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()ABD CDB SSS ∴∆≅∆ABD CDB ∴∠=∠ADB CBD ∠=∠ABC ABD CBD ∠=∠-∠CDA CDB ADB ∠=∠-∠ABC CDA ∴∠=∠【点睛】本题主要考查全等三角形的性质与判定,利用SSS 证明△ABD ≌△CDB 是解题的关键. 23.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.解析:(1)详见解析;(2)52︒【分析】(1)先证明∠BAC=∠DAE ,即可根据SAS 证得结论;(2)根据三角形内角和定理求出∠BAC 的度数,再根据全等三角形的性质得到答案.【详解】(1)∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE .在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABC ADE △≌△;(2)∵42,86B C ∠=︒∠=︒,∴18052BAC B C ∠=︒-∠-∠=︒.∵ABC ADE △≌△,∴52DAE BAC ∠=∠=︒.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理,熟记三角形全等的判定定理是解题的关键.24.阅读下面材料:学习了三角形全等的判定方法(即“SAS ”“ASA ”“AAS ”“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为在ABC 和DEF 中,AC DF =,BC EF =,B E ∠=∠.小聪的探究方法是对B 分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当B 是直角时,如图1,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠=︒,根据“HL ”定理,可以知道Rt Rt ABC DEF ≌△△. 第二种情况:当B 是锐角时,如图2,90B E ∠=∠<︒,BC EF =.(1)在射线EM 上是否存在点D ,使DF AC =?若存在,请在图中作出这个点,并连接DF ;若不存在,请说明理由;(2)这种情形下,ABC 和DEF 的关系是 (选填“全等”“不全等”或“不一定全等”);第三种情况:当B 是钝角时,如图3,在ABC 和DEF 中,AC DF =,BC EF =,90B E ∠=∠>︒.(3)请判断这种情形下,ABC 和DEF 是否全等,并说明理由.解析:(1)存在,见解析;(2)不一定全等;(3)全等,见解析【分析】(1)根据尺规作图的方法画出图形即可.(2)根据题(1)所得两种情况及全等三角形的判定即可求解;(3)第三种情况:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N,先证明△CMA ≌△FND ,推出AM =DN ,推出AB =DE ,再证明△ABC ≌△DEF 即可.【详解】解:(1)存在,如图所示.射线EM 上有两个点满足要求.(2)不一定全等.如题(1)所示:由于满足条件的D 有两个,故△ABC 和△DEF 不一定全等,故答案为:不一定全等;(3)△ABC 和△DEF 全等.理由如下:如图所示,过点C 作AB 边的垂线交AB 的延长线于点M ,过点F 作DE 边的垂线交DE 的延长线于N .∵ABC DEF ∠=∠,∴CBM FEN ∠=∠.∵CM AB ⊥,FN DE ⊥,∴90CMB FNE ∠=∠=︒.在△CBM 和△FEN 中,∵,,,CMB FNE CBM FEN BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBM ≌△FEN (AAS ).∴BM EN =,∴CM FN =.在Rt △ACM 和Rt △DFN 中,∵,,AC DF CM FN =⎧⎨=⎩∴Rt △ACM ≌Rt △DFN (HL ).∴AM DN =,∴AM BM DN EN -=-,即AB DE =.又∵BC EF =,∴△ABC 和△DEF (SSS ).【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定方法,学会作辅助线,难度适中.25.OAB 和ODE 均为等腰三角形,且AOB DOE β∠=∠=,OA OB =,OD OE =,连接AD 、BE ,它们所在的直线交于点F .(1)观察发现:如图1,当60β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______;(2)探究证明:如图2,当90β︒=时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______,根据图2证明你的猜想;(3)拓展推广:当β为任意角时,线段AD 与BE 的数量关系是______,AFB ∠的度数是______.(用含β的式子表示)解析:(1)AD BE =,60°;(2)AD BE =,90°,理由见解析;(3)AD BE =,β【分析】(1)设AF 交BD 于G ,证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,得到60AFB AOB ∠=∠=︒;(2)证明AOD BOE ≌△△,推出AD BE =,OAD OBE ∠=∠,根据OFA DFB ∠=∠及三角形内角和定理即可证得90AFB AOB ∠=∠=︒;(3)根据(1)与(2)直接得到结论.【详解】(1)证明:设AF 交BO 于G ,∵60AOB DOE ∠=∠=︒,∴AOB BOD DOE BOD ∠-∠=∠-∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA FGB ∠=∠,∴180180OGA OAD FGB OBE ∠-∠=∠--∠︒-︒,∴60AFB AOB ∠=∠=︒, 故答案为:AD BE =,60°;(2)AD BE =,90°证明:设AF 交BO 于G ,∵90AOB DOE ︒∠=∠=,∴AOB BOD DOE BOD ∠+∠=∠+∠,即AOD BOE ∠=∠,∵OA OB =,OD OE =,∴AOD BOE ≌△△,∴AD BE =,OAD OBE ∠=∠,∵OGA DGB ∠=∠,∴90AFB AOB ∠=∠=︒;故答案为:AD BE =,90°;(3)证明:由(1)与(2)可得AD BE =,AFB AOB β∠=∠=故答案为:AD BE =,β.【点睛】此题考查全等三角形的判定及性质,等腰三角形的性质,熟练掌握全等三角形的判定及性质是解题的关键.26.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 解析:图见解析,9DE =或3DE =【分析】分直线l 不经过线段AB 和直线l 经过线段AB 两种情况画图,证明△ACD ≌△CBE 即可求出DE 的长.【详解】解:如图1∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=DC+CE=9;如图2,∵AD l ⊥于D , BE l ⊥于E ,∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=90°,∵90ACB ∠=︒,∴∠BCE+∠DCA=90°,∴∠DAC=∠ECB在△ACD 和△CBE 中,===ADC CEB DAC ECB AC CB ∠∠⎧⎪∠∠⎨⎪⎩,∴ △ACD ≌△CBE∴AD=CE=6,DC=EB=3,∴DE=CE-CD=3;∴9DE =或3DE =.【点睛】本题考查了全等三角形的判定与性质,根据题意分类画图证明全等三角形是解题关键. 27.如图,BC ⊥AD 于C ,EF ⊥AD 于F ,AB ∥DE ,分别交BC 于B ,交EF 于E ,且BC =EF .求证:AF =CD .解析:证明见解析.【分析】由BC ⊥AD ,EF ⊥AD 得∠EFD =∠BCA =90°,由AB ∥DE ,得∠D =∠A ,又BC =EF ,从而△ABC ≌△DEF ,则AC =FD , AF =CD .【详解】证明:∵BC ⊥AD ,EF ⊥AD ,∴∠EFD =∠BCA =90°∵AB ∥DE ,∴∠D =∠A∵BC =EF ,∴△ABC ≌△DEF ,∴AC =FD ,∴AF =CD .【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键. 28.已知:如图,AC =BD ,BD ⊥AD 于点D ,AC ⊥BC 于点C .求证:∠ABC =∠BAD .解析:详见解析【分析】利用HL 证明Rt △ABD ≌Rt △BAC ,即可得到结论.【详解】∵BD ⊥AD ,AC ⊥BC ,∴∠D=∠C=90︒,在Rt △ABD 和Rt △BAC 中,AB BA BD AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △BAC (HL ),∴∠ABC =∠BAD .【点睛】此题考查全等三角形的判定及性质,根据题中的已知条件确定两个三角形的对应相等的条件,根据全等的判定定理证得这两个三角形全等是解题的关键.。

2024年人教版八年级上册数学第十二章全等三角形专题三 三角形全等基本模型

2024年人教版八年级上册数学第十二章全等三角形专题三 三角形全等基本模型
(1)求证:△ ABD ≌△ ACE ;
1
2
3
4
5
6
7
8
专题三
三角形全等基本模型
【证明】∵∠ BAC =∠ DAE ,∴∠ BAC -∠ DAC =
∠ DAE -∠ DAC ,
即∠ BAD =∠1,
=,
在△ ABD 与△ ACE 中,ቐ∠=∠,
=,
∴△ ABD ≌△ ACE (SAS).
5. [母题教材P55复习题T3] 如图,点 D 在 BC 上, AB =
AD ,∠ BAD =∠ CAE .
(1)添加条件:
AC = AE (答案不唯一)
(只需写出一
个),使△ ABC ≌△ ADE ;
1
2
3
4
5
6
7
8
专题三
三角形全等基本模型
(2)根据你添加的条件,写出证明过程.
(2)【证明】∵∠ BAD =∠ CAE ,
∴∠ BAD +∠ DAC =∠ CAE +∠ DAC ,
即∠ BAC =∠ DAE ,
又∵ AB = AD , AC = AE ,
∴△ ABC ≌△ ADE (SAS).
1
2
3
4
5
6
7
8
专题三
三角形全等基本模型
6. [2024佛山禅城区一模]如图,已知 AB = AC , AD =
AE ,∠ BAC =∠ DAE ,且 B , D , E 三点共线.
BA 到点 E ,使得 BE = BC ,连接 DE . 若∠ ADE =
44°,求∠ ADB 的度数.
1
2
3
4
5
6
7

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题
人教版 八年级上
第十二章 全等三角形
专题四 全等三角形中的动点问题
专题四
全等三角形中的动点问题
类型1 以 U 型框为背景的动点问题
1. [2024雅安月考]如图,做一个“U”字形框架
PABQ ,其中 AB =42 cm, AP , BQ 足够长, PA ⊥
AB , QB ⊥ AB ,点 M 从点 B 出发,向点 A 运动,
10厘米, BC =8厘米, CD =12厘米,∠ B =∠ C ,点 E
为 AB 的中点.如果点 P 在线段 BC 上以3厘米/秒的速度由
B 点向 C 点运动,同时,点 Q 在线段 CD 上由 C 点向 D 点
运动.(1)ຫໍສະໝຸດ 点 Q 的运动速度与点 P 的运动速度相等,经过1秒
后,△ BPE 与△ CQP 是否全等?请说明理由.
∴ BE =5厘米,∴ BE = PC ,
=,
在△ BPE 和△ CQP 中,ቐ∠=∠,
=,
∴△ BPE ≌△ CQP (SAS).
1
2
3
4
专题四
全等三角形中的动点问题
(2)当点 Q 的运动速度为多少时,能够使△ BPE 与△ CQP
全等?
【解】∵△ BPE 与△ CQP 全等,
∵∠ A =∠ B =90°,
∴使△ ACM 与△ BMN 全等,可分两种情况:
情况一:当 BM = AC , BN = AM 时,
∵ BN = AM , AB =42 cm,
∴4 t +3 t =42,解得 t =6,
∴ AC = BM =3×6=18(cm);
1
2
3
4
专题四
全等三角形中的动点问题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习.doc

人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习.doc

第十二章一、::二、::1.::⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解::①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.::⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解::①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理::⑴边边边( SSS):三边对应相等的两个三角形全等.⑵边角边( SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等..4.::5.::⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.::⑴明确命题中的已知和求证. (包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.::(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。

数学人教版八年级上册全等三角形的判定边边边公理

数学人教版八年级上册全等三角形的判定边边边公理

A
解:要证明△ABC ≌△ FDE, 还应该有AB=DF这个条件
D
∵AD=FB ∴ AD+DB=FB+DB
即 AB=FD
E
C B
F
思考
已知AC=FE,BC=DE,点A、D、 B、 F在一条直线上,AD=FB. 要用“边边边”证明 △ABC ≌△ FDE,除了已知中的AC=FE,BC=DE以 外,还应该有什么条件?怎样才能得到这个条件?
A
E
B D FC
补充练习:
如图,已知AB=CD,AD=CB,E、F分别是AB,CD 的中点,且DE=BF,说出下列判断成立的理由. ①△ADE≌△CBF ②∠A=∠C
解: ①∵E、F分别是AB,CD的中点( 已知 )
∴AE= 12AB CF= 12CD( 线段中点的定义)
又∵AB=CD ∴AE=CF
∵AB=AC,BH=CH,AH=AH,
∴△ABH≌△ACH(SSS);
A
在△ABD和△ACD中,
∵AB=AC,BD=CD,AD=AD, ∴△ABD≌△ACD(SSS);
在△DBH和△DCH中 ∵BD=CD,BH=CH,DH=DH, B
∴△DBH≌△DCH(SSS).
D
H
C
练习2
(2)如图,D、F是线段BC上的两点, AB=CE,AF=DE,要使△ABF≌△ECD , 还需要条件 BF=DC 或 BD.=FC
证明:Q AD FB,
AD DB FB DB,
即AB FD.
在ABC和 FDB 中,
AB=FD(已证),
BC=DB(已知),
AC=FB (已知),
ABC≌ FDB(SSS).
A D
E

人教版初中八年级数学上册第十二章《全等三角形》(含答案解析)

人教版初中八年级数学上册第十二章《全等三角形》(含答案解析)

一、选择题1.如图,在ABC 中,ABC 的面积为10,4AB =,BD 平分ABC ∠,E 、F 分别为BC 、BD 上的动点,则CF EF +的最小值是( )A .2B .3C .4D .5D解析:D【分析】 过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,则CM 即为CF EF +的最小值,再根据三角形的面积公式求出CM 的长,即为CF EF +的最小值.【详解】解:过点C 作CM AB ⊥于点M ,交BD 于点'F ,过点'F 作''F E BC ⊥于'E ,BD 平分ABC ∠,'MF AB ⊥于点M ,''F E BC ⊥于'E ,'''MF F E ∴=,'''''CM CF MF CF E F ∴=+=+的最小值.三角形ABC 的面积为10,4AB =, ∴14102CM ⨯⋅=,21054CM ⨯∴==. 即CF EF +的最小值为5,故选:D .【点睛】本题考查的是轴对称-最短路线问题,根据题意作出辅助线是解题的关键.2.下列命题的逆命题是真命题的是( ).A 3 3B 5C .1的立方根是1D .全等三角形的周长相等C解析:C【分析】 根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A 、3的平方根是3的逆命题是:3是3的平方根,是假命题;B 、5是无理数的逆命题是:无理数是5,是假命题;C 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.3.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ C 解析:C【分析】 根据∠B=∠C ,BD=CE ,BF=CD ,可证出△BFD ≌△CDE ,继而得出∠BFD=∠EDC ,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF ,进而得到答案.【详解】解:∵∠B=∠C ,BD=CE ,BF=CD ,∴△BFD ≌△CDE ,∴∠BFD=∠EDC ,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC ,∴∠B=∠EDF ,又∵∠B=∠C=18019022A A ︒-∠=︒-∠, ∴∠EDF=1902A ︒-∠, 故选:C .【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC 是解题的关键.4.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD B解析:B【分析】 根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴∠ADC =∠ADE ,∴AD 平分∠EDC ,故C 选项正确;但∠ADE 与∠BDE 不一定相等,故B 选项错误;D 、∵△ACD ≌△AED ,∴AE =AC ,∴ED +AC =ED +AE >AD (三角形任意两边之和大于第三边),故本选项正确.故选:B .【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED △≌△是解题的关键.5.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④D解析:D【分析】 易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 6.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF C解析:C【分析】 由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.7.根据下列已知条件,能画出唯一的△ABC的是()A.AB=3,BC=4,∠C=40°B.∠A=60°,∠B=45°,AB=4C.∠C=90°,AB=6 D.AB=4,BC=3,∠A=30°B解析:B【分析】根据全等三角形的判定方法对各选项进行判断.【详解】解:A、根据AB=3,BC=4,∠C=40°,不能画出唯一三角形,故本选项不合题意;B、∠A=60°,AB=4,∠B=45°,能画出唯一△ABC,故此选项符合题意;C、∠C=90°,AB=6,不能画出唯一三角形,故本选项不合题意;D、AB=4,BC=3,∠A=30°,不能画出唯一三角形,故本选项不合题意;故选:B.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5 B.3 C.3.5 D.4B解析:B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得1 2×2×AC+12×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=2,∵S△ABC=S△ADC+S△ABD,∴12×2×AC+12×2×4=7,∴AC=3.故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.9.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A、全等三角形的面积相等,本选项说法是真命题;B、面积相等的两个三角形不一定全等,本选项说法是假命题;C、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题;故选:A.【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键.10.在尺规作图作一个角的平分线时的两个三角形全等的依据是()A.SAS B.AAS C.SSS D.HL C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.二、填空题11.如图,△ABC中,∠ACB=90°,点D在边AC 上,DE⊥AB于点E,DC=DE,∠A=32°,则∠BDC的度数为________.61°【分析】首先利用直角三角形的性质求得∠ABC的度数然后利用角平分线的判定方法得到BD为∠ABC的平分线再求出∠ABD的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC的度数,然后利用角平分线的判定方法得到BD为∠ABC的平分线,再求出∠ABD的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB=90°,∴∠CBA=58°,∵DE⊥AB,DC⊥BC,DC=DE,∴BD为∠ABC的平分线,∴∠CBD=∠EBD,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD为∠ABC的平分线,难度不大.12.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是____.【分析】过点D 作DE ⊥BA 的延长线于点E 利用角平分线的性质可得出DE =DC =8再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积【详解】解:过点D 作DE ⊥B 解析:120【分析】过点D 作DE ⊥BA 的延长线于点E ,利用角平分线的性质可得出DE =DC =8,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD ,可求出四边形ABCD 的面积.【详解】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.又∵BD 平分∠ABC ,∠BCD =90°,∴DE =DC =8,∴S 四边形ABCD =S △ABD +S △BCD , =12AB•DE +12BC•CD , =12×12×8+12×18×8, =120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE =8是解题的关键.13.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE ,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .6【分析】根据CF ∥AB 得到∠DAE=∠FCE 结合AE=CE ∠AED=∠FEC 可得△AED ≌△CEF 根据即可得出结果【详解】解:∵CF ∥AB ∴∠DAE=∠FCE 又∵AE=CE ∠AED=∠FEC ∴△A解析:6【分析】根据CF ∥AB ,得到∠DAE=∠FCE ,结合AE=CE ,∠AED=∠FEC ,可得△AED ≌△CEF ,AED CEF S S =,根据 ABC AED CEF DBCE DBCE DBCF S S S S S S =+=+=四边形四边形四边形,即可得出结果.【详解】解:∵CF ∥AB ,∴∠DAE=∠FCE ,又∵AE=CE ,∠AED=∠FEC ,∴△AED ≌△CEF ,∴AED CEF SS =, ∴26ABC AED CEF DBCE DBCE DBCF S S S S S S cm =+=+==四边形四边形四边形, 故答案为:6.【点睛】本题考查全等三角形的判定与性质,解题的关键是证得△AED ≌△CEF . 14.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.55°【分析】由∠AFD =145°可求得∠CFD=35°证明Rt △BDE ≌△Rt △CFD 根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.15.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.16.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.24【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=4然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵AD 平分交BC 边于点D ∴DE=CD=4∴的面积为AB解析:24【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=4,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,∴DE=CD=4,∴ABD △ 的面积为12AB·DE=12×12×4=24. 故答案为:24.【点睛】本题主要考查了角平分线的性质定理,正确作出辅助线、构造角平分线定理所需条件成为解答本题的关键.17.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.15【分析】过点E 作EM ⊥AC 于MEN ⊥AD 于NEF ⊥BC 于H 如图先计算出∠EAM=75°则AE 平分∠EAD 根据角平分线的性质得EM=EN 再由CE 平分∠ACB 得到EM=EH 则EN=EH 于是根据角平分解析:15【分析】过点E 作EM ⊥AC 于M ,EN ⊥AD 于N ,EF ⊥BC 于H ,如图,先计算出∠EAM=75°,则AE 平分∠EAD ,根据角平分线的性质得EM=EN ,再由CE 平分∠ACB 得到EM=EH ,则EN=EH ,于是根据角平分线定理的逆定理可判断DE 平分∠ADB ,则∠1=12∠ADB ,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+12∠ACB ,∠ADB=∠DAC+∠ACB ,所以∠DEC==12∠DAC=15°. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图.∵ 30DAC ∠=,75DAB ∠=,∴ 75EAM ∠=,∴ AE 平分MAD ∠,∴ EM EN =.∵ CE 平分ACB ∠,∴ EM EH =,∴ EN EH =,∴ DE 平分ADB ∠,∴112ADB ∠=∠. ∵ 12DEC ∠=∠+∠,而122ACB ∠=∠,∴ 112DEC ACB ∠=∠+∠,而ADB DAC ACB ∠=∠+∠,∴ 11301522DEC DAC ∠=∠=⨯= .故答案为:15.【点睛】本题考查了平分线的性质和三角形外角的性质,掌握性质是解题的关键.18.如图,△ABC的外角∠MBC和∠NCB的平分线BP、CP相交于点P,PE⊥BC于E且PE =3cm,若△ABC的周长为14cm,S△BPC=7.5,则△ABC的面积为______cm2.6【分析】过点P作PH⊥AMPQ⊥AN连接AP根据角平分线上的点到角两边的距离相等可得PH=PE=PQ再根据三角形的面积求出BC然后求出AC+AB再根据S△ABC=S△ACP+S△ABP-S△BPC解析:6【分析】过点P作PH⊥AM,PQ⊥AN,连接AP,根据角平分线上的点到角两边的距离相等可得PH=PE=PQ,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC= S△ACP+ S△ABP-S△BPC即可得解.【详解】解:如图,过点P作PH⊥AM,PQ⊥AN,连接AP∵BP和CP为∠MBC和∠NCB角平分线∴PH=PE,PE=PQ∴PH=PE=PQ=3∵S△BPC=12×BC×PE=7.5∴BC=5∵S△ABC= S△ACP+ S△ABP-S△BPC=12×AC×PQ+12×AB×PH-7.5=12×3(AC+AB)-7.5∵AC+AB+BC=14,BC=5∴AC+AB=9∴S △ABC=12×3×9-7.5=6 cm 2 【点睛】本题考查了角平分线上点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于S △ABC 的面积的表示.19.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)∠C ∠E 或ABFD(ADFB)或∠ABC ∠FDE 或DE ∥BC 【分析】要判定△ABC ≌△FDE 已知∠A=∠FAC=FE 具备了一组角和一组边对应相等故可以添加∠C ∠E 利用ASA 可证全等(也可添加其它条件解析:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC【分析】要判定△ABC ≌△FDE ,已知∠A=∠F ,AC=FE ,具备了一组角和一组边对应相等,故可以添加∠C =∠E ,利用ASA 可证全等.(也可添加其它条件).【详解】增加一个条件:∠C =∠E ,在△ABC 和△FDE 中,C E AC FE A F ∠∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△FDE(ASA);或添加AB =FD(AD =FB) 利用SAS 证明全等;或添加∠ABC =∠FDE 或DE ∥BC 利用AAS 证明全等.故答案为:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC (答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA 、AAS 、SAS 、SSS 等,在选择时要结合其它已知在图形上的位置进行选取.20.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .4【分析】由角平分线的性质可知D 到AB 的距离等于DC 可得出答案【详解】解:作DE ⊥AB 于E ∵AD 平分∠CAB 且DC⊥ACDE⊥AB∴DE=DC∵S△ABD=20cm2AB=10cm∴•AB•DE=2解析:4【分析】由角平分线的性质可知D到AB的距离等于DC,可得出答案.【详解】解:作DE⊥AB于E.∵AD平分∠CAB,且DC⊥AC,DE⊥AB,∴DE=DC,∵S△ABD=20cm2,AB=10cm,∴1•AB•DE=20,2∴DE=4cm,∴DC=DE=4cm故答案为:4.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.三、解答题21.如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.求证:CD=2BE.解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF,再利用“角边角”证明△AFB≌△ADC可得CD=BF,利用“角边角”证明△BCE和△FCE全等,根据全等三角形对应边相等BE=EF,整理即可得证.【详解】证明:∵BE⊥CD,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.22.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.解析:(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE=⎧⎨=⎩ ∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE=⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.23.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =解析:(1)见解析;(2)见解析【分析】(1)根据平行线的性质求出∠B=∠E ,∠ACB=∠DFE ,根据AAS 证出△BAC ≌△EDF ,可得AC=DF ;.(2)由△BAC ≌△EDF ,可证BC=EF ,进而可得FB=CE .【详解】证明:(1)∵AB//ED ,AC//FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△BAC 和△EDF 中ACB DFE B EAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EDF (AAS ),∴AC=DF ;(2)∵△BAC ≌△EDF ,∴BC=EF ,∴BC-FC=EF-FC ,∴FB=CE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,注意:①全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,②全等三角形的对应边相等,对应角相等.24.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.解析:(1)见解析;(2)A(32,52)或(52,-32). 【分析】 (1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.25.已知4,BC BA BC =⊥,射线CM BC ⊥,动点P 在BC 上,PD PA ⊥交CM 于D .(1)如图1,当3,1BP AB ==时,求DC 的长;(2)如图2,连接AD ,当DP 平分ADC ∠时,求BP 的长.解析:(1)3;(2)2【分析】(1)根据同角的余角相等证得∠1=∠3,再利用AAS 证明()ABP PCD AAS ∆≅∆,然后根据全等三角形的性质解答即可;(2)过P 作PH AD ⊥于H ,利用角平分线的性质进行解答即可.【详解】解:(1)如图,∵AP PD ⊥,∴1290∠+∠=︒,∵PC CD ⊥,∴2390∠+∠=︒∴13∠=∠,∵3,4BP BC ==,∴1PC BC BP =-=,又∵1AB =,∴AB PC =,又∵AB BP ⊥,∴90B C ∠=∠=︒,∴()ABP PCD AAS ∆≅∆,∴3CD BP ==;(2)作PH AD ⊥于H ,如图2,∵DP 平分ADC ∠,∴∠1=∠2,∵90C ∠=︒,PH AD ⊥∴∠HDP=∠CDP ,∴PH PC =,又∵1390∠+∠=︒,2490∠+∠=︒,∴34∠=∠,又∵90B ∠=︒,PH AD ⊥∴∠HAP=∠BAP ,∴PH BP =, ∴122BP PC BC ===. 【点睛】本题考查全等三角形的判定与性质、角平分线的性质、同角的余角相等、直角三角形的两锐角互余,熟练掌握全等三角形的判定与性质,添加辅助线灵活运用角平分线的性质是解答的关键.26.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 27.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.解析:逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;证明见解析.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可得到原命题的逆命题,再得出命题的正确性.【详解】解:有两个内角相等的三角形必有两条高线相等的逆命题是有两条高线相等的三角形必有两个内角相等,是真命题;在Rt BCE 与Rt CBD △中,BD CE BC CB =⎧⎨=⎩∴()Rt BCE Rt CBD HL ≌,∴DCB EBC ∠=∠.【点睛】此题主要考查了命题与定理的证明,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,进而利用全等三角形的证明方法求出即可.28.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解析:(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (2)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (3)连接EF ,延长AE 、BF 相交于点C ,然后与(2)同理可证.【详解】解:(1)EF =BE +DF ,证明如下: 在ABE 和ADG 中, DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°,∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF=2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.。

人教版数学八上第6讲全等三角形判定一(SSS,SAS)(基础)知识讲解(1)

人教版数学八上第6讲全等三角形判定一(SSS,SAS)(基础)知识讲解(1)

全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】证明:∵M 为PQ 的中点(已知), ∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定. 举一反三:【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.【答案】证明:连接DC ,在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD≌△BDC(SSS )∴∠CAD =∠DBC (全等三角形对应角相等) 类型二、全等三角形的判定2——“边角边”2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE 在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD 证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形 ∴AB =BC ,BD =BE 在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS ) ∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等) ∴∠2+∠4=90°,即∠AFC =90° ∴AE ⊥CD【总结升华】通过观察,我们也可以把△CBD 看作是由△ABE 绕着B 点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP 平分∠BAC ,且AB =AC ,点Q 在PA 上,求证:QC =QB【答案】证明:∵ AP 平分∠BAC ∴∠BAP =∠CAP 在△ABQ 与△ACQ 中∵∴△ABQ ≌△ACQ(SAS) ∴ QC =QB类型三、全等三角形判定的实际应用4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.【答案与解析】证明:在△DEH 和△DFH 中,DE DF EH FH DH DH ⎧⎪⎨⎪=⎩==∴△DEH ≌△DFH(SSS) ∴∠DEH =∠DFH .【总结升华】证明△DEH ≌△DFH ,就可以得到∠DEH =∠DFH ,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS ”定理就能解决问题. 举一反三: 【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB 是一个任意角,在边OA ,边OB 上分别取OD =OE ,移动角尺,使角尺两边相同的刻度分别与D 、E 重合,这时过角尺顶点P 的射线OP 就是∠AOB 的平分线,你能先说明△OPE 与△OPD 全等,再说明OP 平分∠AOB 吗?【答案】证明: 在△OPE 与△OPD 中∵OE OD OP OP PE PD =⎧⎪=⎨⎪=⎩∴ △OPE ≌△OPD (SSS )∴ ∠EOP =∠DOP(全等三角形对应角相等) ∴ OP 平分∠AOB.【巩固练习】 一、选择题1. △ABC 和△'''A B C 中,若AB =''A B ,BC =''B C ,AC =''A C .则( ) A.△ABC ≌△'''A C B B. △ABC ≌△'''A B C C. △ABC ≌△'''C A B D. △ABC ≌△'''C B A2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( ) A.AB ∥DC B.∠B =∠D C.∠A =∠C D.AB =BC3. 下列判断正确的是( ) A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( ) A.EC ⊥AC B.EC =AC C.ED +AB =DB D.DC =CB二、填空题7. 如图,AB =CD ,AC =DB ,∠ABD =25°,∠AOB =82°,则∠DCB =_________.8. 如图,在四边形ABCD 中,对角线AC 、BD 互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC 和△EFD 中,AD =FC ,AB =FE ,当添加条件_______时,就可得△ABC ≌△EFD (SSS )10. 如图,AC =AD ,CB =DB ,∠2=30°,∠3=26°,则∠CBE =_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵ AB∥CD (),∴∠______=∠______ (),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】 一.选择题1. 【答案】B ;【解析】注意对应顶点写在相应的位置. 2. 【答案】D ;【解析】连接AC 或BD 证全等. 3. 【答案】D ; 4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA. 5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ; 【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA. 9. 【答案】BC =ED ; 10.【答案】56°;【解析】∠CBE =26°+30°=56°. 11.【答案】20°;【解析】△ABE ≌△ACD (SAS ) 12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上. 三.解答题13.【解析】证明:在△ADC 与△BCD 中,,,,DC CD ADC BCD AD BC =⎧⎪∠=∠⎨⎪=⎩()...ADC BCD SAS ACD BDC OC OD ∠=∠=∴△≌△∴∴ 14. 【解析】3,4; ABD ,CDB ; 已知;1,2;两直线平行,内错角相等; ABD ,CDB ; AB ,CD ,已知; ∠1=∠2,已证; BD =DB ,公共边; ABD ,CDB ,SAS ;3,4,全等三角形对应角相等; AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.DBA。

第12章全等三角形专题突破(构全等1)课件人教版数学八年级上册

第12章全等三角形专题突破(构全等1)课件人教版数学八年级上册

∵AB+BC=CD=CF+DF, ∴BC=CF, ∴△BCE≌△FCE(SSS), ∴∠BCE=∠FCE, ∴CE 平分∠BCD.
专题突破 构全等(二)中点模型
模型 1: SA →SAS(中线倍长) 如图,若 OA=OC,OB=OD,则△ AOB≌△COD(SAS)
1.如图,在△ABC 中,D 是边 BC 上的中点.
4.如图,A,B,C 三点共线,D,C,E 三点共线,∠A=∠DBC,EF⊥ AC 于点 F,AE=BD. (1)求证:C 是 DE 的中点; 证明:(1)过点 D 作 DG⊥AC,交 AC 的延长线于点 G, ∴∠AFE=∠G=90°, 又∵∠A=∠DBG,AE=BD, ∴△AEF≌△BDG(AAS),∴EF=DG, 又∵∠G=∠EFC=90°,∠DCG=∠ECF, ∴△DCG≌△ECF(AAS), ∴CD=CE,∴C 是 DE 的中点;
(1)求证:AB+AC>2AD;
(2)若 AB=5,AC=7,直接写出 AD 的取值范围为
.
解:(1)延长 AD 至点 E,使 DE=AD,
连接 BE,则△ADC≌△EDB(SAS),
∴BE=AC,∴AB+BE>AE,∴AB+AC>2AD;
(2)∵BE-AB<AE<BE+AB,
∴7-5<2AD<7+5,∴1<AD<6.
Hale Waihona Puke 2.如图,CE 是△ACD 的中线,点 B 在 AD 的延长线上,BD=AC,∠ACD =∠ADC,求证:CE=12 BC. 证明:延长 CE 至点 F,使 EF=CE,连接 DF,∴△CAE≌△FDE, ∴AC=DF=BD,∠A=∠EDF, 又∵∠ACD=∠ADC,∠CDB=∠A+∠ACD,∠CDF=∠ADC+∠EDF, ∴∠CDF=∠CDB,又 CD=CD, ∴△CFD≌△CBD(SAS), ∴BC=CF=2CE,∴CE=12 BC.

部编数学八年级上册专题02全等三角形中的六种模型梳理(解析版)(人教版)含答案

部编数学八年级上册专题02全等三角形中的六种模型梳理(解析版)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题02 全等三角形中的六种模型梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。

目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中去。

例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC.【理解与应用】如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.【答案】[探究与发现]见解析;[理解与应用](1)见解析;(2)1<x<4【详解】解:[探究与发现]证明:∵DE∥AB,∴∠B=∠D,又∵BC=DC,∠ACB=∠ECD,∴△ABC≌△EDC(ASA);[理解与应用](1)证明:如图2中,延长AE到F,使EF=EA,连接DF,∵点E 是CD 的中点,∴ED =EC ,在△DEF 与△CEA 中,EF EA DEF CEA ED EC =ìïÐ=Ðíï=î,∴△DEF ≌△CEA (SAS ),∴AC =FD ,∴∠AFD =∠CAE ,∵∠CAE =∠B ,∴∠AFD =∠B ,∵AD 平分∠BAE ,∴∠BAD =∠FAD ,在△ABD 与△AFD 中,B AFD BAD FAD AD AD Ð=ÐìïÐ=Ðíï=î,∴△ABD ≌△AFD (AAS ),∴BD =FD ,∴AC =BD ;(2)解:由(1)得:AF =2AE =2x ,△ABD ≌△AFD ,∴AB =AF =2x ,∵BD =3,AD =5,在△ABD 中,由三角形的三边关系得:AD -BD <AB <AD +BD ,即5-3<2x <5+3,解得:1<x <4,即x 的取值范围是1<x <4.【变式训练1】如图1,在ABC V 中,CM 是AB 边的中线,BCN BCM Ð=Ð交AB 延长线于点N ,2CM CN =.(1)求证AC BN =;(2)如图2,NP 平分ANC Ð交CM 于点P ,交BC 于点O ,若120AMC Ð=°,CP kAC =,求CP CM的值.【答案】(1)见解析;(2)21kk +【详解】(1)如图1所示,延长CM 至点D ,使CM DM =,在ACM △与BDM V 中,CM DM AMC BMD AM BM =ìïÐ=Ðíï=î,ACM BDM \D @D ,AC BD \=,2CM CN =Q ,CD CN \=,在DCB V 与NCB △中,CD CN DCB NCB CB CB =ìïÐ=Ðíï=î,DCB NCB \D @D ,BN BD \=,AC BN \=;(2)如图所示,120AMC Ð=°Q ,60CMN \Ð=°,NP Q 平分MNC Ð,BCN BCM Ð=Ð,1602PNC BCN AMC Ð+Ð=Ð=°,120CON \Ð=°,60COP Ð=°,180CMN BOP \Ð+Ð=°,作CQ CP =,在CPO △与CQO V 中,CQ CP QCO PCO CO CO =ìïÐ=Ðíï=î,CPO CQO \D @D ,123\Ð=Ð=Ð,45\Ð=Ð,在NOB V 与NOQ V 中,45BNO QNO NO NO Ð=ÐìïÐ=Ðíï=î,NOB NOQ \D @D ,BN NQ \=,CN CP NB \=+,2CM CP AC \=+,设AC a =,CP ka \=,(1)2a k CM +=,21CP k CM k \=+.【变式训练2】(1)如图1,已知ABC V 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC V 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC V 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =ìïÐ=Ðíï=î,∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =ìïÐ=Ðíï=î,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =ìïÐ=Ðíï=î,∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【变式训练3】在ABC V 中,点P 为BC 边中点,直线a 绕顶点A 旋转,BM ^直线a 于点M .CN ^直线a 于点N ,连接PM ,PN .(1)如图1,若点B ,P 在直线a 的异侧,延长MP 交CN 于点E .求证:PM PE =.(2)若直线a 绕点A 旋转到图2的位置时,点B ,P 在直线a 的同侧,其它条件不变,此时7BMP CNP S S +=△△,1BM =,3CN =,求MN 的长度.(3)若过P 点作PG ^直线a 于点G .试探究线段PG 、BM 和CN 的关系.【答案】(1)见解析;(2)7MN =;(3)线段PG 、BM 和CN 的位置关系为////BM PG CN ,数量关系为2PG CN BM =-或2PG BM CN =-或2PG CN BM=+【详解】(1)证明:如图1,BM ^Q 直线a 于点M ,CN ^直线a 于点N ,90BMA CNM \Ð=Ð=°,//BM CN \,MBP ECP \Ð=Ð,又P Q 为BC 边中点,BP CP \=,在BPM △和CPE △中,BPM CPE BP CP MBP ECP Ð=Ðìï=íïÐ=Ðî,()BPM CPE ASA \≌△△,PM PE \=.(2)解:如图2,延长MP 与NC 的延长线相交于点E ,BM ^Q 直线a 于点M ,CN ^直线a 于点N ,90BMN CNM \Ð=Ð=°,180BMN CNM \Ð+Ð=°,//BM CN \,MBP ECP \Ð=Ð,又P Q 为BC 中点,BP CP \=,又BPM CPE Ð=ÐQ ,∴在BPM △和CPE △中,BPM CPE BP CP MBP ECP Ð=Ðìï=íïÐ=Ðî,()BPM CPE ASA \≌△△,PM PE \=,BM CE =,BPM CPE S S =△△,∵1BM =,3CN =,4NE CN CE CN BM \=+=+=,7BMP CNP S S +=Q △△,7PNE CPE CNP BMP CNP S S S S S \+=+==△△△△△,214MNE PNE S S \==△△,\14142MN ´´=,7MN \=.(3)位置关系:////BM PG CN ,数量关系:分四种情况讨论∵BM ^直线a 于点M .CN ^直线a 于点N ,PG ^直线a 于点G ,∴////BM PG CN ,①如图3,当直线a 与线段BP 交于一点时,由(1)可知PM PE =,12PMN PEN MNE S S S \==△△△,即111222MN PG NE MN ´×=×,2NE PG \=,BPM CPE Q ≌△△,BM CE \=,∵NE CN CE =-,2PG CN BM \=-.②当直线a 与线段CP 交于一点时,如图,延长MP 交CN 的延长线于点E .BM ^Q 直线a 于点M ,CN ^直线a 于点N ,90BMN CNM \Ð=Ð=°,//BM CN \,MBP ECP \Ð=Ð,又P Q 为BC 边中点,BP CP \=,在BPM △和CPE △中,BPM CPE BP CP MBP ECP Ð=Ðìï=íïÐ=Ðî,()BPM CPE ASA \≌△△,PM PE \=.12PMN PEN MNE S S S \==△△△,即111222MN PG NE MN ´×=×,2NE PG \=,BPM CPE Q ≌△△,BM CE \=,∵NE CE CN =-,2PG BM CN \=-.③如图4,当直线a 与线段CB 的延长线交于一点时.由(2)得:()BPM CPE ASA V V ≌,PM PE \=,BPM CPE S S =△△,∴2MNE MNP BCNM S S S ==梯形△△,即()11222BM CN MN MN PG +×=´×,2PG CN BM \=+.④当直线a 与线段CB 的延长线交于一点时,如图,延长MP 交NC 的延长线于点E.BM ^Q 直线a 于点M ,CN ^直线a 于点N ,90BMN CNM \Ð=Ð=°,180BMN CNM \Ð+Ð=°,//BM CN \,MBP ECP \Ð=Ð,又P Q 为BC 中点,BP CP \=,又BPM CPE Ð=ÐQ ,∴在BPM △和CPE △中,BPM CPE BP CP MBP ECP Ð=Ðìï=íïÐ=Ðî,()BPM CPE ASA \≌△△,PM PE \=,BPM CPE S S =△△,∴2MNE MNP BCNM S S S ==梯形△△,即()11222BM CN MN MN PG +×=´×,2PG CN BM \=+.综上所述,线段PG 、BM 和CN 的位置关系为////BM PG CN ,数量关系为2PG CN BM =-或2PG BM CN =-或2PG CN BM =+.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例.在等边三角形ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,P 为△ABC 外一点,且∠MPN =60°,∠BPC =120°,BP =CP .探究:当点M 、N 分别在直线AB 、AC 上移动时,BM ,NC ,MN 之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.【答案】(1)见解析;(2)一定成立;(3)MN=NC﹣BM【解析】(1)证明:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵∠BPC=120°,BP=CP,∴∠PBC=∠PCB=12×(180°﹣120°)=30°,∴∠PBM=∠PCN=90°,在Rt△PBM和Rt△PCN中,PB PCPM PN=ìí=î,∴Rt△PBM≌Rt△PCN(HL),∴∠BPM=∠CPN=30°,∵∠MPN=60°,PM=PN,∴△PMN为等边三角形,∴PM=PN=MN,在Rt△PBM中,∠BPM=30°,∴BM=12PM,同理可得,CN=12PN,∴BM+CN=MN.(2)解:一定成立,理由如下:延长AC至H,使CH=BM,连接PH,如图所示,由(1)可知:∠PBM=∠PCN=90°,∴∠PCH=90°,∴∠PBM=∠PCH,在△PBM和△PCH中,BM CHPBM PCHPB PC=ìïÐ=Ðíï=î,∴△PBM≌△PCH(SAS),∴PM=PH,∠BPM=∠CPH,∵∠BPM +∠CPN =60°,∴∠CPN +∠CPH =60°,∴∠MPN =∠HPN ,在△MPN 和△HPN 中,PM PH MPN HPN PN PN =ìïÐ=Ðíï=î,∴△MPN ≌△HPN (SAS ),∴MN =HN =BM +CN ,故答案为:一定成立.(3)解:在AC 上截取CK =BM ,连接PK ,如图所示,在△PBM 和△PCK 中,90PB PC PBM PCK BM CK =ìïÐ=Ð=°íï=î,∴△PBM ≌△PCK (SAS ),∴PM =PK ,∠BPM =∠CPK ,∵∠BPM +∠BPN =60°,∴∠CPK +∠BPN =60°,∴∠KPN =60°,∴∠MPN =∠KPN ,在△MPN 和△KPN 中,PM PK MPN KPN PN PN =ìïÐ=Ðíï=î,∴△MPN ≌△KPN (SAS ),∴MN =KN ,∵KN =NC ﹣CK =NC ﹣BM ,∴MN =NC ﹣BM .【变式训练1】如图,在四边形ABCD 中,,180AB AD B ADC =Ð+Ð=°,点E 、F 分别在直线BC 、CD 上,且12EAF BAD Ð=Ð.(1)当点E 、F 分别在边BC 、CD 上时(如图1),请说明EF BE FD =+的理由.(2)当点E 、F 分别在边BC 、CD 延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF 、BE 、FD 之间的数量关系,并说明理由.【答案】(1)见解析;(2)不成立,EF BE FD =-,见解析【解析】(1)EF =BE +DF ,理由:延长EB 至G ,使BG =DF ,连接AG ,∵∠ABC +∠ADC =180°,∠ABC +∠ABG =180°,∴∠ADC =∠ABG ,在△ABG 和△ADF 中,AB AD ABG ADF BG DF =ìïÐ=Ðíï=î,∴△ABG ≌△ADF (SAS ),∴AG =AF ,∠BAG =∠DAF ,∵∠EAF =12∠BAD ,∴∠BAE +∠DAF =∠BAE +∠BAG =∠EAF ,即∠EAG =∠EAF ,在△EAG 和△EAF 中,AG AF EAG EAF AE AE =ìïÐ=Ðíï=î,∴△EAG ≌△EAF (SAS ),∴GE =EF ,∴EF =BE +DF ;(2)(1)中结论不成立,EF =BE ﹣FD ,在BE 上截取BM =DF ,连接AM ,∵∠ABC +∠ADC =180°,∠ADC +∠ADF =180°,∴∠ABC =∠ADF ,在△ABM 和△ADF 中,AB AD ABM ADF BM DF =ìïÐ=Ðíï=î,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠BAM =∠DAF ,∵∠BAM +∠MAD =∠DAF +∠MAD ,∴∠BAD =∠MAF,∵∠EAF =12∠BAD ,∴∠EAF =12∠MAF ,∴∠EAF =∠EAM ,在△AME 和△AFE 中,AM AF EAM EAF AE AE =ìïÐ=Ðíï=î,∴△AME ≌△AFE (SAS ),∴ME =EF ,∴ME =BE ﹣BM =BE ﹣DF ,∴EF =BE ﹣FD .【变式训练2】(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC Ð,180A C Ð+Ð=°.求证:DA DC =.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC Ð=°时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C Ð+Ð=°,DA DC =,过点D 作DE BC ^,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.【答案】(1)证明见解析;(2)AB BC BD +=;理由见解析;(3)2BC AB CE -=.【详解】解:(1)方法1:在BC 上截BM BA =,连接DM ,如图.BD Q 平分ABC Ð,ABD CBD \Ð=Ð.在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM =ìïÐ=Ðíï=î,ΔΔABD MBD \≌,A BMD \Ð=Ð,AD MD =.180BMD CMD °Ð+Ð=Q ,180C A °Ð+Ð=.C CMD \Ð=Ð.DM DC \=,DA DC \=.方法2:延长BA 到点N ,使得BN BC =,连接DN ,如图.BD Q 平分ABC Ð,NBD CBD \Ð=Ð.在ΔNBD 和ΔCBD 中,BD BD NBD CBD BN BC =ìïÐ=Ðíï=î,ΔΔNBD CBD \≌.BND C \Ð=Ð,ND CD =.180NAD BAD °Ð+Ð=Q ,180C BAD °Ð+Ð=.BND NAD \Ð=Ð,DN DA \=,DA DC \=.(2)AB 、BC 、BD 之间的数量关系为:AB BC BD +=.(或者:BD CB AB -=,BD AB CB -=).延长CB 到点P ,使BP BA =,连接AP ,如图2所示.由(1)可知AD CD =,60DAC °Ð=Q .ΔADC \为等边三角形.AC AD \=,60ADC °Ð=.180BCD BAD °Ð+Ð=Q ,36018060120ABC °°°°\Ð=--=.18060PBA ABC °°\Ð=-Ð=.BP BA =Q ,ΔABP \为等边三角形.60PAB °\Ð=,AB AP =.60DAC °Ð=Q ,PAB BAC DAC BAC \Ð+Ð=Ð+Ð,即PAC BAD Ð=Ð.在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD =ìïÐ=Ðíï=î,ΔΔPAC BAD \≌.PC BD \=,PC BP BC AB BC =+=+Q ,AB BC BD \+=.(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE -=.(或者:2BC CE AB -=,2AB CE BC +=)解:连接BD ,过点D 作DF AC ^于F ,如图3所示.180BAD C °Ð+Ð=Q ,180BAD FAD °Ð+Ð=.FAD C \Ð=Ð.在ΔDFA 和ΔDEC 中,DFA DEC FAD C DA DC Ð=ÐìïÐ=Ðíï=î,ΔΔDFA DEC \≌,DF DE \=,AF CE =.在RtΔBDF 和RtΔBDE 中,BD BD DF DE =ìí=î,RtΔRtΔBDF BDE \≌.BF BE \=,2BC BE CE BA AF CE BA CE \=+=++=+,2BC BA CE \-=.【变式训练3】在ABC V 中,BE ,CD 为ABC V 的角平分线,BE ,CD 交于点F .(1)求证:1902BFC A Ð=°+Ð;(2)已知60A Ð=°.①如图1,若4BD =, 6.5BC =,求CE 的长;②如图2,若BF AC =,求AEB Ð的大小.【答案】(1)证明见解析;(2)2.5;(3)100°.【解析】解:(1)BE Q 、CD 分别是ABC Ð与ACB Ð的角平分线,11(180)9022FBC FCB A A \Ð+Ð=°-Ð=°-Ð,1180()180(90)2BFC FBC FCB A \Ð=°-Ð+Ð=°-°-Ð,1902BFC A \Ð=°+Ð,(2)如解(2)图,在BC 上取一点G 使BG=BD ,由(1)得1902BFC A Ð=°+Ð,60BAC Ð=°Q ,120BFC \Ð=°,∴18060BFD EFC BFC Ð=Ð=°-Ð=°,在BFG V 与BFD △中,BF BF FBG FBD BD BG =ìïÐ=Ðíï=î,∴BFG BFD @V △(SAS )∴BFD BFG Ð=Ð,∴60BFD BFG Ð=Ð=°,∴12060CFG BFG Ð=°-Ð=°,∴60CFG CFE Ð=Ð=°在FEC V 与FGC △中,CFE CFG CF CF ECF GCF Ð=Ðìï=íïÐ=Ðî,()FEC FGC ASA \@V V ,CE CG \=,BC BG CG =+Q ,BC BD CE \=+;∵4BD =, 6.5BC =,∴ 2.5CE =(3)如解(3)图,延长BA 到P ,使AP=FC,60BAC Ð=°Q ,∴180120PAC BAC Ð=°-Ð=°,在BFC △与CAP V 中,120BF AC BFC CAP CF PA =ìïÐ=Ð=°íï=î,∴BFC CAP @V △(SAS )∴P BCF Ð=Ð,BC PC =,∴P ABC Ð=Ð,又∵12P BCF ACB Ð=Ð=Ð,∴2ACB ABC Ð=Ð,又∵180ACB ABC A Ð+Ð+Ð=°,∴360180ABC Ð+°=°,∴40ABC Ð=°,80ACB Ð=°,∴1202ABE ABC Ð=Ð=°,180()180(2060)100AEB ABE A Ð=°-Ð+Ð=°-°+°=°类型三、做平行线证明全等例1.如图所示:ABC V 是等边三角形,D 、E 分别是AB 及AC 延长线上的一点,且BD CE =,连接DE 交BC 于点M .求让:MD ME=【答案】见详解【详解】过点D 作DE ∥AC ,交BC 于点E ,∵ABC V 是等边三角形,∴∠B=∠ACB=60°,∵DE ∥AC ,∴∠DEB=∠ACB=60°,∠MDE=∠MEC ,∴BDE V 是等边三角形,∴BD=DE ,∵BD CE =,∴DE=CE ,又∵∠EMD=∠CME ,∴∆EMD ≅∆CME ,∴MD ME =.【变式训练1】 P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且PA =CQ ,连PQ 交AC 边于D .(1)证明:PD =DQ .(2)如图2,过P 作PE ⊥AC 于E ,若AB =6,求DE 的长.【答案】(1)证明见解析;(2)DE =3.【详解】(1)如图1所示,点P 作PF ∥BC 交AC 于点F .∵△ABC 是等边三角形,∴△APF 也是等边三角形,AP =PF =AF =CQ .∵PF ∥BC ,∴∠PFD =∠DCQ .在△PDF 和△QDC 中,PDF QDC DFP QCDPF QC Ð=ÐìïÐ=Ðíï=î,∴△PDF ≌△QDC (AAS ),∴PD =DQ ;(2)如图2所示,过P 作PF ∥BC 交AC 于F .∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD =∠QCD ,△APF 是等边三角形,∴AP =PF =AF .∵PE ⊥AC ,∴AE =EF .∵AP =PF ,AP =CQ ,∴PF =CQ .在△PFD 和△QCD 中,PDF QDC DFP QCDPF QC Ð=ÐìïÐ=Ðíï=î,∴△PFD ≌△QCD (AAS ),∴FD =CD .∵AE =EF ,∴EF +FD =AE +CD ,∴AE +CD =DE 12=AC .∵AC =6,∴DE =3.【变式训练2】已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;ME.【答案】(1)DM=EM.理由见详解;(2)成立,理由见详解;(3)MD=12【解析】(1)解:DM=EM;证明:过点E作EF//AB交BC于点F,∵AB=AC,∴∠ABC=∠C;又∵EF//AB,∴∠ABC=∠EFC,∴∠EFC=∠C,∴EF=EC.又∵BD=EC,∴EF=BD.又∵EF//AB,∴∠ADM=∠MEF.在△DBM 和△EFM 中BDM FEM BMD FME BD EF Ð=ÐìïÐ=Ðíï=î,∴△DBM ≌△EFM ,∴DM =EM .(2)解:成立;证明:过点E 作EF //AB 交CB 的延长线于点F ,∵AB =AC ,∴∠ABC =∠C ;又∵EF //AB ,∴∠ABC =∠EFC ,∴∠EFC =∠C ,∴EF =EC .又∵BD =EC ,∴EF =BD .又∵EF //AB ,∴∠ADM =∠MEF .在△DBM 和△EFM 中BDE FEM BMD FME BD EF Ð=ÐìïÐ=Ðíï=î∴△DBM ≌△EFM ;∴DM =EM ;类型四、旋转模型例.如图1,AC BC =,CD CE =,ACB DCE a Ð=Ð=,AD 、BE 相交于点M ,连接CM .(1)求证:BE AD =,并用含a 的式子表示AMB Ð的度数;(2)当90a =°时,取AD ,BE 的中点分别为点P 、Q ,连接CP ,CQ ,PQ ,如图2,判断CPQ V 的形状,并加以证明.【答案】(1)证明见解析;AMB a Ð=;(2)CPQ V 为等腰直角三角形;证明见解析.【详解】证明:(1)如图1,ACB DCE a Ð=Ð=Q ,ACB BCD DCE BCD \Ð+Ð=Ð+Ð,ACD BCE ÐÐ\=,在ACD △和BCE V 中,CA CB ACD BCE CD CE =ìïÐ=Ðíï=î,(SAS)ACD BCE \≌△△,BE AD \=;ACD BCE V Q V ≌,CAD CBE \Ð=Ð,ABC Q V 中,180BAC ABC a Ð+Ð=°-,180BAM CAM ABC a \Ð+Ð+Ð=°-,180BAM ABM a \Ð+Ð=°-,ABM \V 中,180()180(180)AMB BAM ABM a a Ð=°-Ð+Ð=°-°-=;即AMB a Ð=;(2)CPQ V 为等腰直角三角形.证明:如图2,由(1)可得,BE AD =,AD Q ,BE 的中点分别为点P 、Q ,AP =BQ \,ACD BCE V Q V ≌,CAP CBQ \Ð=Ð,在ACP △和BCQ △中,CA CB CAP CBQ AP BQ =ìïÐ=Ðíï=î,(SAS)ACP BCQ \≌△△,CP CQ \=,且ACP BCQ Ð=Ð,又90ACP PCB Ð+Ð=°Q ,90BCQ PCB \Ð+Ð=°,90PCQ \Ð=°,CPQ \V 为等腰直角三角形.【变式训练1】四边形ABCD 是由等边ABC D 和顶角为120°的等腰ABD D 排成,将一个60°角顶点放在D 处,将60°角绕D 点旋转,该60°交两边分别交直线BC 、AC 于M 、N ,交直线AB 于E 、F 两点.(1)当E 、F 都在线段AB 上时(如图1),请证明:BM AN MN +=;(2)当点E 在边BA 的延长线上时(如图2),请你写出线段MB ,AN 和MN 之间的数量关系,并证明你的结论;(3)在(1)的条件下,若7AC =, 2.1AE =,请直接写出MB 的长为 .【答案】(1)证明见解析;(2)MB MN AN =+.证明见解析;(3)2.8.【解析】解:(1)证明:把△DBM 绕点D 逆时针旋转120°得到△DAQ ,则DM =DQ ,AQ =BM ,∠ADQ =∠BDM ,∠QAD =∠CBD =90°,∴点Q 在直线CA 上,∵∠QDN =∠ADQ +∠ADN =∠BDM +∠ADN =∠ABD -∠MDN =120°-60°=60°,∴∠QDN =∠MDN =60°,∵在△MND 和△QND 中,DM DQ QDN MDN DN DN ìïÐÐíïî===,∴△MND ≌△QND (SAS ),∴MN =QN ,∵QN =AQ +AN =BM +AN ,∴BM +AN =MN ;(2):MB MN AN =+.理由如下:如图,把△DAN 绕点D 顺时针旋转120°得到△DBP ,则DN =DP ,AN =BP ,∵∠DAN =∠DBP =90°,∴点P 在BM 上,∵∠MDP =∠ADB -∠ADM -∠BDP =120°-∠ADM -∠ADN =120°-∠MDN =120°-60°=60°,∴∠MDP =∠MDN =60°,∵在△MND 和△MPD 中,DN DP MDP MDN DM DM ìïÐÐíïî===,∴△MND ≌△MPD (SAS ),∴MN =MP ,∵BM =MP +BP ,∴MN +AN =BM;(3)如图,过点M作MH∥AC交AB于G,交DN于H,∵△ABC是等边三角形,∴△BMG是等边三角形,∴BM=MG=BG,根据(1)△MND≌△QND可得∠QND=∠MND,根据MH∥AC可得∠QND=∠MHN,∴∠MND=∠MHN,∴MN=MH,∴GH=MH-MG=MN-BM=AN,即AN=GH,∵在△ANE和△GHE中,QND MHNAEN GEHAN GHÐÐìïÐÐíïî===,∴△ANE≌△GHE(AAS),∴AE=EG=2.1,∵AC=7,∴AB=AC=7,∴BG=AB-AE-EG=7-2.1-2.1=2.8,∴BM=BG=2.8.故答案为:2.8【变式训练2】(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠AEB的度数为 °;②线段AD、BE之间的数量关系是 .(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.【答案】(1)①60;②AD =BE ;(2)a 2+b 2=c 2;(3)60°或120°【详解】解:(1)①如图1,∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =ìïÐ=Ðíï=î,∴△ACD ≌△BCE (SAS ).∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°,∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°,故答案为:60;②∵△ACD ≌△BCE ,∴AD =BE ,故答案为:AD =BE ;(2)∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE ,∴△ACD ≌△BCE (SAS ),∴BE =AD ,∠ADC =∠BEC ,∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一直线上,∴∠ADC =135°.∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°,∴AD 2+AE 2=AB 2,∵AD =a ,AE =b ,AB =c ,∴a 2+b 2=c 2;(3)如图3,由(1)知△ACD ≌△BCE ,∴∠CAD =∠CBE ,∵∠CAB =∠CBA =60°,∴∠OAB +∠OBA =120°,∴∠AOE =180°-120°=60°,如图4,同理求得∠AOB =60°,∴∠AOE =120°,∴∠AOE 的度数是60°或120°.【变式训练3】如图1,在Rt ABC V 中,90A Ð=°,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是______,位置关系是______.(2)探究证明:把ADE V 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN V 的形状,并说明理由;(3)拓展延伸:把ADE V 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN V 面积的最大值.【答案】(1)PM PN =、PM PN ^;(2)等腰直角三角形,证明见解析;(3)492【详解】解:(1)∵点P ,N 是BC ,CD 的中点, ∴PN ∥BD ,PN =12BD ,∵点P ,M 是CD ,DE 的中点, ∴PM ∥CE ,PM =12CE ,∵AB =AC ,AD =AE , ∴BD =CE , ∴PM =PN ,∵PN ∥BD , ∴∠DPN =∠ADC ,∵PM ∥CE , ∴∠DPM =∠DCA ,∵∠BAC =90°, ∴∠ADC +∠ACD =90°, ∴∠MPN =∠DPM +∠DPN =∠DCA +∠ADC =90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由如下:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)由(2)知,△PMN是等腰直角三角形,PM=PN=12BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大= 12PM2=12×49=492.类型五、手拉手模型例.在等边ABCV中,点D在AB上,点E在BC上,将线段DE绕点D逆时针旋转60°得到线段DF,连接CF.(1)如图(1),点D 是AB 的中点,点E 与点C 重合,连接AF .若6AB =,求AF 的长;(2)如图(2),点G 在AC 上且60AGD FCB Ð=°+Ð,求证:CF DG =;(3)如图(3),6AB =,2BD CE =,连接AF .过点F 作AF 的垂线交AC 于点P ,连接BP 、DP .将BDP △沿着BP 翻折得到BQP V ,连接QC .当ADP △的周长最小时,直接写出CPQ V 的面积.【答案】(1)AF =3;(2)见解析;【解析】(1)解:∵△ABC 为等边三角形,∴BC =AC ,∠BCA =60°,由旋转知,∠CDF =60°,CD =CF ,∴△DCF 为等边三角形,∴CD =CF ,∠DCF =60°,∴∠DCB =∠ACF ,∴△BCD ≌△ACF ,∴AF =BD ,∵D 为AB 中点,AB =6,∴BD =3,∴AF =3.(2)解:将CF 绕C 顺时针旋转60°得CH ,连接CH ,FH ,EF ,EH ,CD ,在AC 上截取AP =BE ,连接DP ,设CD 交EH 于M ,如图所示,由旋转知,△DEF 、△CFH 为等边三角形,∴DF =EF ,CF =FH ,∠DFE =∠CFH =60°,∴∠DFC =∠EFH ,∴△DCF ≌△BHF ,∴EH =CD ,∠DCF =∠EHF ,由三角形内角和知,∠HMC +∠EHF =∠DCF +∠HFC ,∴∠HMC =∠HFC =60°,∴∠DCE +∠HEC =60°,∵∠DCP +∠DCE =60°, ∴∠CEH =∠DCP ,∵AC =BC ,AP =BE ,∴CP =CE ,∴△ECH ≌△CPD ,∴CH =DP ,∠DPC =∠HCE ,又∠HCE =60°+∠2,∴∠DPC =60°+∠2,由∠1+∠FCG =∠2+∠FCG =60°,知∠1=∠2,又∠AGD =60°+∠1,∴∠AGD =∠DPG , ∴DP =DG ,∵CH =CF ,∴CF =DG .(3):过D 作DH ⊥CB 于H ,连接EF ,如图所示,∵△ABC 为等边三角形,∴∠DBH =60°,∠BDH =30°,∴BD =2BH ,DH ,∵BD =2CE ,∴BH =CE ,设BH =CE =x ,则BD =2x ,EH =6-2x ,AD =6-2x ,由旋转知,△DEF 为等边三角形,∠EDF =60°,∴∠1+∠3=90°,DE =DF ,又∠1+∠2=90°,∴∠2=∠3,∴△ADF ≌△HED ,∴∠DAF =∠DHE =90°,∠PAF =30°,AF =DH ,∵∠AFP =90°,∴PF =x ,AP =2x ,过P 作PM ⊥AD 于M ,则AM =x ,DM =6-3x ,PM ,在Rt △PDM 中,由勾股定理得:PD ==故△ADP 周长=AD +AP +PD =6-2x +2x ,∴当x =32时,周长取最小值,最小值为9,此时DP =3,∴BD =AP =3,即D 为AB 中点,P 为AC 中点,∴直线BP 是等边△ABC 对称轴,如图所示,△BDP 沿BP 折叠后,Q 点落在BC 中点处,则△PCQ 面积=14×△ABC 面积=1426【变式训练1】△ACB 和△DCE 是共顶点C 的两个大小不一样的等边三角形.(1)问题发现:如图1,若点A,D,E在同一直线上,连接AE,BE.①求证:△ACD≌△BCE;②求∠AEB的度数.(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.【答案】(1)①见解析;②∠AEB=60°;(2)∠ADB=60°,2DM+BD=AD,理由见解析;(3)α=60°,证明见解析【解析】(1)①证明:∵△ACB和△DCE是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°-∠DCB=∠BCE,∴△ACD≌△BCE(SAS);②∵△ACD≌△BCE,∴∠ADC=∠BEC=180°-∠CDE=120°,又∵∠CED=60°,∴∠AEB=60°;(2)解:∠ADB=60°,2DM +BD=AD,理由如下;∵AC=BC,CD=CE,∠ACD=60°+∠DCB=∠BCE,∴△ACD≌△BCE(SAS),∴∠CDA=∠CED=60°;∵∠ADB+∠CDA=∠DCE+∠CED,∴∠ADB=60°;又∵CM⊥BE,且△CDE为等边三角形,∴DE=2DM,∴2DM +BD=BE=AD;(3)解:α=60°,理由如下:同理可证△ACD≌△BCE,∴∠BEC=∠ADC,∴∠CDF+∠CEF=180°,∴∠ECD+∠DFE=180°,而α+∠DFE=180°,∴α=∠ECD=60°.【变式训练2】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD= .【答案】(1)BD =CE ;(2)BD 2=54;(3)8【详解】解:(1)BD =CE .理由是:∵∠BAE =∠CAD , ∴∠BAE +∠BAC =∠CAD +∠BAC ,即∠EAC =∠BAD ,在△EAC 和△BAD 中, AE AB EAC BAD AC AD =ìïÐ=Ðíï=î,∴△EAC ≌△BAD , ∴BD =CE ;(2)如图2,在△ABC 的外部,以A 为直角顶点作等腰直角△BAE ,使∠BAE =90°,AE =AB ,连接EA 、EB 、EC .∵∠ACD =∠ADC =45°, ∴AC =AD ,∠CAD =90°,∴∠BAE +∠BAC =∠CAD +∠BAC ,即∠EAC =∠BAD ,在△EAC 和△BAD 中,AE AB EAC BAD AC AD =ìïÐ=Ðíï=î,∴△EAC ≌△BAD ,∴BD =CE .∵AE =AB =5,∴BE =∠ABE =∠AEB =45°,又∵∠ABC =45°,∴∠ABC +∠ABE =45°+45°=90°,∴(22222254EC BE BC =+=+=,∴2254BD CE == .(3)如图,∵AB =BC ,∠ABC =60°,∴△ABC 是等边三角形,把△ACD 绕点C 逆时针旋转60°得到△BCE ,连接DE ,则BE =AD ,△CDE 是等边三角形,∴DE =CD ,∠CED =60°,∵∠ADC =30°,∴∠BED =30°+60°=90°,在Rt △BDE 中,DE 8,∴CD =DE =8.【变式训练3】(1)问题发现:如图1,ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,连接AD ,BE ,点A 、D 、E 在同一条直线上,则AEB Ð的度数为__________,线段AD 、BE 之间的数量关系__________;(2)拓展探究:如图2,ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,连接AD ,BE ,点A 、D 、E 不在一条直线上,请判断线段AD 、BE 之间的数量关系和位置关系,并说明理由.(3)解决问题:如图3,ACB △和DCE V 均为等腰三角形,ACB DCE a Ð=Ð=,则直线AD 和BE 的夹角为__________.(请用含a 的式子表示)【答案】(1)90°,AD =BE ;(2)AD =BE ,AD ⊥BE ;(3)a【详解】(1)∵ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,∴AC BC =,CD CE =,∠CDE =45°∴∠CDA =135°∵∠ACB −∠DCB =∠DCE −∠DCB ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE ìïÐÐíïî===,∴△ACD ≌△BCE (SAS ),∴∠BEC =∠ADC =135°,AD =BE ,∴∠AEB =90°故答案为:90°,AD =BE(2)AD =BE ,AD ⊥BE ,理由如下,(3)同理可得△ACD ≌△BCE ,则AD =BE ,延长AD 交BE 于点F ,设∠FAB =α,则∠CAD =∠CBE =45°-α∴∠ABE =45°+45°-α=90°-α∴∠AFB =180°-∠FAB -∠ABE =180°-α-(90°-α)=90°∴AD ⊥BE(3)如图,延长BE 交AD 于点G,∵ACB △和DCE V 均为等腰三角形,∴AC BC =,CD CE =,∵∠ACB =∠DCE =α,∵∠ACB +∠ACE =∠DCE +∠ACE ,∴∠ACD =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE ìïÐÐíïî===,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD ∵ACB DCE a Ð=Ð=,∴∠CBA =∠CAB =()11180=9022a a °-°-∴∠GAB +∠GBA =()()CAD CAB ABC CBE Ð+Ð+Ð-ÐABC CAB =Ð+Ð180a =°-,∴∠AGB =180°-(∠GAB +∠GBA )a = ,即直线AD 和BE 的夹角为a .故答案为:a .类型六、一线三角模型例.在ABC V 中,90ACB Ð=°,AC BC =,直线MN 经过点C 且AD MN ^于D ,BE MN ^于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①ADC V ≌CEB △;②DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【解析】(1)解:①AD MN ^Q ,BE MN ^,90ADC ACB CEB \Ð=Ð=°=Ð,90CAD ACD \Ð+Ð=°,90BCE ACD Ð+Ð=°,CAD BCE \Ð=Ð,Q 在ADC D 和CEB D 中,CAD BCE ADC CEB AC BC Ð=ÐìïÐ=Ðíï=î()ADC CEB AAS \D @D ;②ADC CEB D @D Q ,CE AD \=,CD BE =,DE CE CD AD BE \=+=+;(2)证明:AD MN ^Q ,BE MN ^,90ADC CEB ACB \Ð=Ð=Ð=°,CAD BCE \Ð=Ð,Q 在ADC D 和CEB D 中,CAD BCE ADC CEB AC BC Ð=ÐìïÐ=Ðíï=î()ADC CEB AAS \D @D ;CE AD \=,CD BE =,DE CE CD AD BE \=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ^Q ,BE MN ^,90ADC CEB ACB \Ð=Ð=Ð=°,CAD BCE \Ð=Ð,Q 在ADC D 和CEB D 中,CAD BCE ADC CEBAC BC Ð=ÐìïÐ=Ðíï=î()ADC CEB AAS \D @D ,CE AD \=,CD BE =,DE CD CE BE AD \=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).【变式训练1】【问题解决】(1)已知△ABC 中,AB =AC ,D ,A ,E 三点都在直线l 上,且有∠BDA =∠AEC =∠BAC .如图①,当∠BAC =90°时,线段DE ,BD ,CE 的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<∠BAC <180°时,线段DE ,BD ,CE 的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC =BC ,∠ACB =90°,点C 的坐标为(-2,0),点B 的坐标为(1,2),请求出点A 的坐标.【答案】(1)DE =BD +CE ;(2)DE =BD +CE 的数量关系不变,理由见解析;(3)(﹣4,3)【解析】解:(1)∵∠BAC =90°,∴∠BDA =∠AEC =∠BAC =90°,∴∠ABD +∠BAD =90°,∠CAE +∠BAD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ABD CAE ADB CEA BA AC Ð=ÐìïÐ=Ðíï=î,∴△ABD ≌△CAE (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE ;(2)DE =BD +CE 的数量关系不变,理由如下:∵∠BAE 是△ABD 的一个外角,∴∠BAE =∠ADB +∠ABD ,∵∠BDA =∠BAC ,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ABD CAE ADB CEA BA AC Ð=ÐìïÐ=Ðíï=î,∴△ABD ≌△CAE (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE;。

人教版初中数学八年级上册第十二章 全等三角形

人教版初中数学八年级上册第十二章 全等三角形
人教版 数学 八年级 上册
12.1 全等三角形/
12.1 全等三角形
导入新知
12.1 全等三角形/
观察这些图片,你能找出形状、大小完全一样的几何 图形吗?
导入新知
12.1 全等三角形/
你能再举出生活中的一些类似例子吗?
素养目标
12.1 全等三角形/
3. 初步帮助学生建立平移、翻折、旋转三种图形 变化与全等形的关系.
12.1 全等三角形/
观察思考:每组中的两个图形有什么特点?





探究新知
12.1 全等三角形/
归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
探究新知 下面哪些图形是全等图形?
12.1 全等三角形/
大小、形状 完全相同
课后作业
作业 内容
12.1 全等三角形/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 熟练掌握全等三角形的性质,并能灵活运用 全等三角形的性质解决相应的几何问题.
1. 熟记全等形及全等三角形的概念;能够正确找 出全等三角形的对应边、对应角.
探究新知
12.1 全等三角形/
知识点 1 全等图形的定义及性质
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
探究新知
正确的结论并证明.
解:结论:EF∥NM
其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
巩固练习
12.1 全等三角形/
如图,△ABC ≌△CDA,AB 与CD,BC 与DA 是对应边,

最新人教版数学八年级上册第十二章-全等三角形(含答案)

最新人教版数学八年级上册第十二章-全等三角形(含答案)

第十二章 --全等三角形一、基本概念1.全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;(3)能够完全重合的三角形叫做全等三角形2.全等三角形的表示两个三角形全等用“≌”符号表示;例如:△ABC与△DEF全等,那么我们可以表示为:△ABC≌△DEF。

3.全等三角形的基本性质(1)全等三角形对应边相等;(2)全等三角形对应角相等4.全等三角形的判定方法(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)例:在如图所示的三角形中,AB=AC,AD是△ABC的中线,求证△ABD≌△ACD.AB D C(2)两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)例:如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C不经过池塘可以直接到达点A和B。

连接AC并延长到点D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离。

为什么?(3)两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C。

求证AD=AE.AD EB C(4)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”).例:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证△ABC≌△DEF(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)例:如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.5.角平分线的性质及判定性质:角平分线上的点到角两边的距离相等判定:到一个角的两边距离相等的点在这个角的平分线上。

二、灵活运用定理1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找相等的可能性。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)三、常见考法(1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等(2)利用判定公理来证明两个三角形全等练习题1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.33.(2015•贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 4.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+25.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB 的依据是()A.SSS B.SAS C.ASA D.AAS 7.(2015•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.(2015•奉贤区二模)如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是()A.∠B=45°B.∠BAC=90°C.BD=AC D.AB=AC 9.(2015•西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对10.(2015春•泰山区期末)如图,△A BC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.(2015春•沙坪坝区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.12.(2015春•张家港市期末)如图,已知Rt△ABC≌Rt△ABCDEC,连结AD,若∠1=20°,则∠B的度数是.13.(2015春•苏州校级期末)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=°.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015•黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)16.(2014秋•曹县期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.17.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.18.(2014秋•腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=度.19.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.20.如图,在△A BC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三.解答题(共7小题)21.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB 延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系请证明你的结论.23.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.24.如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少请说明理由.练习题参考答案一.选择题(共10小题)1.A 2.A 3.B 4.C 5.C 6.A 7.D 8.D 9.B 10.C 二.填空题(共10小题)11.4 12.70°13.30 14.30°15.AB=CD 16.AC=DE 17.60 18.90 19. 20.4三.解答题(共7小题)21.解:(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°﹣42°=138°;(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC﹣AE=9﹣6=3.22.证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.23.证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B在△AEF与△CEB中,,∴△AEF≌△CEB(AAS);(2)∵AB=AC,AD⊥BC,∴BC=2CD,∵△AEF≌△CEB,∴AF=BC,∴AF=2CD.24.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=CE.在△ADC与△ADE中,∵∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+E B=AF+2EB.25.解:AB=60米.理由如下:∵在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE=60(米),则池塘的宽AB为60米.。

人教版八年级数学上精练第12章全等三角形三角形全等的判定微专题全等三角形应用的常见类型(含解析)

人教版八年级数学上精练第12章全等三角形三角形全等的判定微专题全等三角形应用的常见类型(含解析)

人教版八年级数学上名师点拨精练第12章全等三角形12.2 三角形全等的判定微专题全等三角形应用的常见类型老师告诉你全等三角形的对应边相等、对应角相等,为我们提供了解决线段相等,角相等的新思路、新方法,因此,判定两个三角形全等是解决线段相等,角相等的问题的基础,全等三角形的判定和性质的应用是各类考试的必考内容之一,主要题型有证明线段、角相等关系、和差关系、位置关系等.类型一、全等三角形在证明线段相等角相等中的应用【典例剖析】例1-1.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,点F在BC上,连接DF,且AD=DF.(Ⅰ)求证:CF=AE;(Ⅱ)若AE=3,BF=4,求AB的长.例1-2.如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.【针对训练】1.已知:如图,AB∥DE,AB=DE,AF=DC.求证:∠B=∠E.2.如图,在中,,、分别为、上一点,.若,求证:.3.如图,CA=CD,CB=CE,AB=DE,AB与DE交于点M.(1)求证:∠ACD=∠BCE;(2)连MC,若∠BMC=78°,求∠BMD的度数.类型二、全等三角形在证明线段和差关系的应用【典例剖析】例2-1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;例2-2.综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:_____,∠BDC=_____°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:_____;【针对训练】1.已知:四边形中,,,,对角线相交于点O,且平分,过点A作,垂足为H.判断线段之间的数量关系:___________;并证明你的结论.2.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.连结BE,CD,作AF⊥CD,垂足为F,交BE于点G.(1)若∠GAE=70°,求∠ADC的度数;(2)如图2,作EH⊥GF,垂足为H,HF=7,求EH+DF的长;(3)求证:BG=EG.3.如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.类型三、全等三角形在证明线段位置关系的应用【典例剖析】例3-1.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.例3-2.已知AB=CD,AD=BC.求证:①AD∥BC;②∠B=∠D.【针对训练】1.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.2.如图,,,,在同一条直线上,于点,于点,,,求证:.3.如图,点A ,B ,C ,D 在一条直线上,AB=CD ,CE ∥BF ,CE=BF ,求证:AE ∥DF .类型四、全等三角形在线段或角的计算中的应用 【典例剖析】例4-1.如图,AB DC =,ABC DCB ∠=∠.(1)求证:BD CA =;(2)若62A ∠=︒,75ABC ∠=︒.求ACD ∠的度数.例4-2.如图,在 ABC △中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作//CF AB 交ED 的延长线于点F ,(1)求证:BDE CDF ≌△△;(2)当AD BC ⊥,1AE =,2CF =时,求AC 的长.【针对训练】1.如图.点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AB 的两侧,且AE BF =,A B ∠=∠,ACE BDF ∠=∠.(1)求证:ACE BDF △△≌; (2)若8AB =,2AC =,求CD 的长.2.如图,四边ABCD 中,对角线AC 、BD 交于点O ,AB AC =,点E 是BD 上一点,且ABD ACD ∠=∠,EAD BAC ∠=∠.(1)求证:AE AD =;(2)若8BD =,5DC =,求ED 的长.3.如图,以ABC △的两边AC ,BC 为边分别向外作ADC △和BEC △,使得BCD ACE ∠=∠,CD CE =,D E ∠=∠.(1)求证:ADC BEC ≌△△;(2)若60CAD ∠=︒,110ABE ∠=︒,求ACB ∠的度数.4.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD BCE ≅△△; (2)若50D ∠=︒,求B ∠的度数.类型五、全等三角形在生活实际中的应用 【典例剖析】例5-1.小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O 处用一根细绳悬挂一个小球A ,小球A 可以自由摆动,如图,OA 表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA 摆到OB 位置,此时过点B 作BD ⊥OA于点D ,当小球摆到OC 位置时,OB 与OC 恰好垂直(图中的A 、B 、O 、C 在同一平面上),过点C 作CE ⊥OA 于点E ,测得CE=15cm,OE=8cm. (1)试说明:OE=BD ; (2)求DE 的长.例5-2.如图,小明在游乐场玩两层型滑梯,每层楼梯的高度相同(EH=HD ),都为2.5米,他想知道左右两个滑梯BC 和EF 的长度是否相等,于是制定了如下方案:课题 探究两个滑梯的长度是否相等 测量工具长度为6米的米尺 测量步骤①测量出线段FD 的长度②测量出线段AB 的长度测量数据DF=2.5米,AB=5米(1)根据小明的测量方案和数据,判断两个滑梯BC 和EF 的长度是否相等?并说明理由. (2)试猜想左右两个滑梯BC 和EF 所在直线的位置关系,并加以证明.【针对训练】1.如图,小明站在堤岸凉亭A点处,正对他的S点停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图测量步骤①小明沿堤岸走到电线杆B旁;②再往前走相同的距离,到达C点;③然后他向左直行,当看到电线杆与游艇在一条直线上时停下来.测量数据AB=10米,BC=10米,CD=5米(1)凉亭与游艇之间的距离是_____米.(2)请你说明小明做法的正确性.2.如图,这是王玲家的养鱼塘,王玲想要测量鱼塘的宽AB,请你帮助她设计一个不必下水而且简单可行的方案,并说明理由,要求在原图上画出该方案的示意图.3.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.人教版八年级数学上名师点拨精练第12章全等三角形12.2 三角形全等的判定微专题全等三角形应用的常见类型(解析版)老师告诉你全等三角形的对应边相等、对应角相等,为我们提供了解决线段相等,角相等的新思路、新方法,因此,判定两个三角形全等是解决线段相等,角相等的问题的基础,全等三角形的判定和性质的应用是各类考试的必考内容之一,主要题型有证明线段、角相等关系、和差关系、位置关系等.类型一、全等三角形在证明线段相等角相等中的应用【典例剖析】例1-1.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,点F在BC上,连接DF,且AD=DF.(Ⅰ)求证:CF=AE;(Ⅱ)若AE=3,BF=4,求AB的长.【解析】(Ⅰ)通过HL证明Rt△CDF≌Rt△EDA,即可得出结论;(Ⅱ)通过HL证明△BED≌△BCD,得BE=BC,再进行等量代换即可.证明:(Ⅰ)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC,∠AED=90°,在Rt△CDF与Rt△EDA中,,∴Rt△CDF≌Rt△EDA(HL),∴CF=AE;(Ⅱ)∵CF=AE,AE=3,∴CF=3,∵BF=4,∴BC=BF+CF=4+3=7,∵DE⊥AB,∴∠DEB=90°,∵∠C=90°,∴∠DEB=∠C,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,在△BED和△BCD中,,∴△BED≌△BCD(AAS),∴BE=BC=7,∴AB=BE+AE=7+3=10.例1-2.如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.【解析】由平行线的性质可得∠A=∠EBC,由“AAS”可证△ABD≌△BEC,可得BD=EC.证明:∵BD∥CE,∴∠ABD=∠C,在△ABD和△ECB中,∴△ABD≌△ECB(SAS),∴AD=EB.【针对训练】1.已知:如图,AB∥DE,AB=DE,AF=DC.求证:∠B=∠E.【解析】由AF=DC,得AC=DF,由AB∥DE,得∠A=∠D,即可证△ABC≌△DEF(SAS),故∠B=∠E.证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.2.如图,在中,,、分别为、上一点,.若,求证:.【答案】见解析【解析】先根据条件得出,,再根据判定,即可得到.解:证明:,,,,,,,在与中,,,.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.3.如图,CA=CD,CB=CE,AB=DE,AB与DE交于点M.(1)求证:∠ACD=∠BCE;(2)连MC,若∠BMC=78°,求∠BMD的度数.【解析】(1)根据SSS证明△ABC≌△DEC,进而利用全等三角形的性质解答即可;(2)根据AAS证明△AGC≌△DHC,进而利用全等三角形的性质解答即可.证明:(1)在△ABC和△DEC中,,∴△ABC≌△DEC(SSS),∴∠ACB=∠DCE,∴∠ACD=∠BCE;(2)过C作CG⊥AB于G,CH⊥DE于H,∵△ABC≌△DEC,∴∠A=∠D,AC=DC,∵∠AGC=∠DHC=90°,在△AGC和△DHC中,,∴△AGC≌△DHC(AAS),∴CG=CH,∴MC平分∠BMD,∴∠BMD=2∠BMC=2×78°=156°.类型二、全等三角形在证明线段和差关系的应用【典例剖析】例2-1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;【解析】(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;②由(1)得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∴△ADC≌△CEB(AAS).②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.例2-2.综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:_____,∠BDC=_____°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:_____;【答案】(1)BE=CF;(2)30;(3)BF=CF+2AM;【解析】(1)根据等腰三角形的性质,利用SAS证明△ABE≌△ACF即可得出结论;(2)根据等腰三角形的性质,利用SAS证明△BAE≌△CAF即可得出结论;(3)根据等腰直角三角形的性质,利用SAS证明△BAE≌△CAE即可得出结论;(4)根据直径所对的圆周角是直角,先找到点P,利用勾股定理计算出BP,再利用第3小题的结论得到三角形的高,△ABP的面积即可求出.解:(1)BE=CF,∠BDC=30°,理由如下:如图1所示:∵△ABC和△ADE都是等腰三角形,∴AB=AC,AE=AF,又∵∠BAC=∠EAF=30°,∴△ABE≌△ACF(SAS),∴BE=CF,∴∠ABE=∠ACD,∵∠AOE∠ABE+∠BAC,∠AOE=∠ACD+∠BDC,∴∠BDC=∠BAC=30°;(2)BE=CF,∠BDC=60°,理由如下:如图2所示:证明:∵∠BAC=∠EAF=120°,∴∠BAC-∠EAC=∠EAF-∠EAC,即∠BAE=∠CAF,又∵△ABC和△AEF都是等腰三角形,∴AB=AC,AE=AF,∴△BAE≌△CAF(SAS)∴BE=CF,∴∠AEB=∠AFC,∵∠EAF=120°,AE=AF,∴∠AEF=∠AFE=30°,∴∠BDC=∠BEF-∠EFD=∠AEB+30°-(∠AFC-30°)=60°;(3)BF=CF+2AM,理由如下:如图3所示:∵△ABC和△AEF都是等腰三角形,∴∠CAB=∠EAF=90°,AB=AC,AE=AF,∴∠CAB-∠CAE=∠FAE-∠CAE,即:∠BAE=∠CAF,∴△BAE≌△CAE(SAS),∴BE=CF,∵AM⊥BF,AE=AF,EAF=90°,∴EF=2AM,∵BF=BE+EF,∴BF=CF+2AM;【针对训练】1.已知:四边形中,,,,对角线相交于点O,且平分,过点A作,垂足为H.判断线段之间的数量关系:___________;并证明你的结论.【答案】,证明见解析【解析】先证明是等边三角形,再证明,最后根据三角形内角和定理证明,在上截取,先证明,得出,再证明,得出,即可解决问题.,证明:∵,,∴是等边三角形,∴,∵,平分,∴,∴,∵,,,∴,在上截取,∵,∴,又,∴,∴,∴∵,∴,∴,∵,∴.【点睛】此题主要考查了全等三角形的判定和性质、等边三角形的判定和性质,三角形内角和定理,角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.连结BE,CD,作AF⊥CD,垂足为F,交BE于点G.(1)若∠GAE=70°,求∠ADC的度数;(2)如图2,作EH⊥GF,垂足为H,HF=7,求EH+DF的长;(3)求证:BG=EG.【解析】(1)由∠ADC+∠DAF=90°,∠GAE+∠DAF=90°,得∠ADC=∠GAE=70°;(2)可证明△EAH≌△ADF,EH=AF,AH=DF,则EH+DF=AF+AH=HF=7;(3)作EH⊥FG于点H,BI⊥FG交FG的延长线于点I,可证明△BAI≌△ACF,得BI=AF,而EH=AF,所以BI=EH,可证明△BGI≌△EGH,则BG=EG.(1)解:如图1,∵AF⊥CD,∴∠AFD=90°,∴∠ADC+∠DAF=90°,∵∠DAE=90°,∴∠GAE+∠DAF=90°,∴∠ADC=∠GAE=70°,∴∠ADC的度数是70°.(2)解:如图2,∵EH⊥GF,∴∠EHA=∠AFD=90°,由(1)得∠EAH=∠ADF,在△EAH和△ADF中,,∴△EAH≌△ADF(AAS),∴EH=AF,AH=DF,∴EH+DF=AF+AH=HF=7,∴EH+DF的长是7.(3)证明:如图3,作EH⊥FG于点H,BI⊥FG交FG的延长线于点I,∴∠I=∠EHG=∠AFC=90°,∵∠BAC=90°,∴∠BAI=∠ACF=90°-∠CAF,在△BAI和△ACF中,,∴△BAI≌△ACF(AAS),∴BI=AF,由(2)得EH=AF,∴BI=EH,在△BGI和△EGH中,,∴△BGI≌△EGH(AAS),∴BG=EG.3.如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.【解析】(1)利用AAS证明△BED≌△CFD,得BE=CF;(2)利用HL证明Rt△BGE≌Rt△CAF,得GE=AF,从而解决问题.证明:(1)∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠F,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF;(2)在Rt△BGE和Rt△CAF中,,∴Rt△BGE≌Rt△CAF(HL),∴GE=AF,∴AG=EF.∵△BED≌△CFD,∴DE=DF,∴GA=2DE.类型三、全等三角形在证明线段位置关系的应用【典例剖析】例3-1.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.【解析】(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.例3-2.已知AB=CD,AD=BC.求证:①AD∥BC;②∠B=∠D.【解析】①连接AC,由AB=CD,BC=DA,AC=CA,根据全等三角形的判定定理“SSS”证明△ABC≌△CDA,得∠ACB=∠CAD,则AD∥BC;②由△ABC≌△CDA,得∠B=∠D.证明:①连接AC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ACB=∠CAD,∴AD∥BC.②△ABC≌△CDA,∴∠B=∠D.【针对训练】1.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【解析】(1)根据等腰直角三角形的性质,可以得出△ABE≌△ACD;(2)由△ABE≌△ACD可以得出∠B=∠ACD-45°,进而得出∠DCB=90°,就可以得出结论.(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.2.如图,,,,在同一条直线上,于点,于点,,,求证:.【答案】见解析【解析】先证明,利用全等三角形的性质解题即可.证明:∵,∴,又∵∴在和中,,∴∴∴【点睛】本题考查全等三角形的判定和性质,平行线的判定,掌握全等三角形的判定方法是解题的关键.3.如图,点A,B,C,D在一条直线上,AB=CD,CE∥BF,CE=BF,求证:AE∥DF.【解析】根据平行线的性质得出∠ACE=∠DBF,求出AC=BD,根据全等三角形的判定得出△AEC≌△DFB,根据全等三角形的性质得出∠A=∠D,根据平行线的判定得出即可.证明:∵CE∥BF,∴∠ACE=∠DBF,∵AB=CD,∴AB+BC=CD+BC,即AC=BD ,在△AEC 和△DFB 中,,∴△AEC ≌△DFB (SAS ), ∴∠A=∠D , ∴AE ∥DF .类型四、全等三角形在线段或角的计算中的应用 【典例剖析】例4-1.如图,AB DC =,ABC DCB ∠=∠.(1)求证:BD CA =;(2)若62A ∠=︒,75ABC ∠=︒.求ACD ∠的度数. 答案:(1)见详解 (2)32︒解析:(1)证明:在ABC △与DBC △中,AB DC ABC DCB BC CB ∠∠⎧⎪⎨⎪⎩===, ()SAS ABC DCB ∴≌△△,BD CA ∴=;(2)ABC DCB ≌△△,75ABC ∠=︒75ABC DCB ∴∠=∠=︒, 62A ∠=︒,75ABC ∠=︒. 180756243ACB ∴∠=︒-︒-︒=︒,754332ACD DCB ACB ∴∠=∠-∠=︒-︒=︒.例4-2.如图,在 ABC △中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作//CF AB 交ED 的延长线于点F ,(1)求证:BDE CDF ≌△△;(2)当AD BC ⊥,1AE =,2CF =时,求AC 的长. (1)答案:见解析 解析://CF AB ,B FCD ∴∠=∠,BED F ∠=∠,AD 是BC 边上的中线,BD CD ∴=, BDE CDF∴≌△△;(2)答案:3解析:BDE CDF≌△△, 2BE CF ∴==,123AB AE BE ∴=+=+=, AD BC ⊥,BD CD =, 3AC AB ∴==.【针对训练】1.如图.点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AB 的两侧,且AE BF =,A B ∠=∠,ACE BDF ∠=∠.(1)求证:ACE BDF △△≌;(2)若8AB =,2AC =,求CD 的长. 答案:(1)见解析 (2)4解析:(1)在ACE △和BDF △中,ACE BDF A BAE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS ACE BDF ∴△△≌;(2)ACE BDF ≌△△,2AC =,2BD AC ∴==,又8AB =,4CD AB AC BD ∴=--=.2.如图,四边ABCD 中,对角线AC 、BD 交于点O ,AB AC =,点E 是BD 上一点,且ABD ACD ∠=∠,EAD BAC ∠=∠.(1)求证:AE AD =;(2)若8BD =,5DC =,求ED 的长. 答案:(1)见解析 (2)3 解析:(1)BAC EAD ∠=∠,BAC EAC EAD EAC ∴∠-∠=∠-∠,即:BAE CAD ∠=∠, 在ABE △和ACD △中,ABD ACD AB ACBAE CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE ACD ∴≌△△,AE AD ∴=;(2)()ASA ABE ACD ≌△△,BE CD ∴=, 8BD =,5DC =,853ED BD BE BD CD ∴=-=-=-=.3.如图,以ABC △的两边AC ,BC 为边分别向外作ADC △和BEC △,使得BCD ACE ∠=∠,CD CE =,D E ∠=∠.(1)求证:ADC BEC ≌△△;(2)若60CAD ∠=︒,110ABE ∠=︒,求ACB ∠的度数. 答案:(1)见解析 (2)80︒ 解析:(1)证明:BCD ACE ∠=∠,BCD ACB ACE ACB ∴∠-∠=∠-∠,即ACD BCE ∠=∠. 又CD CE =,D E ∠=∠,()ADC BEC ASA ∴△≌△;(2)由(1)得ADC BEC △≌△,60CBE CAD ∴∠=∠=︒,AC BC =, CAB CBA ∴∠=∠. 110ABE ∠=︒,1106050CAB CBA ABE CBE ∴∠=∠=∠-∠=︒-︒=︒, 180180505080ACB CAB CBA ∴∠=︒-∠-∠=︒-︒-︒=︒.4.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD BCE ≅△△; (2)若50D ∠=︒,求B ∠的度数. 答案:(1)证明见解析; (2)70︒. 解析:(1)点C 是线段AB 的中点,AC BC ∴=,又CD 平分ACE ∠,CE 平分BCD ∠,12∴∠=∠,23∠=∠,13∴∠=∠在ACD △和BCE △中,13CD CE AC BC =⎧⎪∠=∠⎨⎪=⎩ACD BCE ∴≅△△(2)123180∴∠+∠+∠=︒12360∴∠=∠=∠=︒ ACD BCE ≅△△ 50E D ∴∠=∠=︒180370B E ∴∠=-∠-∠=︒︒.类型五、全等三角形在生活实际中的应用 【典例剖析】例5-1.小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O 处用一根细绳悬挂一个小球A ,小球A 可以自由摆动,如图,OA 表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA 摆到OB 位置,此时过点B 作BD ⊥OA于点D ,当小球摆到OC 位置时,OB 与OC 恰好垂直(图中的A 、B 、O 、C 在同一平面上),过点C 作CE ⊥OA 于点E ,测得CE=15cm,OE=8cm. (1)试说明:OE=BD ; (2)求DE 的长.【解析】(1)利用AAS 证明△COE ≌△OBD ,可得结论;(2)利用全等三角形性质可得答案.解:(1)∵OB⊥OC,∴∠BOD+∠COE=90°,∵CE⊥OA,BD⊥OA,∴∠CEO=∠ODB=90°,∴∠BOD+∠B=90°,∴∠COE=∠B,∵OC=BO,∴△COE≌△OBD(AAS),∴OE=BD;(2)∵△COE≌△OBD,∴CE=OD=15cm,∴DE=OD-OE=7cm.例5-2.如图,小明在游乐场玩两层型滑梯,每层楼梯的高度相同(EH=HD),都为2.5米,他想知道左右两个滑梯BC和EF的长度是否相等,于是制定了如下方案:课题探究两个滑梯的长度是否相等测量工具长度为6米的米尺①测量出线段FD的长度测量步骤②测量出线段AB的长度测量数据DF=2.5米,AB=5米(1)根据小明的测量方案和数据,判断两个滑梯BC和EF的长度是否相等?并说明理由.(2)试猜想左右两个滑梯BC和EF所在直线的位置关系,并加以证明.【解析】(1)证明△BAC≌△EDF(SAS),由全等三角形的性质得出BC=EF;(2)延长BC交EF于点M,由全等三角形的性质得出∠BMF=90°,则可得出结论.解:(1)BC=EF.理由:∵EH=DH=2.5米,∴ED=5米,∴AB=DE,由题意可知四边形CADH为矩形,∴CA=DH=2.5米,∵DF=2.5米,∴CA=DF,∵∠BAC=∠EDF=90°,∴△BAC≌△EDF(SAS),∴BC=EF;(2)BC⊥EF.理由:延长BC交EF于点M,∵∠EDF=90°,∴∠F+∠EDF=90°,∵△BAC≌△EDF,∴∠B=∠DEF,∴∠B+∠F=90°,∴∠BMF=90°,∴EF⊥BM.【针对训练】1.如图,小明站在堤岸凉亭A点处,正对他的S点停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图测量步骤①小明沿堤岸走到电线杆B旁;②再往前走相同的距离,到达C点;③然后他向左直行,当看到电线杆与游艇在一条直线上时停下来.测量数据AB=10米,BC=10米,CD=5米(1)凉亭与游艇之间的距离是_____米.(2)请你说明小明做法的正确性.【答案】5【解析】根据全等三角形的判定和性质即可得到结论.解:(1)凉亭与游艇之间的距离是5米;故答案为:5.(2)理由:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD=5米.2.如图,这是王玲家的养鱼塘,王玲想要测量鱼塘的宽AB,请你帮助她设计一个不必下水而且简单可行的方案,并说明理由,要求在原图上画出该方案的示意图.【解析】方案设计为:从A点出发沿与AB垂直的方向到C点,再沿AC方向走到D点,使CD=AC,接着从B点出发,沿与AD垂直的方向走到E点,使E、C、B共线,则测出DE的长解能得到AB 的宽;然后根据全等三角形的判断方法证明△ACB≌△DCE,从而得到AB=DE.解:方案设计为:从A点出发沿与AB垂直的方向到C点,再沿AC方向走到D点,使CD=AC,接着从B点出发,沿与AD垂直的方向走到E点,使E、C、B共线,则测出DE的长解能得到AB的宽.理由如下:∵AD⊥AB,BE⊥AD,∴∠BAC=∠EDC,∵∠BCA=∠ECD,AC=DC,∴△ACB≌△DCE(ASA),∴AB=DE.3.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.【解析】∠BAD与∠CAD相等,证角相等,常常通过把角放到两个全等三角形中来证,本题OA=OA公共边,可考虑SSS证明三角形全等,从而推出角相等.解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE与△AOF中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.。

人教版八年级数学上册 全等三角形(篇)(Word版 含解析)

人教版八年级数学上册 全等三角形(篇)(Word版 含解析)

人教版八年级数学上册全等三角形(篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)∥,1.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC ∆中,25,105A ABC ∠=︒∠=︒,过B 作一直线交AC 于D ,若BD 把ABC ∆分割成两个等腰三角形,则BDA ∠的度数是______.(2)已知在ABC ∆中,AB AC =,过顶点和顶点对边上一点的直线,把ABC ∆分割成两个等腰三角形,则A ∠的最小度数为________.【答案】130︒ 1807︒⎛⎫ ⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB ,结合25A ∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD ,CD=AD ,②当AD=BD ,AC=CD ,③AB=AC ,当AD=BD=BC ,④当AD=BD ,CD=BC ,分别求出A ∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA ,BD=BA 时,不符合题意,当DA=DB 时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC ,当BD=AD ,CD=AD ,∴∠B=∠C=∠BAD=∠CAD ,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC ,当AD=BD ,AC=CD ,∴∠B=∠C=∠BAD ,∠CAD=∠CDA ,∵∠CDA=∠B+∠BAD=2∠B ,∴∠BAC=3∠B ,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC ,当AD=BD=BC ,∴∠ABC=∠C ,∠BAC=∠ABD ,∠BDC=∠C ,∵∠BDC=∠A+∠ABD=2∠BAC ,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.3.如图,△ABC是等边三角形,高AD、BE相交于点H,3,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为_____.【答案】53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=43,得到AD=BE=3BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =223314231442⨯-⨯-⨯⨯=53,故答案为53.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.4.如图,点P 是∠AOB 内任意一点,OP =5,M ,N 分别是射线OA 和OB 上的动点,若△PMN 周长的最小值为5,则∠AOB 的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°. 【详解】解:如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O 、P' 交OB 、OA 于M 、N ,由轴对称△PMN 周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN 周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.5.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.6.△ABC中,最小内角∠B=24°,若△ABC被一直线分割成两个等腰三角形,如图为其中一种分割法,此时△ABC中的最大内角为90°,那么其它分割法中,△ABC中的最大内角度数为_____.【答案】117°或108°或84°.【解析】【分析】根据等腰三角形的性质进行分割,写出△ABC中的最大内角的所有可能值.【详解】①∠BAD=∠BDA=12(180°﹣24°)=78°,∠DAC=∠DCA=12∠BDA=39°,如图1所示:∴∠BAC=78°+39°=117°;②∠DBA=∠DAB=24°,∠ADC=∠ACD=2∠DBA=48°,如图2所示:∴∠DAC=180°﹣2×48°=84°,∴∠BAC=24°+84°=108°;③∠DBA=∠DAB=24°,∠ADC=∠DAC=2∠DBA=48°,如图3所示:∴∠BAC =24°+48°=72°,∠C =180°﹣2×48°=84°;∴其它分割法中,△ABC 中的最大内角度数为117°或108°或84°,故答案为:117°或108°或84°.【点睛】本题考查了等腰三角形的性质,解题的关键是根据等腰三角形的性质进行分割找出所有情况.7.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒∠343A A B =3702︒ ……. 以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】 本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..8.如图,Rt △ABC 中,AB=AC ,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

全等三角形的判定(ASA与AAS)(知识梳理与考点分类讲解)(人教版)(学生版25学年八年级数学上册

全等三角形的判定(ASA与AAS)(知识梳理与考点分类讲解)(人教版)(学生版25学年八年级数学上册

专题12.5全等三角形的判定(ASA 与AAS)(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】三角形全等的判定方法——角边角(ASA)(1)基本事实:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).(2)书写格式:如图,在△ABC 和△'''A B C 中,A A AB A B B B '∠=∠⎧⎪''=⎨⎪'∠=∠⎩ABC A B C '''∴∆≅∆【知识点二】三角形全等的判定方法——角角边(AAS)(1)基本事实:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)(2)三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.【知识点三】判定方法的选择(1)选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等SAS SSS(2)如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.第二部分【题型展示与方法点拨】【题型1】用ASA 和AAS 证明三角形全等【例1】(23-24七年级下·四川成都·期中)如图,点C 、E 在BF 上,BE CF =,AB FD ,A D ∠=∠.(1)求证:ABC DFE △≌△;(2)若50B ∠=︒,145BED ∠=︒,求D ∠的度数.【变式1】(22-23八年级上·湖北武汉·期中)一块三角形玻璃被摔成如图所示的四块,小江想去买一块形状、大小与原来一样的玻璃,但是他只想带去其中的两块,则这两块玻璃的编号可以是()A .①②B .②④C .③④D .①④【变式2】(22-23八年级上·福建龙岩·期中)如图,已知AC 与BF 相交于点E ,AB CF ∥,点E 为BF 中点,若9CF =,5AD =,则BD =.【题型2】用ASA 和AAS 证明三角形全等与三角形全等性质综合求值【例2】(22-23八年级上·广东深圳·期末)如图,在ABC 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连CF .(1)求证:CF AB ∥;(2)若70A ∠=︒,35F ∠=︒,BE AC ⊥,求BED ∠的度数.【变式1】(23-24七年级下·重庆·期中)如图,在ABC 中,,AD BC CE AB ⊥⊥,垂足分别是D 、E ,AD 、CE 交于点H .已知10,6AE CE BE ===,则CH 的长度为()A .2B .3C .4D .5【变式2】(23-24七年级下·吉林长春·期中)如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E 、F 在线段AD 上.CFD BED BAC ∠=∠=∠,ABC 的面积为18,则ABE 与CDF 的面积之和.【题型3】添加条件证明三角形全等【例3】(2023·广东·模拟预测)如图,AC BC DC EC AC BC ⊥⊥=,,,请添加一个条件,使ACE BCD ≌△△.(1)你添加的条件是______(只需添加一个条件);(2)利用(1)中添加的条件,求证:ACE BCD ≌△△.【变式1】(23-24七年级下·重庆·期中)如图,在ABC 和BDE 中,再添两个条件不能..使ABC 和BDE 全等的是()A .AB BD =,AE DC=B .AB BD =,DE AC =C .BE BC =,E C ∠=∠D .EAF CDF ∠=∠,DE AC=【变式2】(23-24八年级上·北京平谷·期末)如图,在ABC 和CDE 中,若90ACB CED ∠=∠=︒,且AB CD ⊥,请你添加一个适当的条件,使ABC CDE △≌△.添加的条件是:(写出一个即可).【题型4】灵活运用SSS、SAS、ASA、AAS 证明三角形全等【例4】(22-23七年级下·河北保定·期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ∥.(1)ECD 与FBD 全等吗?请说明你的理由;(2)若6AD =,2DF =,BDF V 的面积为3,请直接写出AEC △的面积.【变式1】(2024·河北邯郸·二模)ABC 如图所示,甲、乙两个三角形中和ABC 全等的是()A .只有甲B .只有乙C .甲和乙D .都不是【变式2】(23-24八年级上·江苏常州·阶段练习)如图,在下列各组条件中,能够判断ABC 和DEF 全等的有.①AB DE =,AC DF =,BC EF =;②AB DE =,BC EF =,B E ∠=∠;③A D ∠=∠,B E ∠=∠,AB DE =;④A D ∠=∠,AB DE =,BC EF =.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2023·四川凉山·中考真题)如图,点E F 、在BC 上,BE CF =,B C ∠=∠,添加一个条件,不能证明ABF DCE △△≌的是()A .A D ∠=∠B .AFB DEC ∠=∠C .AB DC =D .AF DE=【例2】(2024·江苏盐城·中考真题)已知:如图,点A 、B 、C 、D 在同一条直线上,AE BF ∥,AE BF =.若________,则AB CD =.请从①CE DF ∥;②CE DF =;③E F ∠=∠这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.2、拓展延伸【例1】(23-24八年级上·河北邢台·期中)在ABC 中,D 是BC 的中点.(1)如图1,在边AC 上取一点E ,连接ED ,过点B 作BM AC 交ED 的延长线于点M ,求证:CE BM =.(2)如图2,将一直角三角板的直角顶点与点D 重合,另两边分别与AC AB ,相交于点E ,F ,求证:CE BF EF +>.【例2】(22-23八年级上·全国·期末)如图1,直线l BC ⊥于点B ,90ACB ∠=︒,点D 为BC 中点,一条光线从点A 射向D ,反射后与直线l 交于点E (提示:作法线).(1)求证:BE AC =;(2)如图2,连接AB 交DE 于点F ,连接FC 交AD 于点H ,AC BC =,求证:CF AD ⊥;(3)如图3,在(2)的条件下,点P 是AB 边上的动点,连接5ABD PC PD S = ,,,2CH =,求PC PD +的最小值.。

三角形全等的判定2(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)

三角形全等的判定2(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)

专题12.5 三角形全等的判定2(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 特别说明:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边” 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 特别说明:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:'A ''A B 'B '''A BC2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】 类型一、全等三角形的判定3——“角边角”1. 如图,已知在ABC 中,AC BC AD ==,CDE B ∠=∠,求证:ADE BCD △≌△.【分析】证明ADE BCD ∠=∠,为三角形的全等提供条件即可.证明:ADE CDE B BCD ∠+∠=∠+∠,CDE B∠=∠,ADE BCD ∴∠=∠,AC BC =,A B ∴∠=∠,在ADE 和BCD △中A B AD BCADE BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,ADE ∴≌BCD △(ASA) .【点拨】本题考查了ASA 证明三角形的全等,抓住题目的特点,补充全等需要的条件是解题的关键.举一反三:【变式】 如图,已知:≌AEC=≌ADB ,AD=AE .BD 与CE 相等吗?为什么?【答案】BD CE =,理由见解析;【分析】根据三角形全等即可得到结果.解答:BD CE =,理由如下:在≌AEC 和≌ADB 中,A A AD AEADB AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ≌ADB AEC ≅,≌BD CE =.【点拨】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.类型二、全等三角形的判定4——“角角边”2、 如图,已知DE ≌AB ,≌DAE =≌B ,DE =2,AE =4,C 为AE 的中点.求证:≌ABC ≌≌EAD .【分析】根据中点的定义,再根据AAS 证明≌ABC ≌≌EAD 解答即可.证明:≌C 为AE 的中点,AE =4,DE =2,≌AC =12AE =2=DE , 又≌DE≌AB ,≌≌BAC =≌E ,在≌ABC 和≌EAD 中,B DAE BAC E AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌EAD (AAS ).【点拨】此题考查全等三角形的判定,关键是根据AAS 证明≌ABC≌≌EAD 解答. 举一反三:【变式1】 将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.【答案】32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出 3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.解:≌AD CE ⊥, BE CE ⊥, ≌90ADC CEB ∠=∠=︒,≌90ACB ∠=︒,≌90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADC CEBACD CBE AC BC≌ACD CBE ≌(AAS) ≌ 3CD BE ==, AD CE =,≌ 358CE CD DE =+=+=,≌ 8AD =.ACE 11883222S CE AD △.【点拨】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键.【变式2】、 如图,在ABC 中,AB AC =,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足为E 、F ,求证:DE DF =.【分析】根据等腰三角形的性质得到B C ∠=∠,根据D 为BC 的中点,得到BD CD =,再根据DE AB ⊥,DF AC ⊥,得到90BED CFD ∠=∠=,利用全等三角形的性质和判定即可证明DEDF =. 解:AB AC =,∴B C ∠=∠,DE AB ⊥,DF AC ⊥,∴90BED CFD ∠=∠=,D 为BC 的中点,∴BD CD =,在BED 与CFD △中BED CFD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌CFD △()AAS ,≌DE DF =.【点拨】本题考查了等腰三角形的性质以及全等三角形的性质和判定,找到全等的条件是解题的类型三、添加条件构造三角形全等3.如图,已知∠B =∠DEC ,AB =DE ,要推得∠ABC ∠∠DEC ;(1)若以“SAS ”为依据,还缺条件______________;(2)若以“ASA ”为依据,还缺条件__________________;(3)若以“AAS ”为依据,还缺条件_____________________;【答案】BC=EC ≌A=≌EDC ≌ACB=≌DCE (或≌ACD=≌BCE)【解析】根据三角形全等的判定方法,和题目中所给的条件,依次去判断添加哪一个条件;现有的条件是,≌B =≌DEC ,AB =DE ,如以“SAS”为依据,还缺边相等,找边即可;若以“ASA”为依据,还缺角相等,找角即可;以“AAS”为依据,也是缺角相等,找角即可. 解答:≌≌B=≌DEC ,AB=DE≌(1)要利用SAS ,则还缺少一边即:BC=EC(2)要利用ASA ,则缺少一角即:≌A=≌EDC(3)要利用AAS ,则缺少一角即:≌ACB=≌DCE .故填BC=EC ,≌A=≌EDC ,≌ACB=≌DCE .点睛:本题属开放型的题目,解答关键是明白SAS 、ASA 、AAS的含义,据已知,缺什么条件,找什么条件,直接或间接的都可以.答案不唯一是本题的特点.要根据已知条件的位置选择方法.【变式1】如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使∠ABC∠∠DEF ,并加以证明.(不再添加辅助线和字母)【答案】AC=DF(答案不唯一),理由见解析【分析】先求出BC=EF ,添加条件AC=DF ,根据SAS 推出两三角形全等即可. 解答:添加AC=DF .证明:≌BF=EC ,≌BF ﹣CF=EC ﹣CF ,≌BC=EF ,在≌ABC 和≌DEF 中12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DEF (SAS ).考点:全等三角形的判定.【变式2】如图,点D ,C 分别在线段AB ,AE 上,ED 与BC 相交于O 点,已知AB =AE ,请添加一个条件(不添加辅助线)使∠ABC ∠∠AED ,并说明理由.【分析】根据全等三角形的判定方法即可解决问题.解:根据SAS 可以条件AC =AD ,根据ASA 可以条件≌B =≌C ,根据AAS可以条件≌ACB=≌ADC.【点拨】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3】如图,在∠AEC和∠DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:∠AE∠DF,∠AB=CD,∠CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果∠,∠,那么∠”);(2)选择(1)中你写出的一个命题,说明它正确的理由.解:(1)命题1:如果①,②,那么③;命题2:如果①,③,那么②(2)命题1的证明:∵①AE∥DF,∴∠A=∠D,∵②AB=CD,∴AB+BC=CD+BC,即AC=DB,在△AEC和△DFB中,∵∠E=∠F,∠A=∠D,AC=DB,∴△AEC≌△DFB(AAS),∴CE=BF③(全等三角形对应边相等);命题2的证明:∵①AE∥DF,∴∠A=∠D,在△AEC和△DFB中,∵∠E=∠F,∠A=∠D,③CE=BF,∴△AEC≌△DFB(AAS),∴AC=DB(全等三角形对应边相等),则AC-BC=DB-BC,即AB=CD②.注:命题“如果②,③,那么①”是假命题.类型四、全等三角形判定的综合训练4 如图(1),已知ABC 中,90BAC ∠=︒,AB AC =;AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+;(2)若直线AE 绕A 点旋转到图(2)位置时(BD CE <),其余条件不变,问BD 与DE ,CE 的数量关系如何?请给予证明.(3)若直线AE 绕A 点旋转到图(3)位置时(BD CE >),其余条件不变,问BD 与DE ,CE 的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE 在不同位置时BD 与DE ,CE 的位置关系.【答案】(1)见解析;(2)BD DE CE =-,见解析;(3)BD DE CE =-;(4)当B ,C 在AE 的同测时,BD DE CE =-;当B ,C 在AE 的异侧时,若BD CE >,则BD DE CE =+,若BD CE <,则BD CE DE =-【分析】(1)在直角三角形中,由题中条件可得≌ABD=EAC ,又有AB=AC ,则有一个角及斜边相等,则可判定≌BAD≌≌AEC ,由三角形全等可得三角形对应边相等,进而通过线段之间的转化,可得出结论;(2)由题中条件同样可得出≌BAD≌≌AEC ,得出对应线段相等,进而可得线段之间的关系; (3)同(2)的方法即可得出结论.(4)利用(1)(2)(3)即可得出结论.解:(1)≌BD≌AE ,CE≌AE≌≌ADB=≌CEA=90°≌≌ABD+≌BAD=90°又≌≌BAC=90°≌≌EAC+≌BAD=90° ≌≌ABD=≌CAE 在≌ABD 与≌ACE 中 ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌ACE ≌BD=AE ,AD=EC , ≌BD=DE+CE (2)≌BD≌AE ,CE≌AE ∴∠ADB=∠CEA=90° ∴∠ABD+∠BAD=90° 又∵∠BAC=90° ∴∠EAC+∠BAD=90° ∴∠ABD=∠CAE 在△ABD 与△ACE 中ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌ACE ≌BD=AE ,AD=EC ≌BD=DE -CE ,(3)≌≌BAC=90°, ≌≌BAD+≌EAC=90°, 又≌BD≌AE ,CE≌AE , ≌≌BDA=≌AEC=90°, ≌BAD+≌ABD=90°, ≌≌ABD=≌EAC , 在≌ABD 与≌CAE 中,BDA AEC ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌CAE ,≌BD=AE ,AD=CE ,≌DE=AD+AE=BD+CE ,≌BD=DE -CE .(4)归纳:由(1)(2)(3)可知:当B ,C 在AE 的同侧时,若BD> CE,则BD= DE +CE,若BD> CE,则BD= DE +CE,若BD< CE,则BD= CE - DE.【点拨】此题是几何变换综合题,主要考查了三角形全等的判定方法,余角的性质,线段的和差,熟练掌握全等三角形的判定和性质是解题的关键.举一反三:【变式】 如图1,≌ABC 中,AB =AC ,≌BAC =90°,点D 是线段BC 上一个动点,点F 在线段AB 上,且≌FDB =12≌ACB ,BE ≌DF .垂足E 在DF 的延长线上.(1)如图2,当点D 与点C 重合时,试探究线段BE 和DF 的数量关系.并证明你的结论; (2)若点D 不与点B ,C 重合,试探究线段BE 和DF 的数量关系,并证明你的结论.【答案】(1)BE =12FD .证明见解析;(2)BE =12FD ,证明见解析. 【分析】(1)首先延长CA 与BE 交于点G ,根据≌FDB=12≌ACB ,BE≌DE ,判断出BE=EG=12BG ;然后根据全等三角形的判定方法,判断出≌ABG≌≌ACF ,即可判断出BG=CF=FD ,再根据BE=12BG ,可得BE=12FD ,据此判断即可. (2)首先过点D 作DG≌AC ,与AB 交于H ,与BE 的延长线交于G ,根据DG≌AC ,≌BAC=90°,判断出≌BDE=≌EDG ;然后根据全等三角形的判定方法,判断出≌DEB≌≌DEG,即可判断出BE=EG=12BG ;最后根据全等三角形的判定方法,判断出≌BGH≌≌DFH ,即可判断出BG=FD ,所以BE=12FD ,据此判断即可. 解:(1)如图,延长CA 与BE 交于点G ,≌≌FDB =12≌ACB , ≌≌EDG =12≌ACB , ≌≌BDE =≌EDG ,即CE 是≌BCG 的平分线,又≌BE≌DE ,≌BE =EG =12BG , ≌≌BED =≌BAD =90°,≌BFE =≌CFA ,≌≌EBF =≌ACF ,即≌ABG =≌ACF ,在≌ABG 和≌ACF 中,90ABG ACF AB AC BAG CAF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ≌≌ABG≌≌ACF (ASA ),≌BG =CF =FD ,又≌BE =12BG , ≌BE =12FD . (2)BE =12FD , 理由如下:如图,过点D 作DG≌AC ,与AB 交于H ,与BE 的延长线交于G ,,≌DG≌AC ,≌BAC =90°,≌≌BDG =≌C ,≌BHD =≌BHG =≌BAC =90°,又≌≌BDE =12≌ACB , ≌≌EDG =≌BDG ﹣≌BDE =≌C ﹣12≌C =12≌C , ≌≌BDE =≌EDG ,在≌DEB 和≌DEG 中,90BDE EDG DE DE DEB DEG ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ≌≌DEB≌≌DEG (ASA ),≌BE =EG =12BG , ≌AB =AC ,≌BAC =90°,≌≌ABC =≌ACB =≌GDB ,≌HB =HD ,≌≌BED =≌BHD =90°,≌BFE =≌DFH ,≌≌EBF =≌HDF ,即≌HBG =≌HDF ,在≌BGH 和≌DFH 中,HBG HDF HB HDBHG DHF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ≌≌BGH≌≌DFH (ASA ),≌BG =FD ,又≌BE =BG ,≌BE =12FD .【点拨】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.类型四、全等三角形判定的实际应用5、如图,小颖站在堤岸边的A 处,正对她的S 点停有一艘游艇.她想知道这艘游艇距离她有多远,于是她沿堤岸走到电线杆B 旁,接着再往前走相同的距离,到达C 点.然后她向左直行,当看到电线杆与游艇在一条直线上时停下来,此时她位于D 点.那么C ,D 两点间的距离就是在A 点处小颖与游艇间的距离.请你用所学的数学知识解释其中的道理.【分析】先根据题目条件证明()SBA DBC ASA △≌△,再由全等三角形的性质即可得到答案;解:根据题意,可知:90A C ∠=∠=︒,AB CB =,SBA DBC ∠=∠.在SBA ∆和DBC △中,A C AB CBSBA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩所以()SBA DBC ASA △≌△.所以SA DC =(全等三角形对应边相等).即,C D 两点间的距离就是在A 点处小颖与游艇间的距离.【点拨】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定、全等三角形对应边相等的性质是解题的关键.举一反三:【变式】如图,小明站在乙楼BE 前方的点C 处,恰好看到甲、乙两楼楼顶上的点A 和E 重合为一点,若B 、C 相距30米,C 、D 相距60米,乙楼高BE 为20米,小明身高忽略不计,则甲楼的高AD 是多少米?【答案】甲楼的高AD是40米.【分析】由图可知,EF≌DC,AD≌DC,EB≌BC,证明≌AEF≌≌ECB,根据全等三角形的判定和性质定理即可得到结论.解:∵EF∥DC,AD⊥DC,EB⊥BC,∴∠AEF=∠C,∠AFE=∠EBC=90°,∵B、C相距30米,C、D相距60米,∴EF=DB=BC=30米,∴△AEF≌△ECB(ASA),∴AF=BE,∵DF=BE,∴AD=2BE=2×20=40(米).答:甲楼的高AD是40米.【点拨】本题考查了全等三角形的判定和性质,解题的关键是找出证明三角形全等的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷桑水出品全等三角形专题讲解(一)知识储备1、全等三角形的概念:(1)能够重合的两个图形叫做全等形。

(2)两个三角形是全等形,就说它们是全等三角形。

两个全等三角形,经过运动后一定重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。

(3)全等三角形的表示:如图,△ABC和△DEF是全等三角形,记作△ABC≌△DEF,符号“≌”表示全等,读作“全等于”。

注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

2、全等三角形的性质:全等三角形的对应边相等,对应角相等。

【例1】如图,△ABC≌△DEF,则有:AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F。

3、全等三角形的判定定理:S.A.S “边角边”公理:两边和它们的夹角对应相等的两个三角形全等。

【例2】A.S.A “角边角”公理:两角和它们的所夹边对应相等的两个三角形全等。

【例3】A.A.S “角角边”公理:两个角和其中一个角的对边对应相等的两个三角形全等。

【例4】S.S.S “边边边”公理:三边对应相等的两个三角形全等。

【例5】H.L “斜边直角边“公理斜边和一条直角对应相等的两个直角三角形全等。

【例6】(二)双基回眸1、下列说法中,正确的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.12、如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.3、如图,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.6 B.5 C.4 D.无法确定4、如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°5、能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E6、如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A .甲和乙B .乙和丙C .只有乙D .只有丙(三)例题经典例1:如图,ΔABC ≌ΔDCB .(1)若∠D =74°∠DBC =38°,则∠A =_____,∠ABC =_____;(2)对应边AC = ,AB= ;(3)如果ΔAOB ≌ΔDOC ,则AO= _,BO= _,∠A=_ ,∠ABC= .例2:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D =∠B .例3:如图,PM =PN ,∠M =∠N .求证:AM =BN .例4:如图,AC BD .求证:OA =OB ,OC =OD .例5:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .例6:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =DC :(2)AD ∥BC .例7:阅读下题及一位同学的解答过程,回答问题:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C 。

那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由。

答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA )问:这位同学的回答及证明过程正确吗?为什么?例8:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.例9:如图,AD=AE ,∠1=∠2,点D 、E 在BC 上,BD=CE 。

例7图求证:△ABD≌△ACE.例10:如图,已知AD∥CB,AD=CB,AE=BF,求证:(1)△AFD≌△BEC.(2)DF∥CE.拓展变式例1:如图, ∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么?例2:要测量河两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,这时测得的DE的长就是AB的长。

写出已知和求证,并且进行证明。

实战演练一、填空题1、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.2、已知:如图,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ_____≌△______,理由为______.3、已知:如图,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.4、如图,根据SAS,如果AB=AC,=,即可判定ΔABD≌ΔACE.5、如图,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于P点,PE=3cm,则P点到直线AB的距离是___________.6、如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于____.7、如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .DPABDC 第1题8、如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是 .9、如图,AD⊥BC,DE⊥AB,DF⊥AC,D、E、F是垂足,BD=CD,那么图中的全等三角形有_______对.二、选择题1、AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF2、下列语句中,正确的有()(1)一条直角边和斜边上的高对应相等的两个直角三角形全等(2)有两边和其中一边上的高对应相等的两个三角形全等(3)有两边和第三边上的高对应相等的两个三角形全等A.1个B.2个C.3个D.4个3、下列说法中,正确的是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有且只有一条直线4、如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.55、如图,∠1=∠2,BC=EF,欲证△ABC≌△DEF,则还须补充的一个条件是()A.AB=DEB.∠ACE=∠DFBC.BF=ECD.∠ABC=∠DEF6、如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出()A.2个B.4个C.6个D.8个7、如图,△ABC中,AD⊥BC,D为BC中点,则以下结论不正确的是()A.△ABD≌△ACDB.∠B=∠CC.AD是 BAC的平分线D.△ABC是等边三角形8、如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中正确的有()第6题①∠DAE=∠CBE ②CE=DE ③△DEA≌△CBE ④△EAB是等腰三角形A.1个B.2个C.3个D.4个9、如图,在△ABC中,AB>AC,AC的垂直平分线交AB于点D,交AC于点E,AB=10,△BCD的周长为18,则BC的长为()A.8B.6C.4D.2三、解答题1、如图,已知线段a 、b ,求作:Rt △ABC ,使∠ACB =90º,BC =a ,AC =b (不写作法,保留作图痕迹).2、如图,BP 、CP 是△ABC 的外角平分线,则点P 必在∠BAC 的平分线上,你能说出其中的道理吗?3、如图,已知∠1=∠2,∠3=∠4,EC =AD ,求证:AB =BE.4、如图,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)G 点一定是AB 的中点吗?说明理由;(2)钉这两块木条的作用是什么? 5、如图,已知点A 、E 、F 、D 在同一条直线上,AE =DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF =CE ,试说明AB 与CD 的位置关系.6、阅读下题及其证明过程: 已知:如图,D 是△ABC 中BC 边上一点,EB =EC ,∠ABE =∠ACE ,试说明∠BAE 与∠CAE 相等的理由. 理由:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACEABE EC EB 所以△AEB ≌△AEC(第一步)所以∠BAE =∠CAE(第二步) 问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.7、如图(1),在四边形ABCD 中,AD ∥BC ,∠ABC =∠DCB ,AB =DC ,AE =DF.(1)试说明BF =CE 的理由.(2)当E 、F 相向运动,形成如图(2)时,BF 和CE 还相等吗?请说明你的结论和理由.8、已知:如图,AB =AC ,DB =DC ,(1)若E 、F 、G 、H 分别是各边的中点,求证:EH =FG.(2)若连结AD 、BC 交于点P ,问AD 、BC 有何关系?证明你的结论.G F E D C BA AP B CA F CEB D9、如图,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上,有下面四个论断:(A )AD =CB ,(B )AE =CF ,(C )∠B =∠D ,(D )AD ∥BC.请用其中三个作为条件,余下一个作为结论,遍一道数学题,并写出解答过程. AB C D E F。

相关文档
最新文档