最优控制理论课程总结

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优控制理论课程总结

姓名:

肖凯文班级:

自动化1002班学号:

0909100902 任课老师:

彭辉摘要:

最优控制理论是现代控制理论的核心,控制理论的发展来源于控制对象的要求。尽50年来,科学技术的迅速发展,对许多被控对象,如宇宙飞船、导弹、卫星、和现代工业设备的生产过程等的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。这就要求人们对控制问题都必须从最优控制的角度去进行研究分析和设计。最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使某一性能指标达到最优值[1]。关键字:最优控制理论,现代控制理论,时域数学模型,频域数学模型,控制率Abstract:

The Optimal Control Theory is the core of the Modern Control Theory,the development of control theory comes from the requires of the controlled objects、During the50 years, the rapid development of the scientific technology puts more stricter requires forward to mang

controlled objects,such as the spacecraft,the guide missile,the satellite,the productive process of modern industrial facilities,and so on,and requests some performance indexes that will be best in mang cases、To the control problem,it requests people to

research ,analyse,and devise from the point of view of the Optimal Control Theory、 There are mang major problems of the Optimal Control Theory studying,such as the building the time domain’s model or the frenquency domain’s model according to the controlled

objects,controlling a control law with admitting, making the controlled objects to work according to the scheduled requires, and making the performance index to reseach to a best optimal value、 Keywords: The Optimal Control Theroy, The Modern Control Theroy,The Time Domaint’s Model,The Frequency domain’s Model,The Control Law

一、引言最优控制理论的形成和发展和整个现代自动控制理论的形成和发展分不开的。在20世纪50年代初期,就有人开始发表从工程观点研究最短时间控制问题的文章,尽管其最优性的证明多半借助于几何图形,仅带有启发性质,但毕竟为发展现代控制理论提供了第一批实际模型。由于最优控制问题引人注目的严格表述形式,特别是空间技术的迫切需求,从而吸引了大批科

学家的密切注意。经典变分理论只能解决一类简单的最优控制问题,因为它只对无约束或开集性约束是有效的。而实际上碰到的更多的是容许控制属于闭集的一类最优控制问题,这就要求人们去探索、求解最优控制问题的新途径。在种种新方法中,有俩种方法最富成效:一种是苏联学者庞特里亚金(Л、С、

Понтрягин)的“极大值原理”;另一类是美国学者贝尔曼(R、E、Bellman)的“动态规划”[2]。受力学中哈密顿(Hamilton)原理的启发,庞特里亚金等人把“极大值原理”作为一种推测首先推测出来,随后不久又提供了一种严格的证明,并于1958年在爱丁堡召开的国际数学会议上首先宣读。“动态规划”是贝尔曼在1953-1957年逐步创立的,他依旧最优性原理发展了变分学中的哈密顿—雅可比理论,构成了“动态规划”。它是一种适用于计算机计算,处理问题范围更广的方法。在现代控制理论的形成和发展中,极大值原理、动态规划和卡尔曼(R、E、Kalman)的最优估计理论都起过重要的推动作用[3]。现代控制理论的形成和发展和数字计算机的飞速发展和广约应用密不可分。由于计算机的“在线”参与控制,这样,既不要求把控制器归结为简单的校正网络,也不一定要求有封闭形式的解析解,因此,使得最优控制的工程实现了可能。反过来又提出了许多新的理论问题,导致最优控制的直接和间接计算方法的大批研究成果的出现,进一步推动了控制理论的发展。

二、最优控制的含义最优控制,就是将通常的最优控制问题抽象成一个数学问题,并且用数学语言严格的表示出来,最优控制可分为静态最有和动态最有两类。静态最优是指在稳定情况下实现最优,它反映系统达到稳态后的静态关系。系统中的各变量不随时间变化,而只表示对象在稳定情况下各参数之间的关系,其特性用代数方程来描述。大多数的生产过程受控对象可以用静态最优控制来处理,并且具有足够的精度。静态最有一般可用一个目标函数J=f(x)和若干个等式约束条件或不等式约束条件来描述。要求在满足约束条件下,使目标函数J为最大或最小[4]。动态最优是指系统从一个工况变化到另一个工况的变化过程中,应满足最有要求。在动态系统中,所有的参数都是时间的函数,其特性可用微分方程或差分方程来描述。动态最优控制要求寻找出控制作用的一个或一组数值,是特性指标在满足约束条件下为最优值。这样,目标函数不再是一般函数,而是函数的函数。因此,在数学上这是属于泛函数求极值的问题。受控系统的模型受控系统的数学模型即系统的微分方程,它反映了动态系统在运动过程中所应遵循的物理或化学规律。在集中参数情况下,动态系统的运动规律可以用一组一阶常微分方程即状态方程来描述,即(2-1)式(2-1)中:x(t)表示n维状态变量;u(t)表示为r 维控制向量;f()是x(t)、u(t)和t的n维函数向量;t是实数变量,可以概括一切具有集中参数的受控数学模型。

相关文档
最新文档