《二倍角的正弦、余弦、正切公式》教案
二倍角的正弦,余弦,正切公式教案
![二倍角的正弦,余弦,正切公式教案](https://img.taocdn.com/s3/m/0627476dde80d4d8d15a4fe2.png)
3.1.3二倍角的正弦、余弦、正切公式一、教学目标1.知识与技能通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.过程与方法通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.3.情感态度与价值观通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.二、重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式。
.三、课时安排1课时四、教学设想(一)复习式导入:同学们首先回顾一下两角和与差的正弦、余弦和正切公式(在草稿纸上写)cos(α+β)=______________________(C α+β);cos(α-β)=______________________(C α-β);sin(α+β)=______________________(S α+β);sin(α-β)=_____________________(S α-β);tan(α+β)=________________(T α+β);tan(α-β)=________________(T α-β).你能利用两角和的公式推导出sin 2,cos 2,tan 2ααα的公式吗?(二)公式推导:请同学们看课本P 132—P 133并填写空白,说明为什么?(学生自己讨论,得出把上述公式中β看成α即可)()sin2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;思考:把上述关于cos2α的式子能否变成只含有sin α或cos α形式的式子呢?22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--. (上述公式成立的条件:2,22k k ππαπαπ≠+≠+)注意:二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,2a 是4a 的二倍, 3a 是6a 的二倍等。
二倍角正弦余弦正切公式教案
![二倍角正弦余弦正切公式教案](https://img.taocdn.com/s3/m/2ad965826037ee06eff9aef8941ea76e59fa4a4b.png)
二倍角正弦余弦正切公式教案教案类型:理论课教学教学对象:高中数学学生教学目标:1.理解二倍角指的是一个角的角度是另一个角的两倍。
2.掌握二倍角正弦、余弦和正切的计算公式。
3.能够应用二倍角正弦、余弦和正切公式解决相关问题。
4.培养学生的逻辑思维、分析问题和解决问题的能力。
教学内容:1.二倍角定义。
2.二倍角的正弦、余弦和正切公式。
3.二倍角公式的应用。
教学准备:1. PowerPoint或白板。
2.高中数学教科书。
3.课堂练习题、作业等。
教学过程:一、导入(10分钟)1.出示一个角度为30°的角,问学生30°的二倍角是多少?引导学生思考。
2.引导学生讨论二倍角的概念。
二、概念讲解(15分钟)1.介绍二倍角的定义:一个角的角度是另一个角的两倍。
如角A的二倍角记作2A。
2.通过几个示例讲解二倍角的计算方法,如:30°的二倍角是60°,45°的二倍角是90°等。
三、二倍角正弦公式(15分钟)1.通过几个具体的示例引导学生发现二倍角正弦公式的规律。
2. 讲解二倍角正弦公式:sin(2A) = 2sin(A)cos(A)。
四、二倍角余弦公式(15分钟)1.通过几个具体的示例引导学生发现二倍角余弦公式的规律。
2. 讲解二倍角余弦公式:cos(2A) = cos²(A) - sin²(A)。
五、二倍角正切公式(15分钟)1.通过几个具体的示例引导学生发现二倍角正切公式的规律。
2. 讲解二倍角正切公式:tan(2A) = (2tan(A))/(1 - tan²(A))。
六、应用练习(25分钟)1.分发练习题和作业,让学生自主完成。
2.布置一些应用题,让学生应用二倍角公式解决相关问题。
七、总结(10分钟)1.让学生回顾和总结二倍角正弦、余弦和正切公式。
2.强调二倍角公式的应用,如在解方程、证明等方面的应用。
教学反馈:1.布置课后作业,要求学生进一步熟练掌握二倍角公式的应用。
《二倍角的正弦余弦正切公式》教案
![《二倍角的正弦余弦正切公式》教案](https://img.taocdn.com/s3/m/d49c144102d8ce2f0066f5335a8102d276a26109.png)
《二倍角的正弦余弦正切公式》教案教案:二倍角的正弦、余弦、正切公式一、教学目标:1.理解二倍角的概念,并掌握二倍角的正弦、余弦和正切的定义;2.掌握二倍角的正弦、余弦、正切公式的推导方法;3.能够应用二倍角公式解决相关的数学问题。
二、教学内容:1.二倍角的概念和定义;2.二倍角的正弦、余弦和正切公式的推导;3.二倍角公式的应用。
三、教学步骤:步骤一:引入知识(10分钟)1.引导学生回顾正弦、余弦、正切公式;2.提问:你知道什么是角的二倍角吗?请举个例子。
步骤二:二倍角的概念和定义(10分钟)1.明确角的二倍角的定义:角的二倍角是角度大小是原角的两倍的角;2.引导学生通过几何图形理解二倍角的概念;3.提问学生:如何表示角的二倍角?步骤三:二倍角的正弦、余弦和正切公式的推导(20分钟)1.讲解二倍角的正弦公式的推导过程:根据正弦的定义,sin2θ = 2sinθcosθ,sinθ = ±√(1 -cos^2(θ)),将sinθ代入sin2θ = 2sinθcosθ的式子中,推导出sin2θ的表达式;2.讲解二倍角的余弦公式的推导过程:根据余弦的定义,cos2θ = cos^2(θ) - sin^2(θ),将sinθ和cosθ用tan(θ/2)表示,利用三角恒等式cos^2(θ) = 1/(1 +tan^2(θ/2))和sin^2(θ) = tan^2(θ/2)/(1 + tan^2(θ/2)),将cos^2(θ)和sin^2(θ)代入cos2θ = cos^2(θ) - sin^2(θ)的式子中,推导出cos2θ的表达式;3.讲解二倍角的正切公式的推导过程:根据正切的定义,tan2θ = (2tanθ)/(1 - tan^2(θ)),将t anθ用sinθ/cosθ表示,化简得到tan2θ的表达式。
步骤四:二倍角公式的应用(30分钟)1.通过例题引导学生理解和应用二倍角公式;2.给学生分发练习题,让学生独立解答并进行讲解、讨论;3.布置作业:完成练习题,总结课堂所学内容。
二倍角的正弦余弦正切公式教学设计
![二倍角的正弦余弦正切公式教学设计](https://img.taocdn.com/s3/m/70d3f797c0c708a1284ac850ad02de80d4d806a7.png)
二倍角的正弦余弦正切公式教学设计一、教学目标:1.理解二倍角的概念及其在三角函数中的应用。
2.掌握二倍角的正弦、余弦、正切公式。
3.能够灵活运用二倍角公式解决相关的三角函数题目。
二、教学重点:1.二倍角的概念及应用。
2.二倍角的正弦、余弦、正切公式。
三、教学难点:1.理解并应用二倍角公式解决复杂的三角函数问题。
四、教学过程:Step 1:导入引入(10分钟)1.利用平时学过的知识,复习一下三角函数的基本概念和公式,引导学生回忆起正弦、余弦、正切的定义。
2.提问:二倍角是什么?它在三角函数中有什么应用?Step 2:引出二倍角公式(15分钟)1.导入:给学生出示一道题目:已知角A的正弦值是0.5,求角2A 的正弦值。
学生尝试解答,引导他们思考角2A和角A之间的关系。
2.引导发现:令角2A为B,可知2A=B,角A=A/23. 定义:将A/2称为角A的二倍角(denote:2A)。
4.解题思路:利用三角函数的定义,将角A的正弦值解析成二倍角的正弦值,然后求解。
Step 3:二倍角正弦公式的推导和应用(25分钟)1. 推导:由三角函数的定义,我们可以得到正弦的二倍角公式:sin(2A)=2sinAcosA。
通过几何分析和三角函数的性质,可以推导出该公式。
2.例题:给学生出示几道题目,要求用二倍角公式计算正弦的值。
让学生在计算过程中理解公式的应用和意义。
3.错题讲解:对学生在计算过程中容易出错的题目进行整理和讲解,加深学生对二倍角公式的理解和应用能力。
Step 4:二倍角余弦公式的推导和应用(25分钟)1. 推导:利用三角函数的关系,可以推导出余弦的二倍角公式:cos(2A)=cos2A-2sin²A。
2.例题:给学生出示几道题目,要求用二倍角公式计算余弦的值。
让学生在计算过程中理解公式的应用和意义。
3.错题讲解:对学生在计算过程中容易出错的题目进行整理和讲解,加深学生对二倍角公式的理解和应用能力。
第9课 二倍角的正弦、余弦和正切
![第9课 二倍角的正弦、余弦和正切](https://img.taocdn.com/s3/m/c62cf45c6d175f0e7cd184254b35eefdc8d315bf.png)
合作探究的
= −
=
1 例题分析
例1
能力
.
−
学生积极思考,认真
求值.
听讲,积极回答问题
(1)15° 15° ;(2) 2
(3)
− 2 ;
8
8
215°
1 − 2 15°
例 1 当发现三
角式的形式
与二倍角公
的值.
解
1
已知2 = 2 2 − 1 = − 2
1
求得 2 = 4
1
又因为 ∈ ( 2 ,) ,所以 = − 2.
练习 3
1
已知 − = 2 , 且 ∈ ( 2 ,),
求2.
解 已知
1
− = 2
1
两边平方,得2 − 2 + 2 = 4
1
即1 − 2=4
3
所以2 = 4
通过学生小
通过学生小结,梳理 结,梳理所学
所学内容提升对本节 内 容 提 升 对
四、归纳小结
知识的学习理解。
本节知识的
本节课学习了正弦、余弦、正切的二倍角
学习理解,回
公式,并运用此公式求解某些具体问题,对于
顾本节课重
二倍角变形公式,根据具体情况需要灵活使用。
30°
√3
= .
3
4
已知 = 5, 且 ∈ ( 2 ,),求
例2
4
角的三个公
式,正切的值
直接由同角
三角函数的
2,2,2的值.
解
例 2 熟练二倍
因为 = 5,且 ∈ (2 ,),
3
所以 = − .
二倍角正弦、余弦、正切公式教案
![二倍角正弦、余弦、正切公式教案](https://img.taocdn.com/s3/m/110642ab951ea76e58fafab069dc5022abea4602.png)
二倍角正弦、余弦、正切公式教案一、教学目标:1. 让学生掌握二倍角正弦、余弦、正切公式的推导过程。
2. 使学生能够灵活运用二倍角正弦、余弦、正切公式解决相关问题。
3. 培养学生的逻辑思维能力和运算能力。
二、教学内容:1. 二倍角正弦公式:sin2α= 2sinαcosα2. 二倍角余弦公式:cos2α= cos^2αsin^2α= 2cos^2α1 = 1 2sin^2α3. 二倍角正切公式:tan2α= (tanα+ tan(α+π))/(1 tanαtan(α+π)) = (tanα+ tanα)/(1 tan^2α) = 2tanα/(1 tan^2α)三、教学重点与难点:1. 教学重点:二倍角正弦、余弦、正切公式的推导过程及应用。
2. 教学难点:二倍角正切公式的推导过程及应用。
四、教学方法:1. 采用讲解法,引导学生理解二倍角正弦、余弦、正切公式的推导过程。
2. 运用例题,让学生在实践中掌握二倍角正弦、余弦、正切公式的应用。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学步骤:1. 导入新课,回顾一倍角正弦、余弦、正切公式。
2. 引导学生利用已知公式,推导二倍角正弦、余弦、正切公式。
3. 通过例题,演示二倍角正弦、余弦、正切公式的应用。
4. 组织学生进行练习,巩固所学知识。
六、课后作业:(1)已知sinα= 1/2,求sin2α的值。
(2)已知cosα= √2/2,求cos2α的值。
(3)已知tanα= 1,求tan2α的值。
七、教学反思:在教学过程中,要注意引导学生掌握二倍角正弦、余弦、正切公式的推导过程,培养学生逻辑思维能力和运算能力。
针对不同学生的学习情况,给予适当的辅导,提高教学质量。
注重培养学生的合作学习意识,提高课堂参与度。
六、教学拓展:1. 引导学生探讨二倍角公式的推广,例如三倍角、四倍角公式。
2. 分析二倍角公式在实际问题中的应用,如测量、导航等领域。
七、课堂小结:2. 强调二倍角公式在解决实际问题中的重要性。
(完整版)二倍角正弦、余弦、正切公式教案
![(完整版)二倍角正弦、余弦、正切公式教案](https://img.taocdn.com/s3/m/7c7ef749960590c69fc37642.png)
二倍角的正弦、余弦、正切王业奇sin sin αtan tan 1tan tan αβαβ±提出问题:若β=α,则得二倍角的正弦、一、例题:例一、(公式巩固性练习)求值: 1.sin2230'cos2230’=4245sin 21=2.=-π18cos 22224cos =π 3.=π-π8cos 8sin 22224cos -=π- 4.=ππππ12cos 24cos 48cos 48sin 8216sin 12cos 12sin 212cos 24cos 24sin4=π=ππ=πππ 例二、 1.5555(sincos )(sin cos )12121212ππππ+- 225553sin cos cos 121262πππ=-=-=2.=α-α2sin 2cos 44α=α-αα+αcos )2sin 2)(cos 2sin 2(cos 2222 3.=α+-α-tan 11tan 11α=α-α2tan tan 1tan 224.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+例三、若tan = 3,求sin2 cos2 的值.解:sin2cos2=57tan 11tan tan 2cos sin cos sin cos sin 2222222=θ+-θ+θ=θ+θθ-θ+θ例四、条件甲:a =θ+sin 1,条件乙:a =θ+θ2cos 2sin , 那么甲是乙的什么条件?解:=θ+sin 1a =θ+θ2)2cos 2(sin即a =θ+θ|2cos 2sin |当在第三象限时,甲 乙;当a > 0时,乙 甲∴甲既不是乙的充分条件,也不是乙的必要条件.例五、(P43 例一)已知),2(,135sin ππ∈α=α,求sin2,cos2,tan2的值。
解:∵),2(,135sin ππ∈α=α∴1312sin 1cos 2-=α--=α∴sin2 = 2sin cos = 169120-cos2 = 169119sin 212=α-tan2 = 119120-∵1)42sin(1≤π+≤-x ∴]221,221[+-∈y例二、求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与无关的定值。
《二倍角正弦、余弦、正切公式》市公开课获奖课件省名师示范课获奖课件
![《二倍角正弦、余弦、正切公式》市公开课获奖课件省名师示范课获奖课件](https://img.taocdn.com/s3/m/a9d1bfd882d049649b6648d7c1c708a1294a0a4c.png)
R
倍 角
cos 2 cos2 sin2
R
公 式:
tan 2
1
2
tan tan2
k
2
4
,且
k
2
,k Z
对于C2 能否有其他表达形式?
cos 2 2cos2 1
cos 2 1 2sin2
公式中旳角是否为任意角? 3
注意:
①二倍角公式旳作用在于用单角旳三角函数来体现二倍角 旳三角函数,它合用于二倍角与单角旳三角函数之间旳互 化问题。
2 tan150 (3) 1 tan2 150 ;
(4)1 2sin2 750.
(5)8sin cos cos cos
48 48 24 12
6
练习 同类题 (1) sin cos 44
(2) sin4 cos4
2
2
1 tan2 3
(3)
2
tan 3
2
(4) sin( ) cos( )
13
4
例1
已知cos
12 ,
(
, ),求sin,
2 13 2 2
cos ,tan 的值。
已知sin 2 5 , ( , ),求sin 4,
13
42
cos 4,tan 4的值。
5
例2 求下列各式旳值:
(1) sin 22.50 cos 22.50; (2) cos2 sin2 ;
8
8
4
4
(5)、cos cos 5
12 12
(6)、cos 36 cos 72
7
引申:公式变形:
1 sin 2 (sin cos )2
1 cos 2 2cos2
《二倍角的正弦余弦正切公式》教案
![《二倍角的正弦余弦正切公式》教案](https://img.taocdn.com/s3/m/707bf797c0c708a1284ac850ad02de80d4d8060f.png)
《二倍角的正弦余弦正切公式》教案教案:《二倍角的正弦、余弦、正切公式》教学目标:1.理解二倍角的概念和基本性质;2.学习和掌握二倍角的正弦、余弦、正切公式;3.运用二倍角的公式解题。
教学内容:1.二倍角的概念和基本性质;2.二倍角的正弦、余弦、正切公式的推导;3.二倍角公式的应用。
教学过程:第一步:导入新知1.引导学生回顾正弦、余弦、正切函数的定义和性质;2.提问:你知道什么是角的倍数吗?角的二倍数是什么?为什么要研究二倍角呢?第二步:理解二倍角的概念和基本性质1.引导学生思考:角的二倍数就是两个角之和等于该二倍数的角,即2θ;2.引导学生举例,如角θ=30°,则2θ=60°,角θ=45°,则2θ=90°;3.引导学生总结二倍角的性质:二倍角的度数是原角的二倍,且二倍角的三角函数可以用原角的三角函数表示。
第三步:学习和掌握二倍角的公式1.导出二倍角的正弦公式:通过绘制单位圆的二倍角所在弧,可以推导出sin 2θ =2sinθcosθ;2.导出二倍角的余弦公式:通过绘制单位圆的二倍角所在弧,可以推导出cos 2θ = cos²θ - sin²θ;3.导出二倍角的正切公式:将sin 2θ = 2sinθcosθ和cos 2θ = cos²θ - sin²θ相除,得到tan 2θ = 2tanθ / (1 - tan²θ);4.引导学生通过课堂推导,巩固二倍角的正弦、余弦、正切公式。
第四步:运用二倍角的公式解题1.教师出示一道二倍角公式的应用题,引导学生分析题意和给定的条件;2.指导学生使用二倍角的公式计算,并注意使用适当的三角函数;3.检查计算结果,并进行讲解。
第五步:练习和巩固1.指导学生完成若干道二倍角公式的应用题,并互相交流、校对答案;2.师生共同讨论解题思路和方法,澄清疑惑;3.总结二倍角的正弦、余弦、正切公式的使用技巧和注意事项。
二倍角的正弦、余弦、正切公式》教案
![二倍角的正弦、余弦、正切公式》教案](https://img.taocdn.com/s3/m/6a030996294ac850ad02de80d4d8d15abe2300aa.png)
二倍角的正弦、余弦、正切公式》教案教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.知识目标:1)理解两角和的正弦、余弦和正切公式,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题。
2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。
2.能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构,培养逻辑推理能力。
3.情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。
在运用二倍角公式的过程中体会换元的数学思想。
二、教学重难点、关键1.教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式。
2.教学难点:二倍角的理解及其正用、逆用、变形用。
3.关键:二倍角的理解。
三、学法指导学法:研讨式教学。
四、教学设想1.问题情境复回顾两角和的正弦、余弦、正切公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。
思考:在这些和角公式中,如果令β=α,会有怎样的结果呢?2.建构数学公式推导:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα;cos2α=cos(α+α)=cosαcosα-sinαsinα=cos2α-sin2α;思考:把上述关于cos2α的式子能否变成只含有sinα或cosα的式子呢?cos2α=cos2α-sin2α=1-si n2α-sin2α=1-2sin2α;cos2α=cos2α-sin2α=cos2α-(1-cos2α)=2cos2α-1.以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了α与2α的三角函数之间的关系。
既公式中等号左边的角是右边角的2倍。
所以,确切地说,这组公式是二倍角的正弦、余弦、正切公式,这正是本节课要研究的内容。
高中高一数学《二倍角的三角函数》教案设计
![高中高一数学《二倍角的三角函数》教案设计](https://img.taocdn.com/s3/m/7547a84058eef8c75fbfc77da26925c52cc591d0.png)
高中高一数学《二倍角的三角函数》教案设计一、教学目标1.知识与技能:掌握二倍角的正弦、余弦、正切函数公式,能够运用这些公式进行计算和化简。
2.过程与方法:通过探究、讨论、练习等方式,培养学生的数学思维能力,提高解题技巧。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。
二、教学重点与难点1.教学重点:二倍角的正弦、余弦、正切函数公式的推导与应用。
2.教学难点:二倍角公式的推导过程及运用过程中的符号变化。
三、教学过程1.导入新课(1)复习回顾:引导学生回顾初中阶段学习的正弦、余弦、正切函数的定义及性质。
(2)提出问题:如何利用已知的三角函数公式来推导二倍角的三角函数公式?2.探究新知(1)引导学生利用正弦、余弦、正切的定义,结合三角形的面积公式,推导出二倍角的正弦、余弦、正切函数公式。
(2)教师引导学生进行推导,并解释推导过程中的关键步骤。
3.应用练习(1)教师给出一些简单的二倍角问题,让学生运用新学的公式进行解答。
(2)学生互相交流,分享解题过程和心得。
(3)教师点评,指出学生解题过程中的优点和不足。
4.拓展延伸(1)引导学生探讨二倍角公式在解三角形、化简三角函数表达式等方面的应用。
(2)学生举例说明,教师点评。
(2)学生反馈学习过程中的疑问和收获。
6.作业布置(1)教材P页习题1、2、3。
(2)思考:如何利用二倍角公式化简三角函数表达式?四、教学反思1.本节课通过引导学生探究二倍角公式的推导过程,让学生体会到了数学的严谨性和美感,提高了学生的学习兴趣。
2.在应用练习环节,学生能够积极参与,互相交流,提高了解题技巧。
3.在拓展延伸环节,学生能够将二倍角公式应用于实际问题,培养了学生的数学思维能力。
4.教学过程中,部分学生对二倍角公式的符号变化掌握不够熟练,需要在课后加强练习。
5.教师在课堂上要关注学生的学习反馈,及时调整教学方法和节奏,提高教学效果。
五、教学评价1.课堂表现:观察学生在课堂上的参与程度、思维活跃度、合作交流情况等。
二倍角的正弦余弦正切公式教学设计
![二倍角的正弦余弦正切公式教学设计](https://img.taocdn.com/s3/m/1dcbd1c5e43a580216fc700abb68a98270feac4a.png)
二倍角的正弦余弦正切公式教学设计教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.知识目标:掌握二倍角的正弦、余弦、正切公式的推导和应用。
2.能力目标:能够运用二倍角的正弦、余弦、正切公式解决与角的问题相关的实际问题。
3.情感目标:培养学生对数学的兴趣和学习的主动性,增强学生解决数学问题的能力和自信心。
二、教学重点和难点1.教学重点:二倍角的正弦、余弦、正切公式的推导和应用。
2.教学难点:如何合理组织教学过程,使学生能够深入理解和掌握推导的过程。
三、教学准备1.教学工具:教学投影仪、电脑等。
2.教学材料:教材、课件、作业等。
四、教学过程步骤一:导入与激发兴趣(5分钟)通过呈现一个有趣的问题或实例,引导学生思考与角度相关的问题,如:正方形的对角线与边的关系。
步骤二:引入新知识(10分钟)1.提问:角的划分方式有哪些,我们平时常用到哪些角?2.引导学生探讨正弦、余弦、正切函数的定义、性质及其在解决实际问题中的应用。
3.引出二倍角的概念,引导学生思考二倍角的特点和应用场景。
步骤三:推导公式(15分钟)1.通过图形、实例等方式,引导学生发现二倍角的公式特点。
2.带领学生一起推导二倍角的正弦、余弦、正切公式,并将推导过程记录在板书或课件上。
3.解释推导过程中的关键步骤和思路,确保学生理解推导的逻辑性和连贯性。
步骤四:应用与实践(25分钟)1.师生共同解答一些典型的二倍角问题,通过这些问题巩固学生对二倍角公式的理解和应用。
2.引导学生合作解决一些与角度相关的实际问题,如海上航行问题、建筑物的阴影问题等,通过应用二倍角公式解决实际问题。
3.教师还可以设计一些拓展问题,让学生自主思考,并分享解题思路和方法。
步骤五:巩固与拓展(15分钟)1.出示一些相关的练习题,让学生独立或小组完成,拓展学生对二倍角公式的应用能力。
2.引导学生总结二倍角的相关知识点和公式,整理笔记,加深理解。
步骤六:课堂小结与反思(5分钟)对本堂课的重点内容进行小结,并提问学生是否有任何疑问或不明白的地方。
高中数学必修一高一数学第四章(第0课时)两倍角的正弦余弦正切()公开课教案课件课时训练练习教案课件
![高中数学必修一高一数学第四章(第0课时)两倍角的正弦余弦正切()公开课教案课件课时训练练习教案课件](https://img.taocdn.com/s3/m/cbc882a64128915f804d2b160b4e767f5bcf8007.png)
课 题: 4 7二倍角的正弦、余弦、正切(2)教学目的:要求学生能较熟练地运用公式进行化简、求值、证明, 增强学生灵活运用数学知识和逻辑推理能力教学重点: 二倍角公式的应用教学难点: 灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式 授课类型: 新授课课时安排: 1课时教 具: 多媒体、实物投影仪教学过程:一、复习引入:二倍角公式:αααcos sin 22sin =;)(2αSααα22sin cos2cos -=;)(2αC ααα2tan 1tan 22tan -=;)(2αT 1cos 22cos 2-=αααα2sin 212cos -=)(2αC ' (1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数, 它适用于二倍角与单角的三角函数之间的互化问题.(2)二倍角公式为仅限于 是 的二倍的形式, 尤其是“倍角”的意义是相对的(3)二倍角公式是从两角和的三角函数公式中, 取两角相等时推导出, 记忆时可联想相应角的公式.(4) 公式 , , , 成立的条件是: 公式 成立的条件是 . 其他(5)熟悉“倍角”与“二次”的关系(升角—降次, 降角—升次)(6)特别注意公式的三角表达形式, 且要善于变形: 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用 二、讲解范例:例1化简下列各式:1.2.=- 40tan 140tan 2 80tan 21 3. 2sin2157 5( ( 1 =4.=ππ125sin 12sin 416sin 2112cos 12sin =π=ππ 5. cos20(cos40(cos80( =20sin 80cos 40cos 40sin 21=8120sin 160sin 8120sin 80cos 80sin 41===例2求证: [sin((1+sin()+cos((1+cos()]×[sin((1(sin()+cos((1(cos()] = sin2(证: 左边 = (sin(+sin2(+cos(+cos2()×(sin((sin2(+cos((cos2()= (sin θ+ cos θ+1)×(sin θ+cos θ -1)= (sin θ+ cos θ)2 -1 = 2sin θcos θ = sin2θ = 右边∴原式得证关于“升幂”“降次”的应用:在二倍角公式中, “升次”“降次”与角的变化是相对的 在解题中应视题目的具体情况灵活掌握应用例3求函数x x x y sin cos cos 2+=的值域 解: ——降次 ∵1)42sin(1≤π+≤-x ∴]221,221[+-∈y 例4 求证: 的值是与(无关的定值 证: —降次)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=)sin cos 23cos 21)2cos 2sin 3sin 2cos 3(cos 212αα-α+α-απ+απ= 41)2sin 43)2cos 1(412cos 212sin 232cos 41=α-α++α-α+α=∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关例5 化简: ——升幂解:2cos 2sin 22cos 22cos 2sin 22sin 22cos 2sin 22sin 22cos 2sin 22cos 22222θθ-θθθ-θ+θθ-θθθ-θ=原式 )2sin 2(cos 2cos 2)2cos 2(sin 2sin 2)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2θθθθθθθθθθθθ--+--= θ-=θ-=θθ-+θθ+-=θ+θ-=csc 2sin 2)sin cos 1sin cos 1()2tan 2(cot 例6 求证: ——升幂证: 原式等价于: 左边θ+θθθ+θθ=θ++θθ-+θ=2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22 θθθθθθθ2tan )2cos 2(sin 2cos 2)2sin 2(cos 2sin 2=++=右边=θθθ2tan tan 1tan 22=- ∴左边=右边 ∴原式得证例7利用三角公式化简:分析:化正切为正弦、余弦, 便于探索解题思路.解:)10cos 10sin 31(50sin )1031(50sin+=+tg 10cos )10sin 2310cos 21(250sin +⋅=10cos 10sin 30cos 10cos 30sin 50sin 2+⋅=10cos 40sin 40cos 2⋅= 110cos 80sin == 指出: 例4的解法用到了很多公式, 其解法的关键是“化切为弦”与逆用公式.三、课堂练习:1 求值: cos280°+sin250°-sin190°·cos320°解: 原式= +sin10°cos40°=1+21×2×(-sin30°sin50°)+sin10°cos40° =1-21sin50°+21(sin50°-sin30°) =1-41=43 2求︒-︒10cos 310sin 1的值解: 原式= 420sin 20sin 420sin )1030sin(410cos 10sin 2)10sin 30cos 10cos 30(sin 4=︒︒=︒︒-︒=︒︒︒︒-︒︒= 四、小结 本节课学习了以下内容: 数列及有关定义, 会根据通项公式求其任意一项, 并会根据数列的前n 项求一些简单数列的通项公式五、课后作业:1 若 ≤α≤ , 则 等于( )2D.2sin 2sin 2C. 2B.2cos 2cos 2.A αααα-- 24cos 2sin 22+-的值等于( )Asin2 B-cos2 C3 cos2 D-3cos2 3sin6°cos24°sin78°cos48°的值为( )81D. 321C. 161B. 161A.- 494cos 93cos 92cos 9ππππ的值等于 5 已知sin x= , 则sin2(x- )的值等于6 若sin αsin β+cos αcos β=0, 则sin αcos α+sin βcos β的值为7已知.)4cos(2cos ),40(135)4sin(απαπααπ+<<=-求8求值tan70°cos10°(3tan20°-1)参考答案: 1 C 2 3 A 4 5 2- 6 0 7 8 -1六、板书设计(略)七、课后记:活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
二倍角的正弦余弦正切公式教学设计
![二倍角的正弦余弦正切公式教学设计](https://img.taocdn.com/s3/m/412040afafaad1f34693daef5ef7ba0d4b736d65.png)
二倍角的正弦余弦正切公式教学设计教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.掌握二倍角的概念和性质。
2.掌握二倍角的正弦、余弦、正切公式及其推导过程。
3.能够灵活运用二倍角的公式求解相关题目。
二、教学内容1.二倍角的概念和性质。
2.二倍角的正弦、余弦、正切公式及其推导过程。
3.二倍角公式的应用。
三、教学过程步骤一:导入与引入1.导入通过展示一道简单的题目引入二倍角的概念。
例如:已知角α的弧度为π/6,求角2α的弧度。
2.引入引导学生思考,当已知一些角的弧度时,如何求解其二倍角的弧度。
步骤二:二倍角的定义与性质1.定义向学生阐述二倍角的概念:设θ为任意角,则它的二倍角记作2θ。
2.性质向学生介绍二倍角的几个重要性质:(1) 正弦:sin2θ = 2sinθcosθ(2) 余弦:cos2θ = cos²θ - sin²θ(3) 正切:tan2θ = (2tanθ)/(1-tan²θ)步骤三:二倍角公式的推导1.正弦二倍角公式的推导(1)推导思路:利用三角函数的和差化简公式进行推导。
(2)按照推导步骤依次进行:a. sin2θ = sin(θ+θ)b. 根据和差化简公式 sin(A+B) = sinAcosB + cosAsinB,展开得到sin(θ+θ) = sinθcosθ + cosθsinθc. 化简得sin2θ = 2sinθcosθ2.余弦二倍角公式的推导(1)推导思路:同样利用三角函数的和差化简公式进行推导。
(2)按照推导步骤依次进行:a. cos2θ = cos(θ+θ)b. 根据和差化简公式 cos(A+B) = cosAcosB - sinAsinB,展开得到cos(θ+θ) = cos²θ - sin²θc. 化简得cos2θ = cos²θ - sin²θ3.正切二倍角公式的推导(1)推导思路:利用相除消去的方法进行推导。
二倍角正弦余弦正切公式教案
![二倍角正弦余弦正切公式教案](https://img.taocdn.com/s3/m/a0a91c40a7c30c22590102020740be1e650ecca7.png)
二倍角正弦余弦正切公式教案教案标题:二倍角正弦、余弦和正切公式一、教学目标:1.了解二倍角正弦、余弦和正切公式的定义和推导过程。
2.能够熟练应用二倍角公式解决相关数学问题。
3.培养学生的逻辑思维能力和问题解决能力。
二、教学内容:1.二倍角正弦公式的定义和推导。
2.二倍角余弦公式的定义和推导。
3.二倍角正切公式的定义和推导。
三、教学过程:导入(5分钟):1.打开课堂,引入学生对三角函数的基本概念和性质。
2.让学生回顾一下正弦、余弦和正切函数的定义和图像。
讲解(20分钟):1. 介绍二倍角正弦公式的概念和定义:sin(2θ)。
2. 推导二倍角正弦公式的过程:利用和差化积公式推导sin(2θ)。
3.引导学生理解和记忆二倍角正弦公式的结果。
练习(20分钟):1.让学生在课堂上尝试解决一些二倍角公式的相关问题。
2.鼓励学生思考问题,提供适当的提示和指导。
讲解(20分钟):1. 介绍二倍角余弦公式的概念和定义:cos(2θ)。
2. 推导二倍角余弦公式的过程:利用和差化积公式推导cos(2θ)。
3.引导学生理解和记忆二倍角余弦公式的结果。
练习(20分钟):1.继续让学生在课堂上尝试解决一些二倍角公式的相关问题。
2.鼓励学生与同桌合作,互相讨论问题。
讲解(20分钟):1. 介绍二倍角正切公式的概念和定义:tan(2θ)。
2. 推导二倍角正切公式的过程:利用sin(2θ)和cos(2θ)的定义和推导。
3.引导学生理解和记忆二倍角正切公式的结果。
练习(20分钟):1.让学生解决一些与二倍角公式相关的问题。
2.鼓励学生尝试不同的方法和思路,培养他们的问题解决能力。
总结(10分钟):1.复习二倍角正弦、余弦和正切公式的定义和推导过程。
2.强调二倍角公式的重要性和应用范围。
3.鼓励学生继续深入学习和应用三角函数的相关知识。
四、教学反思:通过本节课的学习,学生能够了解二倍角正弦、余弦和正切公式的定义和推导过程,熟练掌握应用二倍角公式解决相关数学问题的方法和技巧。
二倍角的正弦、余弦、正切公式优秀教案
![二倍角的正弦、余弦、正切公式优秀教案](https://img.taocdn.com/s3/m/b3d0876c84868762cbaed58b.png)
二倍角的正弦、余弦、正切公式
一.教学内容:3.1.3二倍角的正弦、余弦、正切公式,新课改必修4. 二.课型:新授课
三.教学目标
ααα公式的推导;
1.知识目标:①掌握sin2,cos2,tan2
②灵活运用二倍角公式求值、化简、证明.
2.能力目标:①通过对公式的推导,使学生发现知识点之间的内在联系,
培养学生自主学习、自主探究的能力.
②通过对公式的理解,提高学生化归、分析、概括等数学思
想,提高学生的思维品质.
3.情感目标:由和角公式推导出倍角公式,从一般到特殊使学生领会数学
中的奥妙,发现数学中的美,激发学生学习数学的兴趣,培
养学生的思维品质.
四.教学重点、难点、关键点
1.教学重点:二倍角的正弦、余弦、正切公式的推导以及二倍角余弦公式
的两种变形及应用.
2.教学难点:倍角公式与以前学过同角三角函数的基本关系式、诱导公式、和角公式的综合应用;
3.关键点:从一般到特殊推导二倍角.
五.教学方法
1.教法:主要以探究法为主,以讲解法为辅.
2.学法:学生观察分析、主动思考、主动探究、讨论交流,在积极的学习中解决问题.
3.教学手段:充分运用多媒体,彩色粉笔来突出本节课的重点,突破本节课的难点.
六.教学过程设计
七.板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二倍角的正弦、余弦、正切公式》教学设计
高一A 组 韩慧芳
年级:高一 科目:数学 内容:二倍角的正弦、余弦、正切公式 课型:新课
一、教学目标
1、知识目标:
(1)在理解两角和的正弦、余弦和正切公式的基础上,能够推导二倍角的正弦、余弦和正切公式,并能运用这些公式解决简单的三角函数问题。
(2)通过公式的应用(正用、逆用、变形用),使学生掌握有关化简技巧,提高分析、解决问题的能力。
2、能力目标:通过二倍角公式的推导,了解知识之间的内在联系,完善知识结构,
培养逻辑推理能力。
3、情感目标:通过二倍角公式的推导,感受二倍角公式是和角公式的特例,进一步体会从一般化归为特殊的基本数学思想。
在运用二倍角公式的过程中体会换元的数学思想。
二、教学重难点、关键
1、教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角的正弦、余弦和正切公式
2、教学难点:二倍角的理解及其正用、逆用、变形用。
3、关键:二倍角的理解
三、学法指导
学法:研讨式教学
四、教学设想:
1、问题情境
复习回顾两角和的正弦、余弦、正切公式
()sin sin cos cos sin αβαβαβ+=+;
()cos cos cos sin sin αβαβαβ+=-;
()tan tan tan 1tan tan αβαβαβ
++=-。
思考:在这些和角公式中,如果令βα=,会有怎样的结果呢?
2、建构数学
公式推导:
()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;
()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;
思考:把上述关于cos2α的式子能否变成只含有sin α或cos α的式子呢?
22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;
22222cos 2cos sin cos (1cos )2cos 1αααααα=-=--=-.
以上这些公式都叫做倍角公式,从形式上看,倍角公式给出了αα与2的三角函数之间的关系。
既公式中等号左边的角是右边角的2倍。
所以,确切地说,这组公式是二倍角的正弦、余弦、正切公式,这正是本节课要研究的内容。
二倍角的正弦、余弦、正切公式有时简称二倍角公式。
3、知识运用
例1、(公式的正用)
(1)已知3sin ,,52
πααπ=<<求sin 2,cos 2,tan 2ααα的值. (2)已知3sin 2,,542ππαα=
<<求sin 4,cos 4,tan 4ααα的值.
说明:
1.运用二倍角公式不仅局限于2α是
α的2倍,还适用于4α是2α的2倍,α是2α的2倍,2
α 是4α
的2倍等情况,这里蕴含了换元的数学思想。
2、类比二倍角公式,你能用2α的三角函数表示sin ,cos ,tan ααα,用4
α的三角函数表示sin ,cos ,tan 222
α
α
α吗?
练习:1、已知548cos
-=α,παπ128<<,求4tan ,4cos ,4sin ααα的值。
(P135 1)
例2、(公式的逆用)求下列各式的值:
(1)sin 22
30cos 2230'' (2)22cos 18π
-
(3)22sin cos 12
12π
π- (4)22tan 301tan
30-
sin cos tan ααα===sin 2cos 2tan 2ααα===
例3、(公式的变形运用)化简
(1)44cos sin 22α
α
-
(2) 111tan 1tan αα
--+ (3)8sin
cos cos cos 48482412ππππ
4、课堂小结
1、二倍角公式是两角和公式的特例,体现将一般化归为特殊的基本数学思想方法。
2、公式的正用、逆用、变形运用。
5、作业
P138 A 组15,19
思考题
cos36cos 72?=。