电化学加工原理及应用总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学加工原理及应用
电化学加工(Electrochemical Making),也称电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。
电化学加工的原理:
电化学加工是利用金属在电解液中的电化学阳极溶解来将工件成型的。如图1 所示,工件接直流电源的正极为阳极,按所需形状制成的工具接直流电源的负极为阴极。阳极表面铁原子在外电源的作用下放出两个电子,成为正的二价铁离子而溶解进入电解液中(Fe-2e=Fe+2)。溶入电解液中的Fe+2又与OH-离子化合,生成Fe(OH)2沉淀,随着电解液的流动而被带走。Fe(OH)2 又逐渐为电解液中及空气中的氧氧化为Fe(OH)3红褐色沉淀。
正的H+被吸收到阴极表面,从电源得到电子而析出氢气(2H++2e=H2↑)。电解液从两极间隙(0.1~0.8 mm)中高速(5~60 m/s)流过。当工具阴极向工件进给并保持一定间隙时即产生电化学反应,在相对于阴极的工件表面上,金属材料按对应于工具阴极型面的形状不断地被溶解到电解液中,随着工件表面金属材料的不断溶解,工具阴极不断地向工件进给,溶解的电解产物不断地被电解液冲走,工件表面也就逐渐被加工成接近于工具电极的形状,如此下去直至将工具的形状复制到工件上。
电化学加工的应用:
电化学加工应用主要有电解加工、电化学抛光、电镀、电铸、电解磨削等方面。具体应用于发动机叶片加工、火炮膛线加工、加工锻模型腔、深孔、小孔、长键槽、等截面叶片整体叶轮以及零件去毛刺、难导电硬脆材料加工等。
航空发动机叶片加工----相对于叶片的几何结构及采用的材料, 电解加工能充分发挥其技术特长。尽管由于叶片精密锻造、精密铸造、精密辊轧技术的提高而有更多的叶片采用精密成形, 使电解加工叶片的数量有一些减少, 但随着叶片材料向高强、高硬、高韧性方向发展和钛合金、钴镍超级耐热合金的采用, 以及超精密、超薄、大扭角、低展弦比等特殊结构叶片的出现, 对电解加工又提出了新的、更高的要求, 电解加工依然是优选工艺方法之一。
如空心冷却涡轮叶片和导向器叶片上的许多小孔, 特别是深小孔和呈多向不同角度分布的小孔,用普通机械钻削方法特别困难, 甚至不能加工;而用电火花、激光加工又有表面再铸层问题, 且加工孔深也有限;采用电解方法则加工效率、加工质量明显提高, 加工孔深大大增加, 还可以采用复合多孔加工方式, 使加工效率提高几倍、十几倍。
为了满足第三代、第四代飞机高推重比、高可靠性的要求, 各类新型航空、航天发动机相继采用整体叶轮、整体叶盘结构。电解加工与数控技术的结合,是可望解决难切削材料整体叶盘的优质、高效、低成本加工问题的有效途径。
火炮膛线加工----随着兵器技术的发展,对火炮身管的要求也越来越高。随
着炮管材料变硬,膛线数目增多,槽线变深,缠角变大,机械拉削难以实现膛线的加工;因电解加工具有一次成型、加工效率高,离子级溶解、表面质量好,工具损耗小、无残余应力的优点,在深孔和膛线加工中尤为突出。因此,电解加工膛线变得不可或缺。
零件去毛刺----去毛刺是机械加工最后阶段必须进行的一项重要的技术,对
于可达性差、与主孔垂直的内部交叉阵列孔毛刺,一般的加工方法难以实现对其去除。目前国内主要采用手工的方法进行去除,该方法存在去除效率低、成本高的缺点,故需寻求一种去除效率高、自动化程度高的加工方法。
电化学去毛刺是金属在电解液中发生基于电化学作用的阳极溶解而去除零
件毛刺的加工工艺方法,这是一种先进的去毛刺技术,是电化学加工中发展较快、应用较广的一项工艺,它具有去除毛刺质量好、安全可靠、高效等优点,且能去除可达性差的复杂内腔部位的毛刺,现已在汽车发动机、航空航天、气动液压等领域得到运用。在汽车转向器中的螺杆轴上内交叉阵列小孔毛刺去除的实例实验验证中得到了良好的加工效果。
难导电硬脆材料加工----因半导体、光学玻璃、工程陶瓷等难导电硬脆材料
具有耐磨性强、硬度高等优良性能,故在电子、光学等领域得到了广泛应用。但难导电硬脆材料的脆性大,采用传统机械加工方法成本高、效率低,且易产生微裂纹,从而严重影响表面质量和性能。电加工是依靠电能、热能而不是机械能实现加工的,可以加工任何硬、脆、韧、软及高熔点的导电材料,而难导电硬脆材料一般不能直接采用电加工方法加工。郭永丰等研究了基于绝缘陶瓷辅助电火花加工原理在煤油中对绝缘陶瓷的电火花磨削加工,但加工效率较低。黑松彰雄研究了机械电解电火花复合磨削技术,该技术能实现对非导电陶瓷的高效精密加工,但仍存在放电难以控制和电能利用率低等问题。刘永红等提出了双电极同步伺服电火花机械复合磨削技术,实现了对非导电陶瓷的磨削加工,但辅助电极送给及控制系统较为复杂,导致放电状态难以精确控制。