神经网络基本原理ppt课件
合集下载
《hopfield神经网络》课件
![《hopfield神经网络》课件](https://img.taocdn.com/s3/m/b8f83d0db207e87101f69e3143323968001cf473.png)
图像识别实例
总结词
通过Hopfield神经网络,可以实现高效的图像识 别。
总结词
图像识别的准确率取决于训练样本的多样性和数 量。
详细描述
在图像识别实例中,可以将图像信息转化为神经 网络的输入,通过训练和学习,网络能够将输入 的图像信息与预存的图像模式进行匹配,从而实 现图像的快速识别。
详细描述
为了提高图像识别的准确率,需要收集大量具有 代表性的训练样本,并采用多种不同的训练方法 对网络进行训练,以增加网络的泛化能力。
神经元模型
神经元模型
Hopfield神经网络的基本单元是神经元,每个神经元通过加权输 入信号进行激活或抑制。
激活函数
神经元的输出由激活函数决定,常用的激活函数有阶跃函数和 Sigmoid函数。
权重
神经元之间的连接权重用于存储记忆模式,通过训练可以调整权重 。
能量函数
1 2 3
能量函数定义
能量函数是描述Hopfield神经网络状态的一种方 式,其值越低表示网络状态越稳定。
《Hopfield神经网 络》PPT课件
目录
CONTENTS
• Hopfield神经网络概述 • Hopfield神经网络的基本原理 • Hopfield神经网络的实现 • Hopfield神经网络的优化与改进 • Hopfield神经网络的实例分析
01 Hopfield神经网络概述
定义与特点
能量函数的性质
能量函数具有非负性、对称性、连续性和可微性 等性质,这些性质对于网络的稳定性和记忆性能 至关重要。
最小能量状态
训练过程中,网络会逐渐趋近于最小能量状态, 此时对应的模式被存储在神经元连接权重中。
稳定性分析
稳定性定义
神经网络专题ppt课件
![神经网络专题ppt课件](https://img.taocdn.com/s3/m/1a091a7bef06eff9aef8941ea76e58fafbb0454a.png)
(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
Hopfield神经网络ppt课件
![Hopfield神经网络ppt课件](https://img.taocdn.com/s3/m/06bce0dd70fe910ef12d2af90242a8956aecaa65.png)
1)保证系统在异步工作时的稳定性,即它的 权值是对称的;
2)保证所有要求记忆的稳定平衡点都能收敛 到自己;
3)使伪稳定点的数目尽可能的少; 4)使稳定点的吸引域尽可能的大。 MATLAB函数
[w,b]=solvehop(T);
.
23
连续性的Hopfield网络
CHNN是在DHNN的基础上提出的,它的原理
.
34
几点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳 定性;
2)能量函数与李雅普诺夫函数的区 别在于:李氏被限定在大于零的范围内, 且要求在零点值为零;
3)Hopfield选择的能量函数,只是 保证系统稳定和渐进稳定的充分条件, 而不是必要条件,其能量函数也不是唯 一的。
1、激活函数为线性函数时
2、激活函数为非线性函数时
.
29
当激活函数为线性函数时,即
vi ui 此时系统的状态方程为:
U AU B 其中A 1 WB。
R 此系统的特征方程为:
A I 0 其中I为单位对角阵。通过对解出的特征值1, 2,, r 的不同情况,可以得到不同的系统解的情况。
.
霍普菲尔德(Hopfield) 神经网络
1、网络结构形式 2、非线性系统状态演变的形式 3、离散型的霍普菲尔德网络(DHNN) 4、连续性的霍普菲尔德网络(CHNN)
.
1
网络结构形式
Hopfield网络是单层对称全反馈网络,根据激 活函数选取的不同,可分为离散型和连续性两种 ( DHNN,CHNN)。 DHNN:作用函数为hadlim,主要用于联想记忆。 CHNN:作用函数为S型函数,主要用于优化计算。
.
19
权值修正的其它方法
2)保证所有要求记忆的稳定平衡点都能收敛 到自己;
3)使伪稳定点的数目尽可能的少; 4)使稳定点的吸引域尽可能的大。 MATLAB函数
[w,b]=solvehop(T);
.
23
连续性的Hopfield网络
CHNN是在DHNN的基础上提出的,它的原理
.
34
几点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳 定性;
2)能量函数与李雅普诺夫函数的区 别在于:李氏被限定在大于零的范围内, 且要求在零点值为零;
3)Hopfield选择的能量函数,只是 保证系统稳定和渐进稳定的充分条件, 而不是必要条件,其能量函数也不是唯 一的。
1、激活函数为线性函数时
2、激活函数为非线性函数时
.
29
当激活函数为线性函数时,即
vi ui 此时系统的状态方程为:
U AU B 其中A 1 WB。
R 此系统的特征方程为:
A I 0 其中I为单位对角阵。通过对解出的特征值1, 2,, r 的不同情况,可以得到不同的系统解的情况。
.
霍普菲尔德(Hopfield) 神经网络
1、网络结构形式 2、非线性系统状态演变的形式 3、离散型的霍普菲尔德网络(DHNN) 4、连续性的霍普菲尔德网络(CHNN)
.
1
网络结构形式
Hopfield网络是单层对称全反馈网络,根据激 活函数选取的不同,可分为离散型和连续性两种 ( DHNN,CHNN)。 DHNN:作用函数为hadlim,主要用于联想记忆。 CHNN:作用函数为S型函数,主要用于优化计算。
.
19
权值修正的其它方法
神经网络学习PPT课件
![神经网络学习PPT课件](https://img.taocdn.com/s3/m/7b05829ec0c708a1284ac850ad02de80d4d806fc.png)
不断迭代,权重逐渐调整到最优解附近。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。
神经网络ppt课件
![神经网络ppt课件](https://img.taocdn.com/s3/m/f6e63eb1aff8941ea76e58fafab069dc51224779.png)
神经元层次模型 组合式模型 网络层次模型 神经系统层次模型 智能型模型
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
BP神经网络基本原理与应用PPT
![BP神经网络基本原理与应用PPT](https://img.taocdn.com/s3/m/e6873146e53a580217fcfe67.png)
BP神经网络的学习
• 网络结构 – 输入层有n个神经元,隐含层有q个神经元, 输出层有m个神经元
BP神经网络的学习
– 输入层与中间层的连接权值: wih
– 隐含层与输出层的连接权值: – 隐含层各神经元的阈值: bh
who
– 输出层各神经元的阈值: bo
– 样本数据个数: k 1,2, m
– 激活函数:
(二)误差梯度下降法
求函数J(a)极小值的问题,可以选择任意初始点a0,从a0出发沿着负 梯度方向走,可使得J(a)下降最快。 s(0):点a0的搜索方向。
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
直观解释
当误差对权值的 偏导数大于零时,权 值调整量为负,实际 输出大于期望输出, 权值向减少方向调整, 使得实际输出与期望 输出的差减少。当误 差对权值的偏导数小 于零时,权值调整量 为正,实际输出少于 期望输出,权值向增 大方向调整,使得实 际输出与期望输出的 差减少。
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的网络
人工神经网络(ANN)
c
k l
c
k j
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
BP神经网络的学习
(三) BP算法调整,输出层的权值调整
式中: —学习率 最终形式为:
BP神经网络的学习
(三) BP算法调整,隐藏层的权值调整
隐层各神经元的权值调整公式为:
第一讲神经网络基本原理ppt课件
![第一讲神经网络基本原理ppt课件](https://img.taocdn.com/s3/m/e6a3cc7a0a4c2e3f5727a5e9856a561253d32159.png)
人工神经网络基本要素
人工神经网络(简称神经网络)是由人工神经元(简称神经元)互 连组成的网络,它是从微观结构和功能上对人脑的抽象、简化,是模 拟人类智能的一条重要途径,反映了人脑功能的若干基本特征,如并 行信息处理、学习、联想、模式分类、记忆等。
人工神经网络(ANN)可看成是以人工神经元为节点,用有向加权 弧连接起来的有向图。
20 世 纪 80 年 代 以 来 , 人 工 神 经 网 络 ( ANN , Artificial Neural Network)研究取得了突破性进展。神经网络控制是将神经网络与控制 理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的 分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途 径。
y 是神经元的输出。
神经元的输出 y=f(w*u+θ )
人工神经网络基本要素 —神经元
可见,神经元的实际输出还取决于所选择的作用函数f(x)。神经元的阈值 可以看作为一个输入值是常数1对应的连接权值。根据实际情况,也可以 在神经元模型中忽略它。关于作用函数的选择将在后面详细讨论。在上述 模型中,w和θ是神经元可调节的标量参数。设计者可以依据一定的学习规 则来调整它。
每个神经元的突触数目有所不同,而且各神经元之间的连接强度 和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的 功能。图1.1 生物神经元的结构
人工神经网络基本要素 —神经元
神经生理学和神经解剖学的研究 结果表明,神经元是脑组织的基 本单元,是神经系统结构与功能 的单位。
• 大脑
Brain
在此有向图中,人工神经元就是对生物神经元的模拟,而有向弧则 是轴突—突触—树突对的模拟。有向弧的权值表示相互连接的两个人 工神经元间相互作用的强弱。
神经网络基本介绍PPT课件
![神经网络基本介绍PPT课件](https://img.taocdn.com/s3/m/9faa9a43e97101f69e3143323968011ca200f762.png)
神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:
智能控制系统 -神经网络-PPT课件
![智能控制系统 -神经网络-PPT课件](https://img.taocdn.com/s3/m/ea628168be1e650e52ea998c.png)
1 1T 2 Jn () e ( n ) e( n )( e n ) k 2k 2
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:
1 1T 2 J E e ( n ) E e ( n )( e n ) k 2 2 k
13
误差纠正学习
w J 用梯度下降法求解 k 对于感知器和线性网络:
1
感知器网络
感知器是1957年美国学者Rosenblatt提出的 一种用于模式分类的神经网络模型。 感知器是由阈值元件组成且具有单层计算单元 的神经网络,具有学习功能。 感知器是最简单的前馈网络,它主要用于模式 分类,也可用在基于模式分类的学习控制和多 模态控制中,其基本思想是将一些类似于生物 神经元的处理元件构成一个单层的计算网络
w ( p w ) 若 神 经 元 k 获 胜 k j j k j w 0 若 神 经 元 k 失 败 k j
wkj
pj
k
5.2
前向网络及其算法
前馈神经网络(feed forward NN):各神经元接受 前级输入,并输出到下一级,无反馈,可用一 有向无环图表示。 图中结点为神经元(PE):多输入单输出,输 出馈送多个其他结点。 前馈网络通常分为不同的层(layer),第i层的输入 只与第i-1层的输出联结。 可见层:输入层(input layer)和输出层(output layer) 隐层(hidden layer) :中间层
5.1
神经网络的基本原理和结构
1
神经细胞的结构与功能
神经元是由细胞体、树突和轴突组成
图 生物神经元模型
神经网络的基本模型
2
人工神经元模型
人工神经网络是对生物神经元的一种模拟和简化,是 神经网络的基本处理单元。
神经元输出特性函数常选用的类型有:
神经网络原理与应用第1讲:基础知识PPT课件
![神经网络原理与应用第1讲:基础知识PPT课件](https://img.taocdn.com/s3/m/6c302118f11dc281e53a580216fc700aba685263.png)
定了神经网络的基础。
1957年,心理学家Frank Rosenblatt提出了感知机模 型,它可以识别一些简单的
模式,但无法处理异或 (XOR)问题。
1974年,Paul Werbos提出 了反向传播算法,解决了感 知机模型无法学习异或问题
的问题。
2006年,加拿大多伦多大学 的Geoffrey Hinton等人提出 了深度学习的概念,开启了
权重更新是根据损失函数的梯度调整权重的过程,通过不断 地迭代优化,使神经网络逐渐接近最优解。权重更新的过程 通常使用梯度下降法或其变种进行。
03
神经网络的类型
前馈神经网络
总结词
前馈神经网络是最基本的神经网络类型,信息从输入层开始,逐层向前传递,直 至输出层。
详细描述
前馈神经网络中,每一层的神经元只接收来自前一层的输入,并输出到下一层。 这种网络结构简单,易于训练和实现,常用于模式识别、分类和回归等任务。
利用神经网络进行游戏AI的决 策和策略制定,如AlphaGo
等。
02
神经网络的基本概念
神经元模型
总结词
神经元是神经网络的基本单元,模拟 生物神经元的行为。
详细描述
神经元模型通常包括输入信号、权重 、激活函数和输出信号等部分。输入 信号通过权重进行加权求和,经过激 活函数处理后得到输出信号。
激活函数
06
神经网络的应用实例
图像识别
总结词
图像识别是神经网络应用的重要领域之一, 通过训练神经网络识别图像中的物体、人脸 等特征,可以实现高效的图像分类、目标检 测等功能。
详细描述
神经网络在图像识别领域的应用已经取得了 显著的成果。例如,卷积神经网络(CNN) 被广泛用于图像分类、目标检测和人脸识别 等任务。通过训练神经网络,可以自动提取 图像中的特征,并基于这些特征进行分类或 检测目标。这大大提高了图像识别的准确性
1957年,心理学家Frank Rosenblatt提出了感知机模 型,它可以识别一些简单的
模式,但无法处理异或 (XOR)问题。
1974年,Paul Werbos提出 了反向传播算法,解决了感 知机模型无法学习异或问题
的问题。
2006年,加拿大多伦多大学 的Geoffrey Hinton等人提出 了深度学习的概念,开启了
权重更新是根据损失函数的梯度调整权重的过程,通过不断 地迭代优化,使神经网络逐渐接近最优解。权重更新的过程 通常使用梯度下降法或其变种进行。
03
神经网络的类型
前馈神经网络
总结词
前馈神经网络是最基本的神经网络类型,信息从输入层开始,逐层向前传递,直 至输出层。
详细描述
前馈神经网络中,每一层的神经元只接收来自前一层的输入,并输出到下一层。 这种网络结构简单,易于训练和实现,常用于模式识别、分类和回归等任务。
利用神经网络进行游戏AI的决 策和策略制定,如AlphaGo
等。
02
神经网络的基本概念
神经元模型
总结词
神经元是神经网络的基本单元,模拟 生物神经元的行为。
详细描述
神经元模型通常包括输入信号、权重 、激活函数和输出信号等部分。输入 信号通过权重进行加权求和,经过激 活函数处理后得到输出信号。
激活函数
06
神经网络的应用实例
图像识别
总结词
图像识别是神经网络应用的重要领域之一, 通过训练神经网络识别图像中的物体、人脸 等特征,可以实现高效的图像分类、目标检 测等功能。
详细描述
神经网络在图像识别领域的应用已经取得了 显著的成果。例如,卷积神经网络(CNN) 被广泛用于图像分类、目标检测和人脸识别 等任务。通过训练神经网络,可以自动提取 图像中的特征,并基于这些特征进行分类或 检测目标。这大大提高了图像识别的准确性
《神经网络理论基础》课件
![《神经网络理论基础》课件](https://img.taocdn.com/s3/m/3d56be7342323968011ca300a6c30c225901f0b3.png)
2 发展历程
神经网络起源于20世纪40年代,经过多年的发展和研究,如今广泛应用于人工智能、图 像识别、语音识别等领域。
神经元和神经网络模型
神经元
神经网络的基本单位,接收输入信号,经过处理后 产生输出信号。
神经网络模型
由多个神经元组成的网络结构,具有输入层、隐藏 层和输出层,用于解决复杂的问题。
前馈神经网络与反馈神经网络
《神经网络理论基础》 PPT课件
本课件将介绍神经网络的定义和发展历程,神经元和神经网络模型,前馈神 经网络与反馈神经网络,深度神经网络和卷积神经网络,循环神经网络和长 短期记忆网络,神经网络的训练与优化算法,以及神经网络的应用和前景展 望。
神经网络的定义和发展历程
1 定义
神经网络是由大量相互连接的处理单元(神经元)组成的计算模型,模仿生物神经系统 的运行机制。
循环神经网络和长短期记忆网络
循环神经网络
具有反馈连接的神经网络,可以处理序列数据,如自然语言处理和语音合成。
长短期记忆网络
一种特殊的循环神经网络,通过门控单元来记忆长期依赖关系,适用于处理时间序列数据。
神经网络的训练与优化算法
1 训练
使用反向传播算法根据输入和期望输出调整神经网络的权重和偏差,使其逐渐学习到正 确的映射关系。
2 优化算法
常用的优化算法包括梯度下降、Adam、RMSprop等,用于加速神经网络的训练和提高性 能。
神经网络的应用和前景展望
应用领域
神经网络被广泛应用于人工智能、自动驾驶、金融 预测、医学影像分析等领域。
前景展望
随着技术的不断发展,神经网络在未来将继续发挥 重要作用,带来更多创新和突破。
1
前馈神经网络
信息只能单向传递,无反馈循环,适用于静态问题的处理。
神经网络起源于20世纪40年代,经过多年的发展和研究,如今广泛应用于人工智能、图 像识别、语音识别等领域。
神经元和神经网络模型
神经元
神经网络的基本单位,接收输入信号,经过处理后 产生输出信号。
神经网络模型
由多个神经元组成的网络结构,具有输入层、隐藏 层和输出层,用于解决复杂的问题。
前馈神经网络与反馈神经网络
《神经网络理论基础》 PPT课件
本课件将介绍神经网络的定义和发展历程,神经元和神经网络模型,前馈神 经网络与反馈神经网络,深度神经网络和卷积神经网络,循环神经网络和长 短期记忆网络,神经网络的训练与优化算法,以及神经网络的应用和前景展 望。
神经网络的定义和发展历程
1 定义
神经网络是由大量相互连接的处理单元(神经元)组成的计算模型,模仿生物神经系统 的运行机制。
循环神经网络和长短期记忆网络
循环神经网络
具有反馈连接的神经网络,可以处理序列数据,如自然语言处理和语音合成。
长短期记忆网络
一种特殊的循环神经网络,通过门控单元来记忆长期依赖关系,适用于处理时间序列数据。
神经网络的训练与优化算法
1 训练
使用反向传播算法根据输入和期望输出调整神经网络的权重和偏差,使其逐渐学习到正 确的映射关系。
2 优化算法
常用的优化算法包括梯度下降、Adam、RMSprop等,用于加速神经网络的训练和提高性 能。
神经网络的应用和前景展望
应用领域
神经网络被广泛应用于人工智能、自动驾驶、金融 预测、医学影像分析等领域。
前景展望
随着技术的不断发展,神经网络在未来将继续发挥 重要作用,带来更多创新和突破。
1
前馈神经网络
信息只能单向传递,无反馈循环,适用于静态问题的处理。
《神经网络》PPT幻灯片PPT
![《神经网络》PPT幻灯片PPT](https://img.taocdn.com/s3/m/d7570caf852458fb760b5660.png)
➢因此,类神经网络在选取启动函数时,不能够使用 传统的线性函数,通常来说会选择兼具正向收敛与 负向收敛的函数。
20
2.阶梯(step)启动函数的一般形式:
f Ij
,Ij 0 ,Ij 0
阶梯启动函数又称阈值(threshold)启动函
数。当 时1,,得0到
1
f Ij 0
,Ij 0 ,Ij 0
输入层只从外部环境接收信息,该层的每 个神经元相当于自变量,不完成任何计算 ,只为下一层传递信息。
输出层生成最终结果,为网络送给外部系 统的结果值。
13
隐藏层介于输入层和输出层之间,这些层 完全用于分析,其函数联系输入层变量和 输出层变量,使其更拟合(fit)资料。
隐藏层的功能主要是增加类神经网络的复 杂性,以能够模拟复杂的非线性关系。
一个神经元 j,有阈值,从上一层连接的 神经元得到n个输入变量X,每个输入变 量附加一个链接权重w。
输入变量将依照不同权重加以合并(一般 是加权总和),链接成组合函数( combination function),组合函数的值称 为电位(potential);然后,启动(转换 、激活、赋活)函数(activation function) 将电位转换成输出信号。
隐藏层的多少要适当,过多容易过度拟合 。
一层加权神经元的网络称单层感知器,多 层加权神经元的网络称多层感知器( multi-layer perceptrons)。
14
神经网络的形式:
一个 输出 元的 两层 神经 网络
15
一 个输 出元 的三 层神 经网 络
16
多个输出元的三层神经网络
17
三、神经元的结构
类神经网络可以处理连续型和类别型的数 据,对数据进行预测。
20
2.阶梯(step)启动函数的一般形式:
f Ij
,Ij 0 ,Ij 0
阶梯启动函数又称阈值(threshold)启动函
数。当 时1,,得0到
1
f Ij 0
,Ij 0 ,Ij 0
输入层只从外部环境接收信息,该层的每 个神经元相当于自变量,不完成任何计算 ,只为下一层传递信息。
输出层生成最终结果,为网络送给外部系 统的结果值。
13
隐藏层介于输入层和输出层之间,这些层 完全用于分析,其函数联系输入层变量和 输出层变量,使其更拟合(fit)资料。
隐藏层的功能主要是增加类神经网络的复 杂性,以能够模拟复杂的非线性关系。
一个神经元 j,有阈值,从上一层连接的 神经元得到n个输入变量X,每个输入变 量附加一个链接权重w。
输入变量将依照不同权重加以合并(一般 是加权总和),链接成组合函数( combination function),组合函数的值称 为电位(potential);然后,启动(转换 、激活、赋活)函数(activation function) 将电位转换成输出信号。
隐藏层的多少要适当,过多容易过度拟合 。
一层加权神经元的网络称单层感知器,多 层加权神经元的网络称多层感知器( multi-layer perceptrons)。
14
神经网络的形式:
一个 输出 元的 两层 神经 网络
15
一 个输 出元 的三 层神 经网 络
16
多个输出元的三层神经网络
17
三、神经元的结构
类神经网络可以处理连续型和类别型的数 据,对数据进行预测。
神经网络基础PPT课件
![神经网络基础PPT课件](https://img.taocdn.com/s3/m/ca4b2ab3aff8941ea76e58fafab069dc502247c6.png)
AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。
神经网络理论基础PPT课件
![神经网络理论基础PPT课件](https://img.taocdn.com/s3/m/f011ad404b7302768e9951e79b89680202d86b62.png)
神经网络的复兴
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
20世纪80年代,随着反向传播算法的提出,神经网络重 新受到关注。反向传播算法使得神经网络能够通过学习来 调整权重,从而提高了网络的性能。
感知机模型
1957年,心理学家Frank Rosenblatt提出了感知机模型 ,它是最早的神经网络模型之一,用于解决模式识别问题 。
深度学习的兴起
神经网络的模型
总结词
神经网络的模型是由多个神经元相互连接而成的计算模型,它能够模拟生物神经系统的 复杂行为。
详细描述
神经网络模型可以分为前馈神经网络、反馈神经网络和自组织神经网络等类型。前馈神 经网络中,信息从输入层逐层传递到输出层,每一层的输出只与下一层相连。反馈神经 网络中,信息在神经元之间来回传递,直到达到稳定状态。自组织神经网络能够根据输
入数据的特性进行自组织、自学习。
神经网络的参数
总结词
神经网络的参数是用于调整神经元之间连接强度的可训练参 数,它们在训练过程中不断优化以实现更好的性能。
详细描述
神经网络的参数包括权重和偏置等。权重用于调整输入信号 对激活函数的影响程度,偏置则用于调整激活函数的阈值。 在训练过程中,通过反向传播算法不断调整参数,使得神经 网络能够更好地学习和逼近目标函数。
作用
误差函数用于指导神经网络的训练, 通过最小化误差函数,使网络逐渐 逼近真实数据。
梯度下降法
基本思想
梯度下降法是一种优化算法,通 过不断调整神经网络的参数,使
误差函数逐渐减小。
计算方法
计算误差函数的梯度,并根据梯 度信息更新网络参数。
优化策略
采用不同的学习率或适应学习 率策略,以加快训练速度并避免
2006年,深度学习的概念被提出,神经网络的层次开始 增加,提高了对复杂数据的处理能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
中国石人油 脑神经系统的结构与特征
(2)高度并行性 人脑大约有1011~1012个神经元,每个神经元
又有103~105个突触,即每个神经元都可以和其他 103~105个神经元相连,这就提供了非常巨大的存 储容量和并行度。例如,人可以非常迅速地识别出 一幅十分复杂的图像。
13
中国(石油3)分布式功能 人们通过对脑损坏病人所做的神经心理学研究,
细胞体是神经元的主体,胞体和树突表面是接受的 其他神经元传来的信号的主要部位。
8
中国石油
神经元中的细胞体相当于一个初等处理器, 它对来自其他各个神经元的信号进行总体求和, 并产生一个神经输出信号。由于细胞膜将细胞体 内外分开,因此,在细胞体的内外具有不同的电 位,通常是内部电位比外部电位低。细胞膜内外 的电位之差被称为膜电位。在无信号输入时的膜 电位称为静止膜电位。当一个神经元的所有输入 总效应达到某个阈值电位时,该细胞变为活性细 胞(激活),其膜电位将自发地急剧升高产生一 个电脉冲。这个电脉冲又会从细胞体出发沿轴突 到达神经末梢,并经与其他神经元连接的突触, 9
14
中国石油
(4)容错功能 容错性是指根据不完全的、有错误的信息仍
能做出正确、完整结论的能力。大脑的容错性是非 常强的。例如,我们往往能够仅由某个人的一双眼 睛、一个背影、一个动作或一句话的音调,就能辨 认出来这个人是谁。
15
中国石油
(5)联想功能 人脑不仅具有很强的容错功能,还有联想
功能。善于将不同领域的知识结合起来灵活运用, 善于概括、类比和推理。例如,一个人能很快认 出多年不见、面貌变化较大的老朋友。
中国石油
神经网络
1
中国石油
人工神经网络( ANN,Artificial Neural Network) 也简称为神经网络(NN),是由大量的简单处理单元 经广泛并行互连形成的一种网络系统。它是对人脑系统 的简化、抽象和模拟,具有人脑功能的许多基本特征。
目前,人工神经网络已成为许多高科技领域的一个 热门话题。在人工智能领域,它已实际应用于决策支持、 模式识别、专家系统、机器学习等许多方面。
信号为离散的电脉冲信号,而细胞膜电位的变化为连续的电位信 号。这种在突触接口处进行的“数/模”转换,是通过神经介质 以量子化学方式实现的如下过程:电脉冲→神经化学物质→膜电 位
(4)神经纤维传导速率 神经冲动沿神经纤维传导的速度在1m/s~150m/s之间。其
速度差异与纤维的粗细、髓鞘(包绕在神经元的轴突外部
2
中国石油
由于神经网络是多学科交叉的产物,各个相 关的学科领域对神经网络都有各自的看法,因此, 关于神经网络的定义,在科学界存在许多不同的 见解。目前使用得较广泛的是T.Koholen(芬兰 赫尔辛基技术大学 )的定义,即"神经网络是由 具有适应性的简单单元组成的广泛并行互连的网 络,它的组织能够模拟生物神经系统对真实世界 物体所作出的交互反应。"
没有发现大脑中的哪一部分可以决定其余所有各部 分的活动,也没有发现在大脑中存在有用于驱动和 管理整个智能处理过程的任何中央控制部分。人类 大脑的各个部分是协同工作、相互影响的,并没有 哪一部分神经元能对智能活动的整个过程负有特别 重要的责任。
可见,在大脑中,不仅知识的存储是分散的, 而且其控制和决策也是分散的。因此,大脑是一种 分布式系统。
所谓功能性接触,突触的信息传递特性可变, 因此细胞之间的连接强度可变,这是一种柔性连接, 也称为神经元结构的可塑性,这正是神经元之间传递 信息的奥秘之一。
7
中国石油
树突是指由细胞体向外延伸的除轴突以外的其他所 有分支。不同的神经元其树突的数量也不同,长度 较短,但数量很多,它是神经元的输入端,用于接 受从其他神经元的突触传来的信号。
•虽人然神体经神元经的结形构态与各特不相征同,但是都由细胞体和
突起两大部分组成,而突起又分树突和轴突。
5
中国轴石油突是由细胞体向外延伸出的所有纤维中最长的一条 分枝,用来向外传递神经元产生的输出信号。每个神 经元只发出一条轴突,短的仅几个微米,其最大长度 可达1m以上。
6
中国突石油触,在轴突的末端形成了许多很细的分枝,这些分 枝叫神经末梢。每一条神经末梢可以与其他神经元形 成功能性接触,该接触部位称为突触。每个神经元大 约有103~105个突触,换句话说,每个神经元大约与 103~105个其它神经元有连接,正是因为这些突触才 使得全部大脑神经元形成一个复杂的网络结构。
3
中国石油
人脑的基本组成是脑神经细胞,大量脑 神经细胞相互联接组成人的大脑神经网络, 完成各种大脑功能。而人工神经网络则是由 大量的人工神经细胞(神经元)经广泛互连 形成的人工网络,以此模拟人类神经系统的 结构和功能。
了解人脑神经网络的组成和原理,有助 于对人工神经网络的理解。
4
中国石油
人工神经网络概述
的物质,起绝缘作用 )的有无有关。一般来说,有髓鞘的
纤维,其传导速度在100m/s以上,无髓鞘的纤维,其传导速度
可低至每秒数米。
11
中人国石脑油神经系统的结构与特征
(1)记忆和存储功能 人脑神经系统的记忆和处理功能是有机地结合
在一起的。神经元既有存储功能,又有处理功能, 它在进行回忆时不仅不需要先找到存储地址再调出 所存内容,而且还可以由一部分内容恢复全部内容。 尤其是当一部分神经元受到损坏(例如脑部受伤等) 时,它只会丢失损坏最严重部分的那些信息,而不 会丢失全部存储信息。
(2)兴奋与抑制状态 神经元具有兴奋和抑制两种常规的工作状态。当传入冲动 的时空整合结果使细胞膜电位升高,超过动作电位的阈值 时,细胞进入兴奋状态,产生神经冲动。相反,当传入冲 动的时空整合结果使细胞膜电位低于动作电位阈值时,细10
中国石油
(3)脉冲与电位转换 突触界面具有脉冲/电位信号转化功能。沿神经纤维传递的
中国石油
生物神经元的功能与特征 根据神经生理学的研究,生物神经元具有如下重要功能与 特性。(1)时空整合功能 神经元对不同时间通过同一突触传入的神经冲动,具有时 间整合功能。对于同一时间通过不同突触传入入的神经冲动具有时空整合的功能。
中国石人油 脑神经系统的结构与特征
(2)高度并行性 人脑大约有1011~1012个神经元,每个神经元
又有103~105个突触,即每个神经元都可以和其他 103~105个神经元相连,这就提供了非常巨大的存 储容量和并行度。例如,人可以非常迅速地识别出 一幅十分复杂的图像。
13
中国(石油3)分布式功能 人们通过对脑损坏病人所做的神经心理学研究,
细胞体是神经元的主体,胞体和树突表面是接受的 其他神经元传来的信号的主要部位。
8
中国石油
神经元中的细胞体相当于一个初等处理器, 它对来自其他各个神经元的信号进行总体求和, 并产生一个神经输出信号。由于细胞膜将细胞体 内外分开,因此,在细胞体的内外具有不同的电 位,通常是内部电位比外部电位低。细胞膜内外 的电位之差被称为膜电位。在无信号输入时的膜 电位称为静止膜电位。当一个神经元的所有输入 总效应达到某个阈值电位时,该细胞变为活性细 胞(激活),其膜电位将自发地急剧升高产生一 个电脉冲。这个电脉冲又会从细胞体出发沿轴突 到达神经末梢,并经与其他神经元连接的突触, 9
14
中国石油
(4)容错功能 容错性是指根据不完全的、有错误的信息仍
能做出正确、完整结论的能力。大脑的容错性是非 常强的。例如,我们往往能够仅由某个人的一双眼 睛、一个背影、一个动作或一句话的音调,就能辨 认出来这个人是谁。
15
中国石油
(5)联想功能 人脑不仅具有很强的容错功能,还有联想
功能。善于将不同领域的知识结合起来灵活运用, 善于概括、类比和推理。例如,一个人能很快认 出多年不见、面貌变化较大的老朋友。
中国石油
神经网络
1
中国石油
人工神经网络( ANN,Artificial Neural Network) 也简称为神经网络(NN),是由大量的简单处理单元 经广泛并行互连形成的一种网络系统。它是对人脑系统 的简化、抽象和模拟,具有人脑功能的许多基本特征。
目前,人工神经网络已成为许多高科技领域的一个 热门话题。在人工智能领域,它已实际应用于决策支持、 模式识别、专家系统、机器学习等许多方面。
信号为离散的电脉冲信号,而细胞膜电位的变化为连续的电位信 号。这种在突触接口处进行的“数/模”转换,是通过神经介质 以量子化学方式实现的如下过程:电脉冲→神经化学物质→膜电 位
(4)神经纤维传导速率 神经冲动沿神经纤维传导的速度在1m/s~150m/s之间。其
速度差异与纤维的粗细、髓鞘(包绕在神经元的轴突外部
2
中国石油
由于神经网络是多学科交叉的产物,各个相 关的学科领域对神经网络都有各自的看法,因此, 关于神经网络的定义,在科学界存在许多不同的 见解。目前使用得较广泛的是T.Koholen(芬兰 赫尔辛基技术大学 )的定义,即"神经网络是由 具有适应性的简单单元组成的广泛并行互连的网 络,它的组织能够模拟生物神经系统对真实世界 物体所作出的交互反应。"
没有发现大脑中的哪一部分可以决定其余所有各部 分的活动,也没有发现在大脑中存在有用于驱动和 管理整个智能处理过程的任何中央控制部分。人类 大脑的各个部分是协同工作、相互影响的,并没有 哪一部分神经元能对智能活动的整个过程负有特别 重要的责任。
可见,在大脑中,不仅知识的存储是分散的, 而且其控制和决策也是分散的。因此,大脑是一种 分布式系统。
所谓功能性接触,突触的信息传递特性可变, 因此细胞之间的连接强度可变,这是一种柔性连接, 也称为神经元结构的可塑性,这正是神经元之间传递 信息的奥秘之一。
7
中国石油
树突是指由细胞体向外延伸的除轴突以外的其他所 有分支。不同的神经元其树突的数量也不同,长度 较短,但数量很多,它是神经元的输入端,用于接 受从其他神经元的突触传来的信号。
•虽人然神体经神元经的结形构态与各特不相征同,但是都由细胞体和
突起两大部分组成,而突起又分树突和轴突。
5
中国轴石油突是由细胞体向外延伸出的所有纤维中最长的一条 分枝,用来向外传递神经元产生的输出信号。每个神 经元只发出一条轴突,短的仅几个微米,其最大长度 可达1m以上。
6
中国突石油触,在轴突的末端形成了许多很细的分枝,这些分 枝叫神经末梢。每一条神经末梢可以与其他神经元形 成功能性接触,该接触部位称为突触。每个神经元大 约有103~105个突触,换句话说,每个神经元大约与 103~105个其它神经元有连接,正是因为这些突触才 使得全部大脑神经元形成一个复杂的网络结构。
3
中国石油
人脑的基本组成是脑神经细胞,大量脑 神经细胞相互联接组成人的大脑神经网络, 完成各种大脑功能。而人工神经网络则是由 大量的人工神经细胞(神经元)经广泛互连 形成的人工网络,以此模拟人类神经系统的 结构和功能。
了解人脑神经网络的组成和原理,有助 于对人工神经网络的理解。
4
中国石油
人工神经网络概述
的物质,起绝缘作用 )的有无有关。一般来说,有髓鞘的
纤维,其传导速度在100m/s以上,无髓鞘的纤维,其传导速度
可低至每秒数米。
11
中人国石脑油神经系统的结构与特征
(1)记忆和存储功能 人脑神经系统的记忆和处理功能是有机地结合
在一起的。神经元既有存储功能,又有处理功能, 它在进行回忆时不仅不需要先找到存储地址再调出 所存内容,而且还可以由一部分内容恢复全部内容。 尤其是当一部分神经元受到损坏(例如脑部受伤等) 时,它只会丢失损坏最严重部分的那些信息,而不 会丢失全部存储信息。
(2)兴奋与抑制状态 神经元具有兴奋和抑制两种常规的工作状态。当传入冲动 的时空整合结果使细胞膜电位升高,超过动作电位的阈值 时,细胞进入兴奋状态,产生神经冲动。相反,当传入冲 动的时空整合结果使细胞膜电位低于动作电位阈值时,细10
中国石油
(3)脉冲与电位转换 突触界面具有脉冲/电位信号转化功能。沿神经纤维传递的
中国石油
生物神经元的功能与特征 根据神经生理学的研究,生物神经元具有如下重要功能与 特性。(1)时空整合功能 神经元对不同时间通过同一突触传入的神经冲动,具有时 间整合功能。对于同一时间通过不同突触传入入的神经冲动具有时空整合的功能。