2抛物线(二次函数)中的直角三角形
二次函数背景下的直角三角形ppt
BC2 CD2 DB2 DCB 90tan CBD
1 3
x
引例:在平面直角坐标系xOy中,C(0,3)、
B(3,0)、D(1,4)
问题2:若点E在y轴上,以点E、B、D为顶点的
三角形是直角三角形,这样的点E有几y个?
x
引例:在平面直角坐标系xOy中,C(0,3)、
(a 3)2 + a2 2a 3 2 18 a2 (a2 2a)2
x
a2 6a 9 (a2 2a)2 6 a2 2a +9+18=a2 (a2 2a)2
a2 a 6 0
a 2 或 a 3 (舍去)
3
BN CM a2 2a 3 3
3
QN MB
3a 3
x
a2 a 6 0
a 2 或 a 3 (舍去)
Q2 2,5
a2 2a 3
3a
小结:
问题2: 勾股定理
(两点确定,一点在直线上)
问题3: 一线三直角
(两点确定,一点在抛物线上)
y
3 2
x
x 1
M
1,
3 2
x
N 1,0
问题4:正比例函数 与二次函数的图像交与 点F(点F在第一象限),且二次函数图像的对称轴与 正比例函数的图像相交于点M,与x轴相交于点N, 点Q是x轴的正半轴上的一点,如果△OMN与 △OFQ相似,求点Q的坐标.
x
当∠CBQ=90°时,∠2+∠3=90°
∵QN⊥MN,∴∠1+∠2=90°
∴∠1=∠3
二次函数压轴之直角三角形的存在性问题,方法集锦
②
AF BG
BF CG
得
3 m
3
3 (m2 3m)
解得m1 2 7(舍去), m 2 7
C2 (2 7,5 7)
方法一:一线三角构相似
① ②合并
第一种情况
E
设C(m, m2 3m)如图可得AOB : BEC
C
AO BO 得
3
3
BE EC |m2 3m 3| |m|
①
解得m1 2 7, m 2 7
C=900, AC2 CB2 AB2 (m 3)2 (m2 3m)2 m2 (m2 3m 3)2 18
m1
0,
m2
3 2
17
,
m3
3 2
17
C(0, 0),C(3 17 , 2)C(3 17 , 2)
2
2
ቤተ መጻሕፍቲ ባይዱ
方法三:利用勾股定理
设C(m,m2 -3m)A(3,0)B(0,3) AB2 18, AC 2 (m 3)2 (m2 3m)2 BC 2 m2 (m2 3m 3)2
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
如图,抛物线y x2 3x,与x轴交于O、A,直线y=-x+3与y轴交于点B, 与抛物线交于A、D, 问:抛物线上是否存在点P使ABC为直角三角形,并求出P点的坐标
二次函数中三角形问题(含问题详解)
二次函数中的三角形一.与三角形面积例1:如图,已知在同一坐标系中,直线22k y kx =+-与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,(),0,(21x B x A 两点。
C 是抛物线的顶点。
(1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021<⋅x x 。
①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S ∆∆=?如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由。
例2:已知抛物线)1(3)4(2-+---=m x m x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求m 的取值范围;(2)若0<m ,直线1-=kx y 经过点A ,与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式; (3)若A 点在B 点左边,在第一象限内,(2)中所得的抛物线上是否存在一点P ,使直线P A 平分ACD ∆的面积?若存在,求出P 点的坐标;若不存在,请说明理由。
例3.已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。
(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。
A BC DO E x y(第25题图)例4.如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.二.与三角形形状例5. 如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.图2图1例 6.如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.x 图①x 图②x 图③例7. 已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.例8.如图,在直角坐标系中,点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方, 那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)(第25题图)三.二次函数与三角形相似 例9:已知一次函数1243--=x y 的图象分别交x 轴、y 轴于A 、C 两点, (1)求出A 、C 两点的坐标;(2)在x 轴上找出点B ,使ACB ∆∽AOC ∆,若抛物线过A 、B 、C 三点,求出此抛物线的解析式; (3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同速度沿AC 、BA 向C 、A 运动,连结PQ ,使m AP =,是否存在m 的值,使以A 、P 、Q 为顶点的三角形与ABC ∆相似,若存在,求出所有m 的值;若不存在,请说明理由。
【中考数学压轴题专题突破12】二次函数中的直角三角形存在性问题
【中考压轴题专题突破】二次函数中的直角三角形存在性问题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).3.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.参考答案与试题解析1.【分析】(1)直线y=x+1与抛物线交于A 点,则点A(﹣1,0)、点E(0,1),可得出点B、C的坐标分别为:(3,0)、(0,3),用待定系数法求出二次函数解析即可求解;(2)求出CQ和AE的长,可得出CQ=AE,由两直线的解析式k相等可得出CQ 与AE平行;(3)联立直线y=x+1与抛物线的表达式,并解得x=﹣1或2.故点D(2,3),过点P作y轴的平行线交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1),根据面积关系可求出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【解答】(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ ==,CQ的解析式为y=x+3,又∵AE ==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD 于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴===.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2,∴点P(2,3)或(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,同理可得n=2,解得(舍去),.故点P 为.综上可得,点P的坐标为(2,3)或(0,3)或.【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式(包括二次函数解析式,一次函数解析式),三角形面积,全等三角形的判定与性质,等腰直角三角形的判定与性质,坐标与图形的性质,正确进行分类是解题的关键.2.【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x =﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.3.【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.【解答】(1)∵抛物线y=ax2+bx+3与x 轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M (1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S =EF•OB =(﹣m2+3m)×3=﹣(m ﹣)2+.当m =时,S最大=.此时,点E 的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n =﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n =.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.【分析】(1)由对称性先求出点B的坐标,可设抛物线的解析式为y=a(x+3)(x﹣1),将C坐标代入y=a(x+3)(x﹣1)即可;(2)先判断△ABC为直角三角形,分别求出AB,AC,BC的长,由勾股定理的逆定理可证明结论;(3)因为点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,所以BM=BN=t,证四边形PMBN是菱形,设PM与y轴交于H,证△CPN∽△CAB,由相似三角形的性质可求出t的值,CH的长,可得出点P纵坐标,求出直线AC的解析式,将点P纵坐标代入即可;(4)求出直线BC的解析式,如图2,当∠ACF=90°时,点B,C,F在一条直线上,求出直线BC与对称轴的交点即可;当∠CAF=90°时,求出直线AF的解析式,再求其与对称轴的交点即可.【解答】(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c的函数值y相等,∴抛物线的对称轴为x ==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A (﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x ﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a =,解得,a =﹣,∴此抛物线的解析式为y =﹣(x+3)(x﹣1)=﹣x2﹣x +;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC =,∴AB=OA+OB=4,AC ==2,BC ==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC 边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t =,CH =,∴OH=OC﹣CH =﹣=,∴y P =,设直线AC的解析式为y=kx +,将点A(﹣3,0)代入y=kx +,得,k =,∴直线AC的解析式为y =x +,将y P =代入y =x +,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx +,将点B(1,0)代入y=kx +,得,k =﹣,∴直线BC的解析式为y =﹣x +,由(2)知△ABC为直角三角形,∠ACB =90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y =﹣x +中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y =﹣x+n,得,n=﹣3,∴直线AF的解析式为y =﹣x﹣3,在y =﹣x﹣3中,当x=﹣1时,y =﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).【点评】本题考查了待定系数法求解析式,勾股定理,相似三角形的判定与性质,直角三角形的性质等,解题关键是注意分类讨论思想在解题过程中的运用.。
二次函数直角三角形问题
1、已知抛物线与x轴交于A、 B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.由,解得,.∴点A、B的坐标分别为(-3,0),(,0).∴,,.∴,,.〈ⅰ〉当时,∠ACB=90°.由,得.解得.∴当时,点B的坐标为(,0),,,.于是.∴当时,△A BC为直角三角形.〈ⅱ〉当时,∠ABC=90°.2:如图,抛物线与x轴交与A(1,0),B(-3,0)两点,顶点为D。
交Y轴于C,在抛物线第二象限图象上是否存在一点M,使△MBC是以∠BCM为直角的直角三角形,若存在,求出点P的坐标。
若没有,请说明理由抛物线y=-x^2+bx+c与x轴交予A(1,0),B(-3,0)两点,得-1+b+c=0-9-3b+c=0得b=-2,c=3该抛物线的解析式y=-x^2-2x+3点C为(0.3)△ABC的面积为1/2AB*OC=6设在抛物线第二象限图象上存在点M(x0,y0)使△MBC是以∠BCM为直角的直角三角形则x0<0,y0>0y0=-x0^2-2x0+3(1)再由MB^2=MC^2+BC^2得(x0+3)^2+(y0-0)^2=(x0-0)^2+(y0-3)^2+(0+3)^2+(3-0)^2(2)(3)由(1)和(2)可解得y0=3,x0=0或者y0=4,x0=-1又x0<0,y0>0所以y0=4,x0=-1在抛物线第二象限图象上存在点M(-1,4)使△MBC是以∠BCM为直角的直角三角形.3:(2012云南)如图,在平面直角坐标系中,直线交x轴于点P,交y轴于点A.抛物线的图象过点E(-1,0),并与直线相交于A、B两点(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.解答:解:(1)直线解析式为y=x+2,令x=0,则y=2,∴A(0,2),∵抛物线y=x2+bx+c的图象过点A(0,2),E(﹣1,0),∴,解得.∴抛物线的解析式为:y=x2+x+2.(2)∵直线y=x+2分别交x轴、y轴于点P、点A,∴P(6,0),A(0,2),∴OP=6,OA=2.∵AC⊥AB,OA⊥OP,∴Rt△OCA∽Rt△OPA,∴,∴OC=,又C点在x轴负半轴上,∴点C的坐标为C(,0).(3)抛物线y=x2+x+2与直线y=x+2交于A、B两点,令x2+x+2=x+2,解得x1=0,x2=,∴B(,).如答图①所示,过点B作BD⊥x轴于点D,则D(,0),BD=,DP=6﹣=.点M在坐标轴上,且△MAB是直角三角形,有以下几种情况:①当点M在x轴上,且BM⊥AB,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AB,BD⊥x轴,∴,即,解得m=,∴此时M点坐标为(,0);②当点M在x轴上,且BM⊥AM,如答图①所示.设M(m,0),则MD=﹣m.∵BM⊥AM,易知Rt△AOM∽Rt△MDB,∴,即,化简得:m2﹣m+=0,解得:x1=,x2=,∴此时M点坐标为(,0),(,0);(说明:此时的M点相当于以AB为直径的圆与x轴的两个交点)③当点M在y轴上,且BM⊥AM,如答图②所示.此时M点坐标为(0,);④当点M在y轴上,且BM′⊥AB,如答图②所示.设M′(0,m),则AM=2﹣=,BM=,MM′=﹣m.易知Rt△ABM∽Rt△MBM′,∴,即,解得m=,∴此时M点坐标为(0,).综上所述,除点C外,在坐标轴上存在点M,使得△MAB是直角三角形.符合条件的点M有5个,其坐标分别为:(,0)、(,0)、(,0)、(0,)或(0,).4:(2012?河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)抛物线y=﹣x2+x+4中:令x=0,y=4,则 B(0,4);令y=0,0=﹣x2+x+4,解得 x1=﹣1、x2=8,则 A(8,0);∴A(8,0)、B(0,4).△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,﹣4).由A(8,0)、B(0,4),得:直线AC:y=﹣x+4;依题意,知:OE=2t,即 E(2t,0);∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;S=S△ABC+S△PAB=×8×8+×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;∴当t=2时,S有最大值,且最大值为64.(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△PAM若是直角三角形,只能是∠PAM=90°;由A(8,0)、C(0,﹣4),得:直线AC:y=x﹣4;所以,直线AP可设为:y=﹣2x+h,代入A(8,0),得:﹣16+h=0,h=16∴直线AP:y=﹣2x+16,联立抛物线的解析式,得:,解得、∴存在符合条件的点P,且坐标为(3,10).5:(2012?海南)如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.1)∵二次函数图象的顶点为P(4,-4),∴设二次函数的关系式为。
二次函数 直角三角形
二次函数直角三角形二次函数是一种常见的数学模型,其图像呈现出连续的曲线,可以用于描述许多实际问题,如物体的运动轨迹、物体的抛射运动、电子电路等。
而直角三角形是一个三角形中的一种特殊情况,其中一个角为90度。
在这篇文章中,我们将讨论二次函数与直角三角形之间的关系,以及如何利用二次函数和三角函数求解直角三角形问题。
一、二次函数二次函数是一种以自变量x的二次多项式的形式表示的函数,其一般式为:y=ax²+bx+c,其中a、b、c为常数,且a≠0。
二次函数的图像通常呈现出抛物线状,其开口向上或向下取决于系数a的正负性。
当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
二、二次函数与直角三角形之间的关系二次函数可以用于描述许多物理问题,如自由落体运动、抛体运动等。
这些物理问题中通常包含有物体的高度、速度、加速度等数值。
而这些数值往往与直角三角形有直接关系。
例如,在自由落体运动中,当一个物体从高度h自由落下时,其高度与时间的关系可以表示为二次函数y=-gt²/2 + h,其中g为重力加速度,t为时间。
同时,当物体与地面碰撞时,其速度可以表示为v=gt,即与时间t存在线性关系。
这些物理问题中的二次函数常常与直角三角形有关,我们可以将物体高度与时间关系中的高度看作直角三角形中的斜边,将时间看作直角三角形中的一条直角边,将落地时的高度看作直角三角形中的另一条直角边。
这样,我们就可以将二次函数转化为三角函数的形式,利用三角函数求解直角三角形的问题。
三、利用三角函数求解直角三角形的问题在直角三角形中,我们通常会用三角函数来计算三角形的各边和角度的大小。
其中最常用的三角函数包括正弦函数、余弦函数和正切函数。
通过利用三角函数可以快速地求解直角三角形的各项参数,如角度、斜边、直角边以及三角形的面积等。
下面是利用三角函数求解直角三角形的常用公式:1.正弦定理:a/sin(A)=b/sin(B)=c/sin(C)。
专题06 二次函数中三角形存在性问题(解析版)--2023 年中考数学压轴真题汇编
挑战2023年中考数学解答题压轴真题汇编专题06二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×∵S△ABD4×4=﹣t2﹣4t=﹣(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△OPG+S△EPG∴S△OPE=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y 轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M 1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M 4(1,1).13.(2023•三亚一模)如图,抛物线y =ax 2+3x +c (a ≠0)与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C (0,8),顶点为D ,连接AC ,CD ,DB ,直线BC 与抛物线的对称轴l 交于点E .(1)求抛物线的解析式和直线BC 的解析式;(2)求四边形ABDC 的面积;(3)P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =S △ABC 时,求点P 的坐标;(4)在抛物线的对称轴l 上是否存在点M ,使得△BEM 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+3x +c (a ≠0)过点A (﹣2,0)和C (0,8),∴,解得,∴抛物线的解析式为y =﹣x 2+3x +8.令y =0,得.解得x 1=﹣2,x 2=8.∴点B 的坐标为(8,0).设直线BC 的解析式为y =kx +b .把点B (8,0),C (0,8)分别代入y =kx +b ,得,解得,∴直线BC 的解析式为y =﹣x +8.(2)如图1,设抛物线的对称轴l 与x 轴交于点H .∵抛物线的解析式为,∴顶点D 的坐标为.∴S 四边形ABDC =S △AOC +S 梯形OCDH +S △BDH ===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).41。
抛物线中直角三角形存在性问题(勾股定理与K值法)
抛物线中直角三角形存在性问题(勾股定理与K值法)[例]已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.【解答】解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),∴对称轴为直线x=﹣2,顶点D的坐标为(﹣2,﹣9a),令x=0,得y=﹣5a,∴C点的坐标为(0,﹣5a).依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC=(DE+OA)•OE﹣DE•CE﹣OA•OC=(2+5)•9a﹣×2×4a﹣×5×5a=15a,而S△ABC=AB•OC=×6×5a=15a,∴S△ABC:S△ACD=15a:15a=1:1.注:作铅垂线求S△ACD也是可以的(2)方法一:如解答图,过点D作DE⊥y轴于E在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=﹣2与x轴交于点F,则AF=3,在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.∵∠ADC=90°,∴△ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=,∵a>0,∴a=,∴抛物线的解析式为:y=(x+5)(x﹣1)=x2+x﹣.方法二:(K 值法)结论1:直线1111:l y k x b =+与直线2222:l y k x b =+垂直⇔121k k =-; 结论2:点11(,)A x y 、22(,)B x y (12x x ≠)分别是直线:l y kx b =+上两个不同的点,则2121y y k x x -=-.(证明:11y kx b =+……①22y kx b =+……②, ②-①得,2121()y y k x x -=-,2121y y k x x -=-) 解:90932(5)3AD a a k a ---===----,9(5)42202CD a a a k a ----===---, ∵∠ADC =90°,∴1AD CD k k =-,即23261a a a -⨯=-=-,12a a ==. ∴抛物线的解析式为:y =(x +5)(x ﹣1)=x 2+x ﹣. 练习.已知抛物线c bx x y ++-=221与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0).(1)求抛物线的解析式; (2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(3)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.。
中考复习二次函数中 等腰三角形,直角三角形,平行 四边形的存在问题(图片版 25PPT)
∴所求抛物线的表达式为 y= x2- x-1;
满足条件的 P 为 P1(4, )、P2(-4,7)、P3(2,-1).
5(面积最值)已知抛物线 的图象与 x轴交于点A(3,0) 和点 C,与y 轴交于点B(0,3) 。 (1)求抛物线的解析式。 (2)在抛物线的对称轴上找一点 ,使得点 到点 、 的距离之和 最小,并求出点 的坐标。 (3)在第一象限的抛物线上,是否存在一点 ,使得 的面积最大? 若存在,求出点 的坐标;若不存在,请说明理由。
三、平行四边形的存在问题分类讨论 1. 假设结论成立; 2. 找点:探究平行四边形的存在性问题,一般是已知两定点求未知点坐标,此时可以 分两种情况,分别以这两点所构成的线段为边和对角线来讨论:①以这两点所构成 线段为边时,可以利用平行四边形对边平行且相等,画出符合题意的图形;②以这 两点所构成线段为对角线时,则该线段的中点为平行四边形对角线的交点,结合抛 物线的对称性,画出符合题意的图形; 3. 建立关系式,并计算. 根据以上分类方法画出所有的符合条件的图形后,可以利用 平行四边形的性质进行计算,也可以利用抛物线的对称性、相似三角形或直角三角 形的性质进行计算,要具体情况具体分析,有时也可以利用直线的解析式联立方程 组,由方程组的解为交点坐标的方法求解.
(1)
(2)
(等腰三角形)3、如图,点 A在 x轴上,OA=4 ,将线段 OA绕点 O顺时针旋转120度 至OB 的位置。 (1)求点B 的坐标。 (2)求经过点A 、O 、B 的抛物线的解析式。 (3)在此抛物线的对称轴上,是否存在点P ,使得以 点 P、O 、B 为顶点的三角形是等腰三角形?若存在, 求点P 的坐标;若不存在,说明理由。
面积最值
面积最值
面积最值
不积跬步 无以至千里, 不积小流无以 成江海.
与抛物线有关的两个重要三角形
与抛物线有关的两个重要三角形刘伟 重庆市北碚区江北中学(400714)二次函数是初等函数中最为重要的一个函数,其图象抛物线,进一步加强了代数与几何的联系,其中蕴含的数学思想和方法,对学生观察问题、研究问题、解决问题是十分有益的。
二次函数的图象抛物线与坐标轴交点构成的有关线段、三角形面积等代数与几何综合问题,是历年中考数学压轴题的重点和热点。
抛物线c bx ax y ++=2,当△=b 2-4ac >0时,抛物线与x 轴必有两个交点为)0,(1x A 、)0,(2x B ;当0=x 时,抛物线与y 轴相交于点C (0,c )。
设抛物线的顶点为P ,此时我们得到与抛物线有关的两个重要三角形:△ABC 与△ABP 。
那么这两个三角形的面积、形状与抛物线的系数a,b,c, 有怎样的内在联系呢?下面就此问题作如下探讨:一、关于△ABC∵抛物线与x 轴的两个交点为)0,(1x A 、)0,(2x B ,则02=++c bx ax 。
根据一元二次方程根与系数的关系有:ac x x a b x x =-=+2121, 所以A 、B 两点间的距离.4444)()(22222121221212aa acb a ac b a c a b x x x x x x x x AB ∆=-=-=⨯-⎪⎭⎫ ⎝⎛-=-+=-=-= 即 aAB ∆= …………………………………………(1) 这就是抛物线与x 轴的两个交点之间的距离公式。
而|OC|=|y c |=|c|, 所以S △ABC =.212121∆⋅=⋅∆⋅=⋅a c c a OC AB 即 S △ABC =.2∆⋅ac ……………………………………(2) 这就是抛物线与两坐标轴交点构成三角形的面积公式。
二、关于△ABP由抛物线的对称性可知,它的形状、大小由P ,A ,B 三点坐标确定。
由(1)知:aAB ∆=. 设D 是抛物线对称轴与x 轴的交点,则|PD|=|y p |=.4442aa b ac ∆=- 设∠PAB=α,在Rt △PAD 中,..4:,21242ααtg a a AD PD tg =∆∆=∆⋅∆==平方整理得 于是我们得到:①当α=600时,△ABP 为等边三角形,此时α24tg =∆02604tg ==12;②当α=450时,△ABP 为等腰直角三角形,此时α24tg =∆02454tg ==4。
二次函数压轴题之直角三角形
九年级上册《二次函数》
泗水县洙泗初级中学 董显锋
学习目标:
1.掌握二次函数直角三角形的求法.
2.灵活应用解题技巧解决问题.
考点:二次函数与直角三角形
解法: 分类讨论:直角边,斜边;利用勾
股定理或是三角形相似求解。
如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0), B(-2,0),与y轴交于点C. (1)求该抛物线的解析式; (2)M为第一象限内抛物线上一动点,点M在何处时,△ACM 的面积最大;
AP22= CP22+ AC2
解方程得出P2(1,9
O
P4
②当AC为斜边时,有两种情况,即 P3 ,P4 。设P3(1,y1) 利用勾股定 理分别求出AP3,AC,CP3,最后利 用公式
AP32+CP32= AC2 解方程得出
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直 角三角形?若存在,请求出所有可能点P的坐标;若不存在,请 说明理由.
C
M
分析(1)分别把A、B两点代入解析 式求解m、n,得m=2,n=8.
B
DA
ON
(2)过M作x轴的垂线,与x轴交于点N, 与直线AB交于点D;设出M、D点坐标, 表示出DM的长度,则△1 ACM的面积可 以表示为DM·OA· 2 所以当DM最大时三角形面积最大。
C
B
E
O
(3)分类讨论:①当AC为直角边且 ∠A=900时,在X轴下边有一个交点 P1。设P1(1,y)利用勾股定理分别 A 求出AP1,AC,CP1,最后利用公式
CP12= AP12+ AC2
P1
解方程得出P1(1,-1.5 )
二次函数与直角三角形有关的问题
二次函数的综合——与直角三角形有关的问题一.知识回顾(一)证明直角三角形(或直角)的定理:1.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2, 那么这个三角形是直角三角形;两腰的夹角叫做顶角,腰和底边 的夹角叫做底角.2.半圆(或直径)所对的圆周角是直角. (二)与直角三角形(或直角)有关的线段关系:1. 勾股定理:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2 ;2. 辅助线构造“一线三垂直”相似三角形模型(如下图),对应边的比相等.二.例题解析例1.如图,在平面直角坐标系xOy 中,抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为D ,连接BC 、CD 、BD .证明:△BCD 是直角三角形. 解:x =0时,y =3;y =0时,x 1=-1,x 2=3; ∴C 为(0,3),点B 为(3,0).∵y =-x 2+2x +3=-(x -1)2+4,∴抛物线的顶点D 为(1,4),方法一:∵BC 2=(3-0)2+(0-3)2=18,CD 2=(1-0)2+(4-3)2=2,BD 2=(3-1)2+(0-4)2=20, ∴BC 2+CD 2=BD 2,即∠DCB =90°,△BCD 是直角三角形.方法二:过点D 做DE ⊥y 轴于点E , 则DE =CE =1,OB =OC =3,∴∠DCE =∠BCO =45°,即∠BCD =90°,△BCD 是直角三角形.方法三:过点D 做DE ⊥y 轴于点E ,则DE =CE =1,OB =OC =3,∴CE DEBO CO =,又∵∠CED =∠BOC =90°,∴△CED ∽△BOC ,∠ECD =∠OBC , 而∠OBC+∠OCB =90°,∴∠BCD =180°-(∠ECD+∠OCB )=90°, △BCD 是直角三角形.已知三个顶点判断直角三角的方法:(1) 用勾股定理逆定理证明;(2)构造“一线三垂直”相似证明;(3)根据坐标判断某些特殊角,求出直角.交于点C ,点E 是抛物线对称轴上一点,若△ACE 是直角三角形,求出点E 的坐标. 解:x =0时,y =3,y =0时,x 1=-1,x 2=3; ∴C 为(0,3),点A 为(-1,0). ∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的的对称轴为直线x =1. 设点E 的坐标为(1,a ), 方法一:AC 2=[0-(-1)]2+(3-0)2=10, EA 2=[1-(-1)]2+(a -0)2=a 2+4, CE 2=(1-0)2+(a -3)2=a 2-6a +10, 若∠CAE =90°,则CE 2=AC 2+EA 2, 即a 2-6a +10=10+a 2+4,解得:a =-32,点E 为(1,-32); 若∠ACE =90°,则AE 2=AC 2+CE 2,即a 2+4=10+a 2-6a +10,解得:a =38,点E 为(1,38);若∠CEA =90°,则AC 2=CE 2+EA 2,即10=a 2-6a +10+a 2+4,解得:a 1=1,a 2=2,点E 为(1,1)或(1,2);综上所述,点E 为(1,-32),(1,38),(1,1)或(1,2).方法二:若∠CAE =90°,过点A 作直线l //y 轴,分别过点C 、点E 作CM ⊥l 于点M ,EN ⊥l 于点N , 可证△AMC ∽△ENA , ∴MA NECM NA =,即3)1(11−−=−a , 解得:a =-32,∴点E 为(1,-32);若∠ACE =90°,过点C 作直线l //x 轴,分别过点A 、点E 作AM ⊥l 于点M ,EN ⊥l 于点N , 可证△AMC ∽△CNE ,∴AMCNMC NE =,即3113=−a ,解得:a =38,∴点E 为(1,38); 若∠AEC =90°,过点E 作直线l //y 轴,分别过点A 、点C 作AM ⊥l 于点M ,CN ⊥l 于点N ,可证△AME ∽△ENC ,∴EN AM NC ME =,即aa −=321, 解得:a 1=1,a 2=2,点E 为(1,1)或(1,2); 综上所述,点E 为(1,-32),(1,38),(1,1)或(1,2). 直角三角形已知两个顶点,求第三个顶点坐标的方法:(1)按直角顶点分类(“一圆两垂直”);(2)用勾股定理或构造“一线三垂直”相似列方程计算.交于点C ,连接BC ,点M ,N 分别是线段AB ,BC 上的动点,且AM =BN ,连接MN .当△BMN 是直角三角形时,求点M 的坐标. 方法一:解:x =0时,y =3;y =0时,x 1=-1,x 2=3; ∴A 为(-1,0),B 为(3,0),C 为(0,3). 设点M 坐标为(m ,0),∴BN =AM =m -(-1)=m +1,BM =3-m , ∵OB =OC =3,∠BOC =90°, ∴∠CBO =∠BCO =45°. 若∠MNB =90°, △BMN ∽△BCO ,则BN BM 2=,即()123+=−m m ,解得524−=m , ∴点M 的坐标为(524−,0); 若∠NMB =90°,△BMN ∽△BOC ,则BM BN 2=, 即()m m −=+321,解得247−=m ,∴点M 的坐标为(247−,0);综上所述,点M 坐标为(524−,0)或(247−,0).方法二:解:x =0时,y =3;y =0时,x 1=-1,x 2=3; ∴A 为(-1,0),B 为(3,0),C 为(0,3). ∴直线BC 的解析式为y =-x +3, ∵OB =OC =3,∠BOC =90°, ∴∠CBO =∠BCO =45°. 设点A M =BN=m ,过点N 作NG ⊥x 轴于点G , 在Rt △BNG 中,m BN BG NG 2222===, ∴点M 为(m -1,0),N 为(m 223−,m 22), ∴BM 2=(3-m +1)2=m 2-8m +16, BN 2=2222m =m 2, MN 2=22222231+ +−−m m m=162482222+−−+m m m m , 若∠MNB =90°,则MN 2+BN 2=MB 2,G即162482222+−−+m m m m +m 2=m 2-8m+16, 解得m 1=0(舍去),m 2=424−, ∴点M 的坐标为(524−,0); 若∠NMB =90°, 则MN 2+BM 2=NB 2,即162482222+−−+m m m m +m 2-8m+16=m 2, 解得m 1=4(舍去),m 2=248−, ∴点M 的坐标为(247−,0);综上所述,点M 坐标为(524−,0)或(247−,0).直角三角形已知一个顶点,另两个点伴随运动,求动点坐标的方法: (1)按直角顶点分类;(2)用勾股定理或相似列方程计算.三.方法总结:四.变式训练:1.如图,已知抛物线经过原点O ,顶点为A (1,1),且与直线y =x ﹣2交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求证:△ABC 是直角三角形.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)分别过A 、C 两点作x 轴的垂线,交x 轴于点D 、E 两点,结合A 、B 、C 三点的坐标可求得∠ABO =∠CBO =45°,可证得结论;解:(1)∵顶点坐标为(1,1), ∴设抛物线解析式为y =a (x ﹣1)2+1, 又抛物线过原点,∴0=a (0﹣1)2+1,解得a =﹣1, ∴抛物线解析式为y =﹣(x ﹣1)2+1, 即y =﹣x 2+2x ,联立抛物线和直线解析式可得,解得或,∴B (2,0),C (﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形.2.如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,,,(m﹣2)2(m﹣6)(m+2)=﹣16(m+2)(m﹣2),(m+2)(m﹣2)[(m﹣2)(m﹣6)+16]=0,∴m+2=0或m﹣2=0,或(m﹣2)(m﹣6)+16=0(无解)解得m=2或﹣2(不符合题意舍去),∴点E的坐标E(6,﹣1)或E(10,﹣13).3.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标.【分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=∠OCB,根据相似三角形的判定方法,当=时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即=;当=时,△CMN∽△CBO,于是有∠CNM=∠COB=90°,即=,然后分别求出m的值即可得到M点的坐标;解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线解析式为y=﹣x2+x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC===5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m =,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,).4.如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A 的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【分析】(1)先根据t=2可得点A(﹣2,2),因为B在直线l1上,所以设B(x,x+1),利用y=0代入y=x+1可得G点的坐标,在Rt△ABG中,利用勾股定理列方程可得点B 的坐标;(2)先把(7,4)代入s=中计算得b的值,计算在﹣1<t<5范围内图象上一个点的坐标值:当t=2时,根据(1)中的数据可计算此时s=,可得坐标(2,),代入s=a(t+1)(t﹣5)中可得a的值;解:(1)如图1,连接AG,当t=2时,A(﹣2,2),设B(x,x+1),在y=x+1中,当x=0时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2)2+(x+1﹣2)2+x2+(x+1﹣1)2=(﹣2)2+(2﹣1)2,解得:x1=0(舍),x2=﹣,∴B(﹣,);(2)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(﹣2,1),∵D(﹣2,﹣1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1﹣1)2+(x+2)2+(x+1+1)2=22,解得:x1=﹣1,x2=﹣2(舍),∴B(﹣1,0),即B在x轴上,∴AB==,AC==2,∴S△ABC===2;②当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(﹣2,t),D(﹣2,﹣1),∴(x+2)2+(x+1﹣t)2=(x+2)2+(x+1+1)2,(x+1﹣t)2=(x+2)2,x+1﹣t=x+2或x+1﹣t=﹣x﹣2,解得:t=﹣1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(﹣2)2+(t﹣3)2+x2+(x+1﹣3)2=(x+2)2+(x+1﹣t)2,把t=2x+3代入得:x2﹣3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(﹣2,9),B(3,4),∴AC==2,BC==,∴S△ABC===10;当x=0时,如图6,此时,A(﹣2,3),AC=2,BC=2,∴S△ABC===2.。
二次函数中的等腰直角三角形问题
二次函数中的等腰直角三角形问题1.如图,抛物线$y=ax^2+bx+2$交$x$轴于点$A(-3,0)$和点$B(1,0)$,交$y$轴于点$C$。
1) 求这个抛物线的函数表达式。
2) 点$D$的坐标为$(-1,0)$,点$P$为第二象限内抛物线上的一个动点,求四边形$ADCP$面积的最大值。
3) 点$M$为抛物线对称轴上的点,问:在抛物线上是否存在点$N$,使$\triangle MNO$为等腰直角三角形,且$\angle MNO$为直角?若存在,请直接写出点$N$的坐标;若不存在,请说明理由。
2.如图,抛物线$y=ax^2+bx+3$与坐标轴分别交于点$A(-3,0)$,$B(1,0)$,$C$,点$P$是线段$AB$上方抛物线上的一个动点。
1) 求抛物线解析式。
2) 当点$P$运动到什么位置时,$\triangle PAB$的面积最大?3) 过点$P$作$x$轴的垂线,交线段$AB$于点$D$,再过点$P$作$PE\parallel x$轴交抛物线于点$E$,连接$DE$,请问是否存在点$P$使$\triangle PDE$为等腰直角三角形?若存在,求点$P$的坐标;若不存在,说明理由。
3.二次函数$y=ax^2+bx+2$的图象交$x$轴于点$(-1,0)$,$B(4,0)$两点,交$y$轴于点$C$。
动点$M$从点$A$出发,以每秒$2$个单位长度的速度沿$AB$方向运动,过点$M$作$MN\perp x$轴交直线$BC$于点$N$,交抛物线于点$D$,连接$AC$,设运动的时间为$t$秒。
1) 求二次函数$y=ax^2+bx+2$的表达式。
2) 连接$BD$,当$t=1$时,求$\triangle DNB$的面积。
3) 在直线$MN$上存在一点$P$,当$\triangle PBC$是以$\angle BPC$为直角的等腰直角三角形时,求此时点$D$的坐标。
4) 当$t=2$时,在直线$MN$上存在一点$Q$,使得$\angle AQC+\angle OAC=90^\circ$,求点$Q$的坐标。
二次函数中的等腰直角三角形问题
二次函数中的等腰直角三角形问题1.如图,抛物线22=++交x轴于点(3,0)y ax bxA-和点(1,0)B,交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(1,0)-,点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使MNO∆为等腰直角三角形,且MNO∠为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.2.如图,抛物线23=++与坐标轴分别交于点A,(3,0)y ax bxC,点P是线段AB上方抛物线上B-,(1,0)的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,PAB∆的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作//PE x轴交抛物线于点E,连接DE,请问是否存在点P使PDE∆为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.3.二次函数22y ax bx =++的图象交x 轴于点(1,0)-,(4,0)B 两点,交y 轴于点C .动点M 从点A 出发,以每秒2个单位长度的速度沿AB 方向运动,过点M 作MN x ⊥轴交直线BC 于点N ,交抛物线于点D ,连接AC ,设运动的时间为t 秒.(1)求二次函数22y ax bx =++的表达式;(2)连接BD ,当32t =时,求DNB ∆的面积; (3)在直线MN 上存在一点P ,当PBC ∆是以BPC ∠为直角的等腰直角三角形时,求此时点D 的坐标;(4)当54t =时,在直线MN 上存在一点Q ,使得90AQC OAC ∠+∠=︒,求点Q 的坐标.4.在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,(3,0)B ,与y 轴交于点(0,3)C ,顶点为G .(1)求抛物线和直线AC 的解析式;(2)如图1,设(,0)E m 为x 轴上一动点,若CGE ∆和CGO ∆的面积满足43CGE CGO S S ∆∆=,求点E 的坐标; (3)如图2,设点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向右运动,运动时间为ts ,点M 为射线AC 上一动点,过点M 作//MN x 轴交抛物线对称轴右侧部分于点N .试探究点P 在运动过程中,是否存在以P ,M ,N 为顶点的三角形为等腰直角三角形?若存在,求出t 的值;若不存在,请说明理由.。
二次函数中的直角三角形
二次函数中的直角三角形
引入:如图,已知点A 的坐标为()2,0-、点B 的坐标为()2,2,在x 轴上是否存在一点C ,使得△A BC 是以AB 为直角边的直角三角形?如果存在,求出点C 的坐标;如果不存在,请说明理由。
变式:请你在在y 轴上找到一点D ,使得△A BD 为直角三角形?如果存在,求出点D 的坐标;如果不存在,请说明理由。
例题、如图,抛物线2
23y x x =--与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).
(1)在抛物线223y x x =--的对称轴上是否存在一点Q ,使△BCQ 为直角三角形?如果存在,求出点Q 的坐标;如果不存在,请说明理由。
x y A x B 图1 备用1 备用2
(2)、变式:在抛物线223y x x =--上是否存在一点P ,使△BCP 是以BC 为直角边的直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由。
练习:、
已知抛物线:122-+-=m x x y 与x 轴只有一个交点,且与y 轴交于A 点,如图,设它的顶点为B
(1)求m 的值;
(2)过A 作x 轴的平行线,交抛物线于点C ,求证是ABC ∆是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C',且与x 轴的左半轴交于E 点,与y 轴交于F 点,如图.请在抛物线C'上求点P ,使得EFP ∆是以EF 为直角边的直角三角形.
图1 备用1 备用 2 x C E A O B F。
中考复习函数专题28 二次函数中的三角形问题(老师版)
专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
要点补充:专项训练一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A .B .C .D .【答案】A 【分析】设三角形运动速度为1,分0≤t≤2时,2<t≤2时,2<时,时五种情况,可知等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,分别求出函数关系式,即可得出答案. 【详解】∵等腰直角三角形的直角边长为1, ∵当s =12×1×1+2×2﹣212t ⨯=92﹣12t 2;s =22-12+2×12t)2=t 2﹣112;t≤2时,s =2122-×1×1=72;当2<时,s =22-2×12(t -2)2=t 2﹣4t+152;当2+2<s =22+12-2×12t+2)2=92t+2)2,∵等腰直角三角形与正方形的不重叠部分面积变化过程是变小--不变--变大,且变小、变大时的图象为抛物线,不变时的图象为直线, ∵A 符合要求, 故选:A . 【点睛】考查了动点问题的函数图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论,熟练掌握二次函数的图象是解题关键.2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .712【答案】B 【分析】由抛物线的对称性可知,所有构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又0<d <1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的顶点纵坐标必定小于1,据此对上一步结论分析可得满足美丽抛物线对应的顶点,再确定抛物线与x 轴的交点值与对称轴的距离,从而可求得d 的值 【详解】解: 直线l :13y x b =+经过点M (0,14)则b=14,∵直线l :1134y x =+由抛物线的对称性知:抛物线的顶点与x 轴的两个交点构成的直角三角形必为等腰直角三角形; ∵该等腰三角形的高等于斜边的一半 ∵0<d <1∵该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1)∵当x=1时,11173412y =+=<1;当x=2时,221113412y =+= <1; 当x=3时,315144y =+=>1; ∵美丽抛物线的顶点只有12,B B ∵若1B 为顶点,由17(1,)12B ,则7511212d =-= , ∵若2B 为顶点,由211(2,)12B ,则11111(2)11212d ⎡⎤=---=⎢⎥⎣⎦综上所述,d 的值为512或1112时,存在美丽抛物线. 故选B . 【点睛】此题主要考查抛物线与x 轴的交点,抛物线的对称性.3.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是A.16B.15C.14D.13【答案】C【详解】根据在OB上的两个交点之间的距离为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,∵一共有7条抛物线.同理可得开口向上的抛物线也有7条.∵满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选C.4.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果∵ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()。
专题02 二次函数中的直角三角形存在性问题(学生版)
专题02 二次函数中的直角三角形存在性问题【模型解读】【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.【几何法】两线一圆得坐标(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)重点还是如何求得点坐标,求法相同,以为例:【构造三垂直】求法相同,以为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.12C C 、2C 故C 2坐标为(132,0)代入得:BN =32AM BN=MB NC 2由A 、B 坐标得AM =2,BM =4,NC 2=3△易证AMB ∽△BNC 234C C 、3C故a =1或3设MC 3=a ,C 3N =b △易证AMC 3∽△C 3NB ,由A 、B 坐标得AM =1,BN =3,AMC 3N =MC 3NB代入得:1b =a3,即ab =3,又a +b =4,故C 3坐标为(2,0),C 4坐标为(4,0)【代数法】表示线段构勾股还剩下待求,不妨来求下:(1)表示点:设坐标为(m ,0),又A (1,1)、B (5,3);(2)表示线段:,,;(3)分类讨论:当为直角时,;(4)代入得方程:,解得:.还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线与AB 互相垂直,,可得:,又直线过点A (1,1),可得解析式为:y=-2x+3,所以与x 轴交点坐标为,即坐标为.确实很简便,但问题是这个公式出现在高中的教材上~【小结】几何法:(1)“两线一圆”作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A 、B 、C 坐标;(2)表示线段AB 、AC 、BC ;(3)分类讨论①AB ²+AC ²=BC ²、②AB ²+BC ²=AC ²、③AC ²+BC ²=AB ²;(4)代入列方程,求解.如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等.1C 1C1C AB =1AC =1BC =1BAC ∠22211AB AC BC +=()()2222201153m m +-+=-+32m =1AC 11AC AB k k ⋅=-12AC k =-1AC 3,02⎛⎫ ⎪⎝⎭1C 3,02⎛⎫ ⎪⎝⎭【模型实例】1.已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的表达式;(2)点在直线下方的抛物线上,连接交于点,当最大时,求点的坐标及的最大值;(3)在(2)的条件下,过点作轴的垂线,在上是否存在点,使是直角三角形,若存在,请直接写出点的坐标;若不存在,请说明理由.2.如图,直线分别与轴,轴交于,两点,点为的中点,抛物线经过,两点.(1)求抛物线的函数表达式;(2)点为抛物线上一点,若是以为直角边的直角三角形,求点到抛物线的对称轴的距离.2y ax bx c =++x (2,0)A -(6,0)B y (0,3)C -P BC AP BC M PM AM P PM AMP x l l D BCD ∆D 210y x =-+x y A B C OB 2y x bx c =++A C P APB ∆AB P3.如图,顶点为的抛物线与轴交于,两点,与轴交于点.(1)求这条抛物线对应的函数表达式;(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.4.已知直线与轴、轴分别相交于、两点,抛物线经过、两点,点在线段上,从点出发,向点以每秒1个单位的速度匀速运动;同时点在线段上,从点出发,向点以每个单位的速度匀速运动,连接,设运动时间为秒(1)求抛物线解析式;(2)当为何值时,为直角三角形;M 23y ax bx =++x (3,0)A (1,0)B -y C y P PAM ∆P 3y x =+x y A B 2y x bx c =++A B M OA O A N AB A B MN t t AMN ∆5.如图,抛物线与轴交于,两点,过点的直线分别与轴及抛物线交于点,.(1)求直线和抛物线的表达式;(2)动点从点出发,在轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为秒,当为何值时,为直角三角形?请直接写出所有满足条件的的值;6.如图,抛物线与轴相交于,两点,与轴相交于点,对称轴为直线,顶点为,点的坐标为.(1)填空:点的坐标为 ,点的坐标为 ,抛物线的解析式为 ;(2)是抛物线对称轴上一动点,是否存在点,使是以为斜边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.22y ax x c =++x (4,0)A -(1,0)B B 23y kx =+y C D P O x t t PDC ∆t 2y x bx c =++x A B y C 2x =D B (3,0)A D P P PAC ∆ACP7.抛物线与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点.(1)求抛物线的解析式;(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;8.在平面直角坐标系中,抛物线与轴交于点和点,与轴交于点,顶点的坐标为.(1)直接写出抛物线的解析式;(2)如图,是直线上一个动点,过点作轴交抛物线于点,是直线上一个动点,当为等腰直角三角形时,直接写出此时点及其对应点的坐标.22(0)y ax bx b a =-+≠y (0,3)C -3x =D x x x E F DEF ∆DEF ∆2y ax bx c =++x (1,0)A -B y C D (1,4)-M BC M MN x ⊥N Q AC QMN ∆MQ9.如图,在平面直角坐标系中,二次函数的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.(1)求、的值.(2)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.10.如图1所示,在平面直角坐标系中,抛物线与轴交于点,和点,与轴交于点.(1)求抛物线的表达式;(2)如图2,将抛物线先向左平移1个单位,再向下平移3个单位,得到抛物线,若抛物线与抛物线相交于点,连接,,.①求点的坐标;②判断的形状,并说明理由;(3)在(2)的条件下,抛物线上是否存在点,使得为等腰直角三角形,若存在,求出点的坐标;若不存在,请说明理由.2y x bx c =-++A B C A (3,0)B (1,0)-AC BC P A AC C Q B BA A PQ t b c AC M MPQ ∆P M 21264:(515F y a x =-+x 6(5A -0)B yC 1F 1F 2F 1F 2FD BD CD BC D BCD ∆2F P BDP ∆P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线中的直角三角形基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为直角三角形,求点P 坐标。
分两大类进行讨论:(1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。
(2)AB 为直角边时,分两类讨论:①以A ∠为直角时(即AP AB ⊥):②以B ∠为直角时(即BP BA ⊥):利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率k ;进而求出PA (或PB )的解析式;将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。
典型例题:例1、在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=10。
(1)求抛物线的解析式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ ?(2009年成都)例2、如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且OA OC OB 3==.(I )求抛物线的解析式;(II )探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形?若存在,求出P 点坐标,若不存在,请说明理由;(III )直线131+-=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值.例3、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线22y ax ax =+-经过点B 。
(1)求点B 的坐标; (2)求抛物线的解析式; (3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由。
同步训练:1、(淮安)如图所示,在平面直角坐标系中.二次函数()221y a x =--图象的顶点为P ,与x 轴交点为 A 、B ,与y 轴交点为C .连结BP 并延长交y 轴于点D 。
(1)写出点P 的坐标;(2)连结AP ,如果△APB 为等腰直角三角形,求a 的值及点C 、D 的坐标;(3)在(2)的条件下,连结BC 、AC 、AD ,点E (0,b )在线段CD (端点C 、D 除外)上,将△BCD 绕点E 逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD 重叠部分的面积为S ,根据不同情况,分别用含b 的代数式表示S .选择其中一种情况给出解答过程,其它情况直接写出结果;判断当b 为何值时,重叠部分的面积最大?写出最大值.2(福建宁德市)、如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.3、如图14(1),抛物线22y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B 的坐标为 ;(2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.4、(2011潼南县)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A ,B 两点,抛物线的顶点为D .(1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E 、B 、F 、D 为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.图14(1) 图14(2) 图14(3)5.(辽宁省营口市)如图,正方形ABCO 的边长为5,以O 为原点建立平面直角坐标系,点A 在x 轴的负半轴上,点C 在y 轴的正半轴上,把正方形ABCO 绕点O 顺时针旋转后得到正方形A 1B 1C 1O (α<45º),B 1C 1交y 轴于点D ,且D 为B 1C 1的中点,抛物线y =ax 2+bx +c 过点A 1、B 1、C 1. (1)求tan α的值;(2)求点A 1的坐标,并直接写出....点B 1、点C 1的坐标; (3)求抛物线的函数表达式及其对称轴;(4)在抛物线的对称轴...上.是否存在点P ,使△PB 1C 1为直角三角形?若存在,直接写出....所有满足条件的P 点坐标;若不存在,请说明理由.6.(四川省眉山市)如图,已知直线y =21x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =21x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标;(3)在抛物线的对称轴上找一点M ,使|AM -MC |的值最大,求出点M 的坐标.7.(福建省三明市初中毕业班质量检查)如图,抛物线y =ax 2+bx +2与x 轴的交点是A (3,0)、B (6,0),与y 轴的交点是C .(1)求抛物线的函数表达式;(2)设P (x ,y )(0< x<6)是抛物线上的动点,过点P 作PQ ∥y 轴交直线BC 于点Q .①当x 取何值时,线段PQ 的长度取得最大值?其最大值是多少?②是否存在这样的点P ,使△OAQ 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.8.如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;例一答案:例三:(1)过点B 作BD x ⊥轴,垂足为D ,9090BCD ACO ACO CAO ∠+∠=∠+∠= °,°BCD CAO ∴∠=∠; 又90BDC COA CB AC ∠=∠== °;,BCD CAO ∴△≌△, 12BD OC CD OA ∴====,3分∴点B 的坐标为(31)-,; (2)抛物线22y ax ax =+-经过点(31)B -,,则得到1932a a =--,解得12a =,所以抛物线的解析式为211222y x x =+-; (3)假设存在点P ,使得ACP △仍然是以AC 为直角边的等腰直角三角形: ①若以点C 为直角顶点;则延长BC 至点1P ,使得1PC BC =,得到等腰直角三角形1ACP △,过点1P 作1PMx ⊥轴,11190CP BC MCP BCD PMC BDC =∠=∠∠=∠= ,,°; 1MPC DBC ∴△≌△121CM CD PM BD ∴====,,可求得点1P (1,-1); ②若以点A 为直角顶点;则过点A 作2AP CA ⊥,且使得2APAC =,得到等腰直角三角形2ACP △, 过点2P 作2PN y ⊥轴,同理可证2AP N CAO △≌△; 221NP OA AN OC ∴====,,可求得点2(21)P ,; 经检验,点1(11)P -,与点2(21)P ,都在抛物线211222y x x =+-上. 练习2:解:(1)由抛物线C 1:y=a (x+2)2-5得,顶点P 的为(-2,-5),(2分)∵点B (1,0)在抛物线C 1上,∴0=a (x+2)2-5,解得,a=59;(4分)(2)∵抛物线C 2是由抛物线C 1绕点B 旋转180°得到的,P 点坐标为(-2,-5)∴顶点M 的坐标为(4,5)∴设抛物线C 2的解析式为:y=a (x-4)2+5,又抛物线C 2过点B (1,0),代入B 点解得:a=-59,故C2的解析式为:y=-59(x-4)2+5.(3)∵抛物线C3由C1绕点x轴上的点Q旋转180°得到,∴顶点N、P关于点Q成中心对,∴点N的纵坐标为5,设点N坐标为(m,5),(9分)作PH⊥x轴于H,作NG⊥x轴于G作PK⊥NG于K,∵旋转中心Q在x轴上,∴EF=AB=2BH=6,∴FG=3,点F坐标为(m+3,0).H坐标为(-2,0),K坐标为(m,-5),根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34,(10分)①∠PNF=90°时,PN2+NF2=PF2,解得m=443,∴Q点坐标为(193,0).②当∠PFN=90°时,PF2+NF2=PN2,解得m=103,∴Q点坐标为(23,0).③∵PN>NK=10>NF,∴∠NPF≠90°综上所得,当Q点坐标为(193,0)或(23,0)时,以点P、N、F为顶点的三角形是直角三角形.练习4:解:(1)由已知得:A(﹣1,0),B(4,5),∵二次函数y=x2+bx+c的图象经过点A(﹣1,0),B(4,5),∴,解得:b=﹣2,c=﹣3;(2)如图:∵直线AB经过点A(﹣1,0),B(4,5),∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,);(3)①如图:顺次连接点E、B、F、D得四边形EBFD.可求出点F的坐标(,),点D的坐标为(1,﹣4)S四边形EBFD=S△BEF+S△DEF=××(4﹣)+××(﹣1)=;②如图:ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3)则有:m2﹣2m﹣2=,解得:m1=,m2=,∴P1(,),P2(,),ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3)则有:n2﹣2n﹣2=﹣,解得:n1=,n2=(与点F重合,舍去),∴P3(,),综上所述:所有点P的坐标:P1(,),P2(,),P3(,)能使△EFP组成以EF为直角边的直角三角形。