11二次函数1二次函数
考点11 二次函数的图象性质及相关考点-备战2023届中考数学一轮复习考点梳理(原卷版)
考点11 二次函数的图象性质及其相关考点二次函数作为初中三大函数中考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点。
而对于二次函数图象和性质的考察,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。
出题形式虽然多是选择、填空题,但解答题中也时有出现,且题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。
一、二次函数的表达式二、二次函数的图象特征与最值三、二次函数图象与系数的关系四、二次函数与方程、不等式(组)五、二次函数图象上点的坐标特征考向一、二次函数的表达式1.二次函数的3种表达式及其性质作用2.二次函数平移的方法:①转化成顶点式(已经是顶点式的此步忽略),②“左加右减(x),上加下减(y)”;1.把y=(2﹣3x)(6+x)变成y=ax2+bx+c的形式,二次项 ,一次项系数为 ,常数项为 .2.用配方法将二次函数y=x2﹣2x﹣4化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣2)2﹣4B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣5D.y=(x﹣2)2﹣63.在平面直角坐标系中,若将抛物线y=2x2+1先向左平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的解析式是( )A.y=2(x﹣3)2+3B.y=2(x+3)2+3C.y=2(x﹣3)2+1D.y=2(x+3)2+24.抛物线y=2x2向下平移3个单位长度后所得新抛物线的顶点坐标为( )A.(﹣3,0)B.(3,0)C.(0,﹣3)D.(0,3)5.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(6,3).若抛物线y=mx2+2mx+m+3(m为常数,m≠0)向右平移a(a>0)个单位长度,平移后的抛物线的顶点在线段AB上,则a的取值范围为 .考向二、二次函数的图象特征与最值1.对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线;顶点坐标:;a>二次函数有最小值;a <二次函数有最大值;2.图象的增减性问题:抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须附加一定的自变量x 取值范围;1.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .函数有最小值1,有最大值3B .函数有最小值﹣1,有最大值3C .函数有最小值﹣1,有最大值0D .函数有最小值﹣1,无最大值2.如图是四个二次函数的图象,则a 、b 、c 、d 的大小关系为( )A.d<c<a<b B.d<c<b<a C.c<d<a<b D.c<d<b<a3.如图是二次函数y=ax2+bx的大致图象,则一次函数y=(a+b)x﹣b的图象大致是( )A.B.C.D.4.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.5.已知二次函数y=x2﹣2x+2在m≤x≤m+1时有最小值m,则整数m的值是( )A.1B.2C.1或2D.±1或26.如图,点P是抛物线y=﹣x2+2x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .考向三、二次函数图象与系数的关系二次函数图象题符号判断类问题大致分为以下几种基本情形∶1.抛物线y =ax 2+bx +c 的对称轴为直线x =−1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b +c =0;④6a ﹣2b +c <0;⑤若点(0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2,其中正确的判断是( )A .②③④⑤B .②③④C .②③⑤D .②④⑤2.已知二次函数y =ax 2+bx +c 的y 与x的部分对应值如表:x﹣1013y0﹣1.5﹣20根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x﹣1)2﹣2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c=﹣1.5的两个根为0或2;④若y>0,则x>3;⑤a(am+b)≥a﹣b(m为任意实数).其中所有正确的结论为( )A.①②④B.②③⑤C.②③④D.①③⑤3.无论k为何值,直线y=kx﹣2k+2与抛物线y=ax2﹣2ax﹣3a总有公共点,则a的取值范围是( )A.a>0B.C.或a>0D.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正确结论的序号是( )A.①③④B.①②③⑤C.①②③④D.①②③④⑤5.已知二次函数y=x2﹣2mx+m2+2m(1)①函数的顶点坐标为 (用含m的代数式表示);②该顶点所在直线的解析式为 ;在平面直角坐标系中画出该直线的图象;(2)当m=1时,二次函数关系式为 ,在平面直角坐标系中画出此函数的图象;(3)已知点A(﹣3,1)、B(1,1)连结AB.若抛物线y=x2﹣2mx+m2+2m与线段AB有且只有一个交点,求m的取值范围;(4)把二次函数y=x2﹣2mx+m2+2m(x≤2m)的图象记为G,当G的最低点到x轴的距离为1时,直接写出m的值.考向四、二次函数与方程、不等式(组)1.二次函数y=ax2+bx+c(a≠0)与一元二次方程之间的关系:1)求交点:①求抛物线与x轴交点坐标→直接让y=0,即:ax2+bx+c=0②求抛物线与某直线l的交点坐标→联立抛物线与直线解析式,得新组成的一元二次方程,解新方程即的两图象交点横坐标,再代入直线或抛物线解析式即可得交点坐标。
二次函数(一)——常见二次函数模型
二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。
二次函数(一)
二次函数(一)
(2)用待定系数法求二次函数的解析式. ①当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解; ②当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解; ③当已知抛物线与 x 轴有两个交点时,可选择设其解析式为交点式来求解.
练习题部分:
1.已知:二次函数 y=ax2+bx+c 的图象如图,则下列答案正确的是?( )
A.y=﹣x2﹣x+2 B.y=x2+x﹣2
C.y=x2+3x+2 D.y=﹣x2+x+2
12.已知二次函数 y=ax2+4x+c,当 x 等于﹣2 时,函数值是﹣1;当 x=1 时,函数值是 5.则
此二次函数的表达式为( )
A.y=2x2+4x﹣1
B.y=x2+4x﹣2
C.y=﹣2x2+4x+1
D.y=2x2+4x+1
B.﹣1
C.﹣1 或 2
D.以上都不对
6.已知抛物线 y=﹣x2+4x+3,则该抛物线的顶点坐标为( )
A.(﹣2,7) B.(2,7)
C.(2,﹣9) D.(﹣2,﹣9)
7.在函数 y=(x﹣1)2+3 中,当 y 随 x 的增大而减小时,则 x 的取值范围是( )
A.x≥1
B.x>0
C.x<3
D.x≤1
2x2 相同,则这个二次函数的表达式是( )
二次函数 y=ax2+bx+c(a≠0)的图象具有如下性质: ①当 a>0 时,抛物线 y=ax2+bx+c(a≠0)的开口向上,
x<﹣ 时,y 随 x 的增大而减小;x>﹣ 时,y 随 x 的增大而增大;
2012届海南人教版高中新课标总复习(第1轮)文数第11课时二次函数
4m x x 0 1 2 m2 2m 6 0 , 有 x1 x2 m2 2 16m 4( m 2)(2m 6) 0 解得m≥3或m≤-6; 或Δ=16m2-4(m-2)(2m-6)<0,得-6<m<1. 综合得,图象与 x 轴的负半轴无交点,则 m<1或m≥3. 于是符合条件的实数m的取值范围是[1,3).
32
题型5 二次函数的应用 已 知 函 数 f ( x ) =ax2+ ( b+1 ) x+b-2 ( a≠0 ),若存在实数 x0 ,使 f (x0 ) =x0 ,则称 x0是函数f(x)的不动点. (1)当a=-b=2时,求函数f(x)的不动点; (2)若对任意的实数 b,函数f(x)恒有两个 不动点,求实数a的取值范围; ( 3 )当 a=1 ,且函数 f ( x )在区间[ -1,1 ]上 的最小值为-2时,求b的值.
8
5.已知函数f(x)=x2-6x+8,x∈[1,a],且 函数f(x)的最小值为f(a),则a的取值范 围是 (1,3] . 抛物线的对称轴方程是x=3,又函数 f(x)在区间[1,3]上是减函数,于是a∈ (1,3].
9
1.二次函数的性质 ( 1 )定义在 R 上的二次函数 f( x )与x 轴有 两个交点( -1,0 ) , ( 2,0 ) , 若 f ( 0 ) >0 ,则 大 f(x)有最 值(填“大”或“小”). ( 2 ) 若 f ( x ) =ax2+bx+2b>0 的 解 集 为 (-1,2),则实数b的取值范围是 (0,+∞) . (3)已知二次函数f(x)的二次项系数为1, 且满足f(1-x)=f(1+x),f(2)=-1,则 f(x) = .x2-2x-1
二次函数知识点总结1
九年级数学学案一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)2二次函数考查重点与常见题型2-32例1.已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 例2.如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )例3.已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数题型分类总结(学生版)1
二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。
2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。
3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。
4、若函数y=(m -2)x m -2+5x+1是关于x 的二次函数,则m 的值为 。
6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。
二次函数的对称轴、顶点、最值(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。
2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = .3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是_ .7.抛物线y=x 2+2x -3的对称轴是 。
8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。
9.当n =______,m =______时,函数y =(m +n)x n+(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。
九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)
九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
二次函数知识再归纳
二次函数知识再归纳一. 二次函数的性质1.抛物线开口向上(即a >0):抛物线上的点到对称轴的距离越远,y 值越大,到对称轴的距离越近,y 值越小.即:抛物线上的三点A(1x ,1y ),B(2x ,2y ),顶点C(0x ,0y ),若|1x -0x |>|2x -0x |, 则1y >2y ;若|1x -0x |<|2x -0x |,则1y <2y ;2.抛物线开口向下(即a <0):抛物线上的点到对称轴的距离越远,y 值越小,到对称轴的距离越近,y 值越大.即:抛物线上的三点A(1x ,1y ),B(2x ,2y ),顶点C(0x ,0y ),若|1x -0x |>|2x -0x |, 则1y <2y ;若|1x -0x |<|2x -0x |,则1y >2y ;3.无论开口向上还是向下,抛物线上的点到对称轴的距离相等,则y 值相等;反之,抛物线上的点y 值相同,那么它们到对称轴的距离相等(即横坐标相加除以2就是对称轴);4.已知抛物线上的三点A(1x ,1y ),B(2x ,2y ),C(0x ,0y ),且C 为顶点,若1y >2y ≥0y ,则a >0;若1y <2y ≤0y ,则a <0.二.平移1.图象(或图象上的)点的平移法则:左减右加,上加下减;2.表达式的平移法则:左加右减,上加下减;例如:将y=-2x ²+x-2先向左平移1个单位,再向下平移2个单位,得到:y=-2(x+1)²+(x+1)-2-2=y=-2x ²-3x-5;(1)平移不改变二次项系数“a ”①左右平移:不改变函数值(即y 值),若图象与x 轴有两个交点,那么两交点之间的距离不变;若与x 轴交于点A(1x ,1y ),点B(2x ,2y ),则:|AB|=|21x -x |=221)x x (-=21221x x 4-)x x (+②上下平移:不改变自变量(即x)的值,对称轴不变(即a ,b 都不变);三.轴对称(即翻折)1.关于x 轴对称(1)一般式:y=ax ²+bx+c(a ≠0)变为y=-ax ²-bx-c 顶点式:y=a(x-h)²+k(a ≠0)变为y=-a(x-h)²-k2.关于y 轴对称(1)一般式:y=ax ²+bx+c(a ≠0)变为y=ax ²-bx+c顶点式:y=a(x-h)²+k(a ≠0)变为y=a(x+h)²+k3.关于x=m 对称 【特别提示:两抛物线的交点在直线x=m 上】(1)y=ax ²+bx+c(a ≠0)思路:如图:A(1x ,1y ),B(2x ,2y ),C(0,c),作出这三点关于直线x=m 的对称点A ´、B ´、C ´,利用中点坐标公式求出三点的坐标分别为A ´(2m-1x ,0),B ´(2m-2x ,0),C ´(2m ,c),再代入新抛物线的表达式中求即可.(2)顶点式:y=a(x-h)²+k(a ≠0)如图,作出顶点P(h ,k)关于直线x=m 的对称点P ´,利用中点坐标公式求得P ´(2m-h ,k),然后代入新抛物线的表达式中求得:y=a(x-2m+h)²+k4.关于y=n 对称 【特别提示:若两抛物线有交点,则交点在直线y=n 上】(1)y=ax ²+bx+c(a ≠0)思路:如图:A(1x ,1y ),B(2x ,2y ),C(0,c),作出这三点关于直线y=n 的对称点A ´、B ´、C ´,利用中点坐标公式求出三点的坐标分别为A ´(1x ,2n-1y ),B ´(2x ,2n-2y ),C ´(0,2n-c),然后代入新抛物线的表达式中求即可.(2)顶点式:y=a(x-h)²+k(a ≠0)如图,作出顶点P(h ,k)关于直线y=n 的对称点P ´,利用中点坐标公式求得P ´(h ,2n-k),然后代入新抛物线的表达式中求得:y=-a(x-h)²+2n-k四.成中心对称(即绕着某一点旋转180°) 【注:旋转180°,二次项系数“a ”变为了“-a ”】1.关于原点对称(即绕着原点旋转180°)一般式:y=ax ²+bx+c(a ≠0)变为y=-ax ²+bx-c顶点式:y=a(x-h)²+k(a ≠0)变为y=-a(x+h)²-k2.关于任意一点成中心对称(即绕任意一点旋转180°)(1)y=ax ²+bx+c(a ≠0)思路:如图:A(1x ,1y ),B(2x ,2y ),C(0,c),作出这三点关于点P(m ,n)的对称点A ´、B ´、C ´,利用中点坐标公式求出三点的坐标分别为A ´(2m-1x ,2n-1y ),B ´(2m-2x ,2n-2y ),C ´(2m ,2n-c),然后代入新抛物线的表达式中求即可.(2)顶点式:y=a(x-h)²+k(a ≠0)如图,作出顶点Q(h ,k)关于点P(m ,n)的对称点Q ´,利用中点坐标公式求得Q ´(2m-h ,2n-k),然后代入新抛物线的表达式中求得:y=-a(x-2m+h)²+2n-k五.动点问题1.求PA+PC 最小思路:作A 点关于P 点所在直线l 的对称点B ,连接BC 与l 相交的点即所求点P.变式:求△PAC 周长的最小值 (提示:求出PA+PC 的最小值,再加上AC)2.求|PA-PC|最大值思路:若点A 、C 在P 点所在直线l 的同侧,直接连接AC 并延长与l 相交的点即P 点;若点A 、C 在P 点所在直线l 的异侧,任选一定点(如点A)作关于l 的对称点(B),转化到l 同侧,再连接BC 并延长与l 相交的点即P 点.3.等腰三角形例如:已知:y=x ²-2x-3,与x 轴的交点A(-1,0),C(3,0),B(0,-3),P 为对称轴上一点.求△PBC 为等腰三角形时,P 点的坐标.解析:设点P(1,m),∵B(0,-3),C(3,0),∴PB=22)3m ()01(++-=10m 6m 2++, PC=22)0m ()31(-+-=4m 2+,BC=22)03()30(--+-=32,然后分①PB=BC ;②PC=BC ;③PB=PC 三种情况讨论.4.等边三角形(例如:如图,y=x ²-2x-3,则顶点P(1,-4),在抛物线上是否存在M 、N 两点,使得△PMN 为等边三角形.解析:存在. 设M(t ,t ²-2t-3),则MQ=1-t ,PQ=t ²-2t-3-(-4)=t ²-2t+1,∴PQ=3MQ , 即t ²-2t+1=3(1-t),解出t ,就可求出M 点的坐标,进而求出N 点的坐标(当然M 点也可能在右侧,N 点在左侧)5.直角三角形(1)动点在对称轴或其它直线上思路:设出动点的坐标,并求出其它两个已知点的坐标,利用两点间的距离公式,表示出三边,再分直角顶点讨论.例如:如图,y=x ²-2x-3与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为l ,问l 上是否存在点P 使得△PBC 为直角三角形?解析:存在. 设点P(1,m),∵B(3,0),C(0,-3),∴PB ²=(1-3)²+(m-0)²=m ²+4, PC ²=(1-0)²+(m+3)²=m ²+6m+10,BC ²=(3-0)²+(0+3)²=18,然后分:①∠PBC=90°,即PB ²+BC ²=PC ²;②∠PCB=90°,即PC ²+BC ²=PB ²;③∠BPC=90°,即PB ²+PC ²=BC ²三种情况讨论.(2)动点在抛物线上若直角顶点的坐标已知,利用1k .k 21-=求;若直角顶点为动点,过直角顶点构造“三垂直型的K 字型”,利用△相似求.例如:如图,y=x ²-2x-3与x 轴交于A ,B 两点,与y 轴交于点C ,问在抛物线上是否存在点P 使得△PBC 为直角三角形?解析:存在. 若∠1P CB=90°,由题意可得直线BC 的表达式为:y=x-3,∴可设BP 1的表达式为y=-x+m ,将B(3,0)代入求得m=3,∴BP 1的表达式为:y=-x+3.将y=-x+3与y=x ²-2x-3联立即可求出点P 1的坐标.若∠2P CB=90°,方法同上,先求出P 2C 的表达式为y=-x-3,然后与y=x ²-2x-3联立即可求出点P 2的坐标.若∠C 3P B=90°,过点P 3作y 轴的垂线,垂足为N ,再过B 点作BM ⊥NP 3交NP 3的延长线于点M ,BM=|p y |=-x ²+2x+3,P 3M=3-x ,P 3N=x ,CN=-3-(x ²-2x-3)=-x ²+2x ,而△CNP 3∽△P 3MB , ∴BM N P M P CN 33=,即3x 2x x x 3x 2x -22++-=-+,解得x=2131+或x=213-1,然后代入表达式即可求出y 值.【同时也求出了满足题意的另一个点P 4的坐标】6.等腰直角三角形(1)动点在对称轴或其它直线上思路:设出动点的坐标,并求出其它两个已知点的坐标,利用两点间的距离公式,表示出三边,再分直角顶点讨论,同时让两条直角边相等.例如:如图,y=x ²-2x-3与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为l ,问l 上是否存在点P 使得△PBC 为等腰直角三角形?解析:存在. 设点P(1,m),∵B(3,0),C(0,-3),∴PB²=(1-3)²+(m-0)²=m²+4,PC²=(1-0)²+(m+3)²=m²+6m+10,BC²=(3-0)²+(0+3)²=18,然后分:①∠PBC=90°,即PB²+BC²=PC²,且PB²=BC²;②∠PCB=90°,即PC²+BC²=PB²,且PC²=BC²;③∠BPC=90°,即PB²+PC²=BC²,且PB²=PC²三种情况讨论.(2)动点在抛物线上思路:先在图中找出满足题意的点,分别过各自的直角顶点构造“三垂直型的K字型”,利用△全等求.例如:y=x²-2x-3的图象上是否存在一点P使△PBC为等腰直角三角形?解析:不存在.①∠BCP1时,由△CMP1≌△BOC可求得P1(3,-6),将x=3代入得9-6-3=0,∴P1不在抛物线上,舍去;②∠CBP2时,由△CNB≌△BQP2可求得P2(3,3),将x=3代入得9-6-3=0,∴P2也不在抛物线上,舍去;③∠CP3B=90°时,此时P3(0,0)也不满足题意.∴不存在满足题意的点P.【提示:若让在平面内找点P,那么以上三个点都满足题意】7.三角形相似【注意:“∽”只有一种情况;“相似”需分类讨论】思路:一般能够确定一组对应角相等,不确定的角,找出其中一个,然后分情况(一般有两种)讨论.例如:二次函数的图象经过点A(1,0)、B(3,0)两点.设该二次函数的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AD、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.解:∵A(1,0)、B(3,0),所以设y=a(x-1)(x-3)即y=ax²-4ax+3a,当x=0时,y=3a,当x=2时,y=-a,∴C(0,3a),D(2,-a) ∴OC=|3a|,∵A(1,0)、E(2,0),∴OA=1,EB=1,DE=|-a|=|a|,在△AOC 与△DEB 中,∵∠AOC=∠DEB=90°, ∴当DEEB OC AO =时,△AOC ∽△BED ,∴||1|3|1a a =时,此方程无解, ∴当EB DE OC AO =时,△AOC ∽△DEB ,∴1|||3|1a a =时,解得33=a 或33-=a 综上所得:所求二次函数的表达式为:3334332+-=x x y 或3334332-+-=x x y 8.平行四边形(1)一般的平行四边形【先在图中画出满足题的平行四边形是正确解题的关键】注意:“□ABCD ”与“以点A 、B 、C 、D 为顶点的四边形是平行四边”的区别,前者字母顺序确定,后者字母顺序不确定.思路:①以已知边为边利用“平移”的方法求;②以已知边为对角线利用中点坐标公式求.例如:已知:y=x ²-2x-3,A ,B ,C 三点如图所示,问在x 轴上是否存在点Q ,抛物线上是否存在点P ,使得以点B,C,P ,Q 为顶点的四边形为平行四边?解析:存在. 连接BC.i) 以BC 为边(P 1、P 2、P 3)设Q(m ,0),由图可知,当C 点向右平移3个单位,再向上平移3个单位后到达B 点, 此时Q 1平移到了P 1,Q 3平移到了P 3,得到P 1、P 3的纵坐标均为3,代入表达式即可求出P 1、P 3两个点的坐标;当B 点向左平移3个单位,再向下平移3个单位后到达C 点,此时Q 2平移到了P 2,得到P 2的纵坐标均为-3,代入表达式即可求出P 2的坐标.ii)以BC 为对角线(P 4)求出BC 的中点坐标M(23-23,),由中点坐标公式可得到P 4的纵坐标为-3,此时和P 2重合.(2)特殊的平行四边形①菱形思路:先确定它为平行四边形,再让邻边相等或对角线垂直.②矩形思路:先确定它为平行四边形,再保证有一个内角为90°(用勾股定理逆定理:a ²+b ²=c ²)或对角线相等.例如:抛物线C:y=x ²+bx(b <0)与x 轴的一个交点为A ,顶点为P ,将其绕着原点旋转180°后得到抛物线C ´,点A 的对应点为点A ´,顶点为P ´,若以点A 、A ´、P 、P ´为顶点的四边形是矩形,求抛物线的表达式.解析:由题意可得P(4b -2b 2, ),OA=OA ´,OP=OP ´,∴四边形APP ´A ´是平行四边形,∴只需OP=OP ´即OA=OP ,∵OP=AP ,∴△OPA 为等边三角形,∴PE=3AE ,即4b 2=3(-2b ),解得b=-23或b=0(舍去),∴C ´的表达式为:y=x ²-23x.③正方形思路:先确定它为平行四边,再让一组邻边垂直且相等或对角线垂直且相等.例如:已知:y=x ²-2x-3,A ,B ,C 三点如图所示,问在平面内是否存在点P 、Q ,使得以点A,C,P ,Q 为顶点且以AC 为边的四边形是正方形?解析:存在. 连接AC.当四边形ACQ 1P 1是正方形时,△AOC ≌△P 1NO ,得P 1(2,1),又由平移得Q 1(3,-2); 当四边形ACQ 2P 2是正方形时,△AOC ≌△P 2MA ,得P 2(-4,-1),又由平移得Q 2(-3,-4).9.线段、面积的最值(1)求线段最大例如:已知:y=x ²-2x-3,A ,B ,C 三点如图所示,P 为线段BC 上一点,过P 点作PQ ⊥x 轴交抛物线于点Q ,求PQ 的最大值及点Q 的坐标.解析:由题意可求得BC 的表达式为:y=x-3,可设点P(m ,m-3))(0<m <3),∴Q(m ,m ²-2m-3),∴PQ=m-3-m ²+2m+3=-(m-23)²+49,∵-1<0,∴当m=23时,PQ 最大,最大值为49,然后将m=2代入m ²-2m-3求得y=-415,∴Q(23,-415),PQ 的最大值为49. (2)求面积最大例如:已知:y=-x ²+2x+3,A ,B ,C 三点如图所示,在BC 上方的抛物线上是否存在一点P 使得四边形ABPC 面积最大?若存在,求出最大面积及点P 的坐标;若不存在,请说明理由.解析:存在.连接PB ,PC ,BC ,过点P 作PQ ⊥x 轴交BC 于点Q ,设P(m ,-m ²+2m+3)(0<m <3),由题意可求得BC 的表达式为:y=-x+3,∴Q(m ,-m+3),PBC ABC ABPC S S S △△四边形+==21AB.OC+21OB.PQ=21×4×3+21×3(-m ²+2m+3+m-3) =-23(m-23)²+875,∴当m=23时,四边形ABPC 的面积最大,最大面积为875, 将m=23代入-m ²+2m+3得y=415,∴P(23,415),四边形ABPC 的面积最大值为875.10.面积相等(1)公共边已知(公共边为底)思路:过(除公共边外的)另一定点作公共边的平行线与抛物线相交的点即所求点. 例如:已知:y=-x ²+2x+3,A ,B ,C 三点如图所示,在抛物线上找一点M.(2)公共边未知(公共边为底)思路:先忽略掉公共底,连接剩下的两个点,然后过公共底的已知点作连成的线段的平行线,与抛物线相交,交点即所求点.例如:已知:y=x ²-2x-3,B(1,0),D(2,-3),在抛物线上找一点P ,使得PCD PBD S S △△=. 解析:连接BC ,过点D 作DP ∥BC 交抛物线于点P.∵BC 的表达式为:y=3x-3,∴可设PD 的表达式为:y=3x+m ,将D(2,-3)代入得:m=-9,∴PD 的表达式为:y=3x-9,将其和y=x ²-2x-3联立即可求出点P 的坐标.(3)高相等(或相同)思路:截取相等的底例如:已知:y=-x ²+6x-5与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为P ,过点C 作l ∥x 轴,l 上是否存在点Q ,使PAC PBQ S S △△=.解析:存在. CAE PAE PAC S S S △△△+=,QMB PMB PBQ S S S △△△+=,而△PAE 和△PMB 高相同,△CAE 和△QMB 高相等,∴只需底BM=AE 即可.∵A(1,0),B(5,0),C(0,-5),P(3,4),∴PC 的表达式为:y=3x-5,∴E(35,0),∴AE=32, ∴BM=32,∴M 1(313,0),M 2(317,0),∴PM 1的表达式为:y=-3x+13,将其和y=-x ²+6x-5联立即可求出点Q 1的坐标;PM 2的表达式为:y=-23x+217,将其和y=-x ²+6x-5联立即可求出点Q 2的坐标;(4)不同底,也不等高思路:用21×底×高(或21×水平宽×铅垂高)表示出面积,使其和已知三角形(或四边形)的面积相等.例如:已知:y=-x ²+2x+3,A 、B 、C 三点如图所示,M 为顶点,连接BC ,BM ,CM ,在x 轴下方的抛物线上是否存在一点P ,使BCM ABP S S △△=解析:利用21×水平宽×铅垂高求出BCM S △=21OB.MN=21×3×2=3,ABP S △=21AB.|P y | =21×4×|-x ²+2x+3|=2(x ²-2x-3)=2x ²-4x-6,∴3=2x ²-4x-6,解出x 即可求出点P 的坐标.(即图中的P 1,P 2)(5)面积的倍、分关系例如:已知:y=x ²-2x-3,A ,B ,C 三点如图所示,D(4,5),抛物线上是否存在一点P ,使 2ABP S △=ACBD S 四边形.解析:存在. ∵2ABP S △=ACBD S 四边形,∴2×21AB|P y |=21AB.D y +21AB.OC ∴4|P y |=21×4×5+21×4×3,即|x ²-2x-3|=4,求出x 即可求出满足题意的点P 的坐标. 11.角相等这类题目比较灵活,常见的解题方法有:①利用“△的相似”求解;②利用“三角函数值相等”求解;③利用“△全等”求解;④“作平行线”求解等.(1)作平行线、作对称(△全等)例如:已知:y=x ²-2x-3,A ,B ,C 三点如图所示,在抛物线上是否存在点P ,使∠ABP=∠CAB ?解析:存在. 若P 点在x 轴上方的抛物线上,过点B 作BP 1∥AC 交抛物线于点P 1,由两直线平行,内错角相等得∠ABP 1=∠CAB ;若P 点在x 轴下方的抛物线上,作C 点关于对称轴的对称点P 2,过P 2作P 2M ⊥x 轴于点M ,则△P 2BM ≌△CAO ,∴∠ABP 2=∠CAB.例如:已知:y=-x ²+2x+3,A 、B 、C 三点如图所示,D(2,3),问抛物线上是否存在一点P 使∠CBD=∠CBP ?解析:存在.由题意可得CD ⊥y 轴,OB=OC ,∴∠OBC=∠OCB=45°,∴∠DCB=45°,CD=2,在y 轴上截取CG=CD=2,∴G(0,1),△DCB ≌△GCB(SAS),∴∠CBD=∠CBP ,延长BG 交抛物线于一点,这点就是所求的点P.求出BG 的表达式为:y=-31x+1,将其与y=-x ²+2x+3联立即可求出点P 的坐标.(2)利用“三角函数值相等”(或“△的相似”)求例如:已知:y=x ²-4x+3,与x 轴交于点A ,B 与y 轴交于点C ,顶点为D ,对称轴为l ,在l 上是否存在一点M 使∠ABC=∠AMD ?解析:存在.过点A 作AE ⊥BC 于点E ,利用ABC S △=21AB.OC=21BC.AE ,得AE=BC OC AB .=2332⨯=2,∴ CE=22AE AC -=22,∴tan ∠ACB=CE AE =21222=,设M(2,m),AN=1, ∴tan ∠AMD=MN AN =|m |1=21,∴m=±2,∴M(2,2)或(2,-2).。
新教材北师大版必修第一册 4.1一元二次函数 课件(46张)
2.参数“a,h,k”对y=a(x-h)2+k(a≠0)的图象的影响 (1)a的符号和绝对值大小分别决定了二次函数图象的开口方向和大小; (2)h决定了二次函数图象的对称轴的位置; (3)k决定了二次函数图象的顶点的高度.
【跟踪训练】
1.已知二次函数 y=x2-8x +c的图象的顶点在 x轴上,则c=
类型三 一元二次函数的最大值和最小值(数学运算)
角度1 求一元二次函数的最大值或最小值
【典例】求函数y= 1 x2-2x+4的最小值.
2
【思路导引】先配方变形,然后确定函数图象的开口方向和对称轴,最后求最小
值.
【解析】配方:y=
1 2
x2-2x+4=
1 (x 2)2 +2,此函数的图象是一条抛物线,开口
【拓展训练】 已知一元二次函数的图象经过点(1,0),(-5,0),且顶点纵坐标为 9 ,求这个函
2
数的解析式.
类型二 一元二次函数的函数值的变化趋势(逻辑推理) 【典例】试述一元二次函数y=3x2-6x-1函数值的变化趋势.
【解题策略】
一元二次函数y=ax2+bx+c(a≠0) 函数值的变化趋势
2
y=x2-mx+5的函数值y随x的增大而增大,所以 m ≤2,解得m≤4.
2
2.一元二次函数y=-x2+(m-1)x+m的图象与y轴交于(0,7)点. (1)求出m的值和此函数图象与x轴的交点坐标; (2)试述函数值的变化趋势.
【补偿训练】 试述一元二次函数y=4x2+16x+5函数值的变化趋势. 【解析】配方,得y=4x2+16x+5=4(x+2)2-11, 此函数的图象开口向上,对称轴是直线x=-2, 所以在区间 (-,-上2,]y随x的增大而减小; 在区间 [-2,上),y随x的增大而增大.
(名师整理)最新人教版数学九年级上册第22章第1节《二次函数》精品课件
目前,我们已经学习了那几种类型 的函数?
变 量 之 间函 的数 关 系Biblioteka 一次函 数反比例 函数
y=kx+b (k≠0)
正比例函
数y=kx (k≠0) y=k/x (k≠0)
二次函 数
节日的喷泉给人带来喜庆,你是否注 意过水流所经过的路线?它会与某种
二次函数
学习目标
1.理解掌握二次函数的概念和一般形式.(重点) 2.会利用二次函数的概念解决问题. 3.会列二次函数表达式解决实际问题.(难点)
基础回顾 什么叫函 数?
在某变化过程中的两个变量x、y,当变 量x在某个范围内取一个确定的值,另一个 变量y总有唯一的值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
次(函2数)?当m2-7=-1且m+3≠0即6 m=±
时是反比例函数。 (3)当m2-7=2且m+3≠0即m=3时 是二次函数。
1.一个圆柱的高等于底面半 径,写出它的表面积 s 与半径 r 之间S的=2关π系r2式+2.πr2 即S=4πr2
2. n支球队参加比赛,每两队 之间进行一场比赛,写出比赛 的的场关次系数 式.m即与球队数 n 之间
注意(:1)等号左边是变量y,右边是关于 自变量整式x的。
(2)a,b,c为常数a,≠且0.
(3 )等式的右边最高次2 数为 ,可
以没有一次 项和常数项,但不能没 有(二4)次x的项取。值范围是任意实数。
(5)函数的右边是一个 整 式。
二次函数的一 般形式:
y=ax2+bx+c (其中a、b、c是常
=192(m2)
问题2:
华师大版九年级数学下26.1.1二次函数二次函数教学课件 (共14张PPT)
=- a² + 30a
是二次函数关系式。
3. 如果函数 y= x +kx+1 是二次函 0或 3 。 数,则k的值一定是______
k 2 3 k 2
4. 如果函数 y=(k-3) x 0 函数,则k的值一定是______ 。
k 2 3 k 2
+kx+1是二次
巩固练习
实际问题
5.某果园有100棵苹果树,每棵树平均结600 个果实.现准备多种一些苹果树以提高产量,但 是如果多种树,那么树之间的距离和每棵树所 接受的阳光就会减少.根据经验估计,每多种一 棵树,平均每棵树就会少结5个果实. 假设果园增种x棵苹果树,苹果的总产量 为y个,请你写出 y与x之间的关系式.
形如 (a、b、c是常数, 2 y ax bx c a≠0)的函数叫做 x 的二次函数(quadratic function),其中x是自变量,a叫做二次函数 的系数,b叫做一次项的系数,c叫作常数项。
注意 x 的取值范围是全体实数。
注意
y ax bx c 的三种不同表示形式
15 …
60375
…
实际问题
6.银行的储蓄利率是随时间的变化而变化的,也 就是说,利率是一个变量.在我国,利率的调整是由中 国人民银行根据国民经济发展的情况而决定的. 设人民币一年定期储蓄的年利率是x,一年到期 后,银行将本金和利息自动按一年定期储蓄转存.如果 存款是100元,那么请你写出两年后的本息和y(元)的 表达式(不考虑利息税).
y = 100(x+1)² =100x² + 200x + 100
7. 一个圆柱的高等于底面半径,写出它 的表面积S与半径r之间的关系式。
二次函数(第一课时)
例1 下列函数中哪些是二次函数?为什么?(x是自
变量)
① y=ax2+bx+c
不一定是,缺少a≠0的条 件.
② y=3-2x²
③y=x2
④ y= 1
x2
不是,右边是 分式.
解: 由题意得: m2 9 0
∴m≠±3
3.若函数y (m 1)xm2 2m1 (m 3)x 4
是二次函数, 那么m取值范围是什么?
解:由题意得:
m2 2m 1 2 m 1 0
m的取值范围是m 3
【解题小结】本题考查正比例函数和二次函数的概 念,这类题需紧扣概念的特征进行解题.
问题2:用总长为60m的篱笆围成矩形场地,场地面积S(m²) 与矩形一边长x(m)之间的关系是什么? s x(30 x)
x2 30x
问题3:某商店1月份的利润是2万元,2、3月份利润逐月增 长,这两个月利润的月平均增长率为x,3月份的利润为y
y 2(1 x)2
以上三个关系式有什么共同特点? 请归纳出二次函数的概念
x2 30x
【总结】二次函数自变量的取值范围一般是全体实数, 但是在实际问题中,自变量的取值范围应使实际问题 有意义.
6.写出下列各函数关系,判断它们是什么类型的函
数,并求出自变量的取值范围.
(1)写出正方体的表面积S(cm2)与正方体棱长a(
cm)之间的函数关系; S 6a2(a 0)
(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函
3.一元二次方程的一般形式是什么? ax2+bx+c=0 (a≠0)
人教版九年级数学上册第22章 二次函数1 二次函数
【题型四】根据实际问题列二次函数
例4 已知一块矩形绿地的长为x m,面积为y ㎡.
(1)若该矩形绿地的长为宽的2倍,则宽为_____m,y与x之间的关
>
=
系式为___________,自变量x的取值范围是__________;
( − )
(2)若该矩形绿地的长比宽多6 m,则宽为__________m,y与x之间
−
=
>
的关系式为___________,自变量x的取值范围是________.
例5 王先生存入银行2万元,先存一个一年定期,一年后银行将本
息自动转存为又一个一年定期(年利率不变).设一年定期的存款年
利率为x,两年后王先生得本息和y万元,写出y与x之间的关系式.
解:y=2(1+x)²
二次函数
一般形式
y=ax2+bx+c(a ≠0,a,b,c是常数)
y=ax2;
特殊形式
y=ax2+bx;
y=ax2+c(a ≠0,a,b,c是常数).
【教材习题】完成课本29页练习1,2题.
【作业本作业】完成 对应练习.
【实践性作业】找一张自己喜欢的照片,量一量它的长和宽,假
设要在这张照片的四周镶一条金色纸边,制成一幅矩形挂画,设
(一般地,在一个变化过程中,如果有两个变量x与y,并且对于
x的每一个确定的值,y都有唯一确定的值与其对应,我们就说
y 是x的函数)
2.我们学过哪些函数?它们的关系式是怎样的?
(一次函数:y=kx+b(k≠0);正比例函数:y=kx(k≠0)
已知长方形窗户的周长为6 m,窗户面积为y ㎡,窗户
二次函数知识点总结[1]
二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
高考数学一轮复习---二次函数知识点与题型
高考数学一轮复习---二次函数知识点与题型一、基础知识1.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f(x)=a(x-x1)(x-x2)(a≠0).2.二次函数的图象与性质二次函数系数的特征:(1)二次函数y=ax2+bx+c(a≠0)中,系数a的正负决定图象的开口方向及开口大小;(2)-b2a的值决定图象对称轴的位置;(3)c的取值决定图象与y轴的交点;(4)b2-4ac的正负决定图象与x轴的交点个数.(-∞,+∞)(-∞,+∞)二、常用结论1.一元二次不等式恒成立的条件(1)“ax2+bx+c>0(a≠0)恒成立”的充要条件是“a>0,且Δ<0”.(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0,且Δ<0”.2.二次函数在闭区间上的最值设二次函数f(x)=ax2+bx+c(a>0),闭区间为[m,n].(1)当-b2a≤m时,最小值为f(m),最大值为f(n);(2)当m <-b 2a ≤m +n2时,最小值为)2(ab f -,最大值为f (n ); (3)当m +n 2<-b2a ≤n 时,最小值为)2(a b f -,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).三、考点解析考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同. 例、已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. 跟踪训练1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________. 考点二 二次函数的图象与性质 考法(一) 二次函数图象的识别例、若一次函数y =ax +b 的图象经过第二、三、四象限,则二次函数y =ax 2+bx 的图象只可能是( )考法(二) 二次函数的单调性与最值问题例、(1)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时,有最大值2,则a 的值为________.(2)设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是________. [解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题. 2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题例、(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解题技法]由不等式恒成立求参数取值范围的思路及关键:(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .跟踪训练1.已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( ) A.54 B .1或54 C .-1或54 D .-5或54课后作业1.已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( ) A .2,4 B .-2,4 C .2,-4 D .-2,-4 2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1 D .-2 3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞) D .(-∞,-6)6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________. 7.已知二次函数y =f (x )的顶点坐标为⎪⎭⎫⎝⎛-49,23,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.8.y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________. 9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.提高训练1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34 D .1 3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.。
二次函数知识点归纳总结
二次函数知识点归纳总结二次函数知识点总结二次函数是形如y=ax²+bx+c(a≠0)的函数。
与一元二次方程类似,二次项系数a≠0,而b和c可以为零。
二次函数的定义域是全体实数。
二次函数的根本形式是y=ax²。
a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向。
当a>0时,开口向上;当a<0时,开口向下。
顶点坐标是(0,0),对称轴是y轴。
当x增大时,y随之增大,当x减小时,y随之减小,当x=0时,y有最小值。
当二次函数的形式为y=ax²+c时,顶点坐标是(0,c),对称轴是y轴。
其他性质与y=ax²相同。
当二次函数的形式为y=a(x-h)²时,顶点坐标是(h,0),对称轴是以顶点为中心的垂直于x轴的直线。
当x增大时,y随之增大,当x减小时,y随之减小,当x=h时,y有最小值。
当二次函数的形式为y=a(x-h)²+k时,顶点坐标是(h,k),对称轴是以顶点为中心的垂直于x轴的直线。
其他性质与y=a(x-h)²相同。
平移二次函数的图像,可以将抛物线的顶点平移到(h,k)处。
具体方法是保持抛物线形状不变,将其顶点平移到(h,k)处。
如果k>0,则向上平移|k|个单位;如果k<0,则向下平移|k|个单位。
y=ax^2+k向右移动h个单位(h>0)或向左移动|h|个单位(h0)或向下移动|k|个单位(k<0)。
y=a(x-h)^2向上移动k个单位(k>0)或向下移动|k|个单位(k<0),平移规律为“左加右减,上加下减”,概括为八个字。
另一种方法是对于y=ax^2+bx+c,沿y轴平移m个单位向上(下)为y=ax^2+bx+c+m(或y=ax^2+bx+c-m),沿轴平移m个单位向左(右)为y=a(x+m)^2+b(x+m)+c(或y=a(x-m)^2+b(x-m)+c)。
对于二次函数y=a(x-h)^2+k和y=ax+bx+c,两者是不同的表达形式,通过配方可以得到y=ax^2+bx+c,其中h=-b/2a,k=a(h^2)+b(h)+c。
第十二课时二次函数(一)
已知点A(-3,y1)、B(-1,y2)、C(2,y3)都在抛物线y=a(x-1)2+c(a
<0)上,则y1、y2、y3的大小关系是
(用<连接)
在下列函数图象上任取不同两点 P1(x1,y1)、P2(x2,y2),一定能使
<0 成立的是
() A.y=3x﹣1(x<0) C.y=﹣ (x>0)
B.y=﹣x2+2x﹣1(x>0) D.y=x2﹣4x﹣1(x<0)
(2019·温州中考)已知二次函数y=x2-4x+2,关于该函数在-1≤x≤3的取
值范围内,下列说法正确的是(
)
A. 有最大值-1,有最小值-2 B. 有最大值0,有最小值-1
C. 有最大值7,有最小值-1
D. 有最大值7,有最小值-2
知识点4 二次函数图象的平移
1. 二次函数一般式平移:
平移前的 解析式
第12课时 二次函数的图象和性 质(一)
课时目标
1. 通过对实际问题的分析,体会二次函数的意义. 2. 会用描点法画出二次函数的图象,通过图象了解二次函数的性质. 3. 会用配方法将二次函数的解析式化为y=a(x-h)2+k的形式,并能由此得到 二次函数图象的顶点坐标,知道图象的开口方向,会画出图象的对称轴,知道 二次函数的增减性,并掌握二次函数图象的平移规律.
考点六 二次函数与几何的综合运用 例6 (2019·玉林中考改编)已知抛物线C:y=12(x-1)2-1,顶点为D,将C沿水平
方向向右(或向左)平移m个单位长度,得到抛物线C1,顶点为D1,C与C1相交 于点Q.若∠DQD1=60°,求m的值.
[方法归纳] 本题是抛物线的平移、中点坐标公式、等边三角形的判定、平面直角坐标系中 两点间距离公式的综合运用,用含m的代数式表示出点D,D1,Q的坐标是解题的关键.
一元二次方程二次函数一元二次不等式知识归纳
一元二次方程二次函数一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式是高中数学中的重要内容,掌握了这些知识可以帮助我们解决实际问题和推导数学关系。
本文将对一元二次方程、二次函数和一元二次不等式进行归纳总结,以帮助读者更好地理解和掌握这些知识。
一、一元二次方程一元二次方程是形如ax^2 + bx + c = 0(其中a ≠ 0)的方程,其中x 表示未知数。
解一元二次方程的常用方法有因式分解法、配方法和求根公式法。
1. 因式分解法当一元二次方程可以因式分解为两个一次因子相乘时,我们可以通过将方程两边置零,将每个因子等于零来求解。
例如,对于方程x^2 -5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,从而得到x = 2和x = 3两个解。
2. 配方法当一元二次方程无法直接因式分解时,我们可以通过配方法将方程转化为完全平方式,然后再进行求解。
例如,对于方程x^2 - 5x + 6 = 0,我们可以通过将常数项进行拆分,得到x^2 - 2x - 3x + 6 = 0,进而变为(x(x - 2) - 3(x - 2) = 0,再经过合并同类项和提取公因式的步骤得到(x -2)(x - 3) = 0,进而求得x = 2和x = 3两个解。
3. 求根公式法对于一元二次方程ax^2 + bx + c = 0,我们可以通过求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求解。
其中,±表示两个相反的解,而√表示平方根。
这种方法适用于所有一元二次方程的求解,包括没有实数解的情况。
二、二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。
二次函数的图像通常是一个开口朝上或朝下的抛物线。
掌握了二次函数的性质和图像特点可以帮助我们分析函数的变化趋势和解决实际问题。
二次函数知识点总结
二次函数知识点总结在数学中,二次函数的最高阶必须是二次的。
在数学中,二次函数主要研究学生对公式的应用,是数学知识的重点。
二次函数知识点总结有哪些?一起来看看二次函数知识点总结,欢迎查阅!数学二次函数知识点归纳计算方法1.样本平均数:⑴ ;⑵若,,…, ,则(a―常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若, ,…, ,则(a―接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:三、应用举例(略)初三数学知识点:第四章直线形重点相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。