word完整版圆锥曲线求轨迹方程汇总推荐文档

word完整版圆锥曲线求轨迹方程汇总推荐文档
word完整版圆锥曲线求轨迹方程汇总推荐文档

专题圆锥曲线(求轨迹方程)

求轨迹方程的常用方法

(1) 直接法:直接利用条件建立x, y之间的关系或F(x, y) = 0;

(2) 定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;

(3) 代入转移法(相关点法):动点P(x,y)依赖于另一动点Q(x o, y o)的变化而变化,并且Q(x o,y o)又在某已知曲线上,贝U可先用x,y的代数式表示x o,y o,再将x o,y o代入已知曲线得要求的轨迹方程.

1. 一个区别一一“轨迹方程”与“轨迹”

“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.

2. 双向检验一一求轨迹方程的注意点

求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

考向一直接法求轨迹方程

【例1】已知动点P(x, y)与两定点M(—1,0), N(1,o)连线的斜率之积等于常数g0).

(1) 求动点P的轨迹C的方程;

(2) 试根据入的取值情况讨论轨迹C的形状.

[解](1)由题意可知,直线PM与PN的斜率均存在且均不为零, 所以k PM k PN

y . y x+1 x—1

考向三 代入法(相关点法)求轨迹方程

【例3】如图8-8-2所示,设P 是圆x 2 + y 2= 25上的动点,

4

点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD|= 5

(1)当P 在圆上运动时,求点M 的轨迹C 的方程;

当 心0且 存1时,是椭圆的轨迹方程; 当 X 0时,是双曲线的轨迹方程; 当 A 0

时,是直线的轨迹方程. 综上,方程不表示抛物线的方程. 【答案】 C 考向二定义法求轨迹方程 【例2】已知两个定圆01和02,它们的半径分别是1和2,且|0102匸4.动圆M 与圆01内切, 又与圆02

外切,建立适当的坐标系,求动圆圆心 M 的轨迹方程,并说明轨迹是何种曲线. 【解】 如图所示,以0102的中点0为原点,0102所在直线为x 轴建立平面直角坐标系. 由 0102匸4,得 01( — 2,0), 02(2,0). 设动圆M 的半径为r ,则由动圆M 与圆01内切,有|M01|= r — 由动圆 M 与圆 02外切,有 |M02|= r + 2./.|M02—|M01|= 3. ???点M 的轨迹是以01, 02为焦点,实轴长为3的双曲线的左支. 3 2 2 ?£ = 2, c = 2,「?b =_

c —

a ~9 —'

???点M 的轨迹方程为 1X W-

3 7 —

1 2 . 2

=7.

1

6

4

【对点练习2】如图8-8-1所示,已知圆A : (x + 2)2

+ — 1与点B(2,0) 分别

求出满足下列条件的动点 P 的轨迹方程. ("△ PAB 的周长为10; (2) 圆P 与圆A 外切,且过B 点(P 为动圆圆心);

(3) 圆P 与圆A 外切,且与直线x = 1相切(P 为动圆圆心)

. y

【解】 ⑴根据题意,知 |FA|+ |PB|+ |AB| = 10,即 |PA|+|PB 匸 6> 4= |AB|, 故P 点轨迹是椭圆,且 2a =6,2c = 4,即a = 3,c = 2,b = ,5. X 2 y 2

因此其轨迹方程为9 + y = 1(尸0)

. (2)设圆 P 的半径为 r ,则 |FA|= r + 1,|PB|= r ,因此 |PA|-|PB|= 1. 图 8-8-

1

由双曲线的定义知, 1

a = 2,c = 2,

b =

因此其轨迹方程为 ⑶依题意,知动点 开口向左,p = 4.因此其轨迹方程为y

P 点的轨迹为双曲线的右支,且2a = 1,2c = 4,即 2 4 2 1 4x -神二 1 x > 2. P 到定点A 的距离等于到定直线x = 2的距离,故其轨迹为抛物线,且

2

=- 8x.

4

(2)求过点(3,0)且斜率为4的直线被C 所截线段的长度.

【解】(1)设M 的坐标为(x , y ), P 的坐标为(X P , y r ),由已知

'■'P 在圆上,??? x 2

+ 4$ 2= 25,即 C 的方程为 25+16

=

1.

4

4

(2)过点(3,0)且斜率为5的直线方程为y = 5(x - 3),设

直线与

3—何 3 +回 ? .x 1 2 , x 2 2

y 2),将直线方程

y =詼―3)代入C 的方程,得£+

x - 3 2 25

即 x 2— 3x — 8=

0.

X P = x ,

5 y p =4y.

C 的交点为 A(x i , y i ), B(X 2,

?线段 AB 的长度为 |AB|=" : x 1 — X 2

2

+ y 1 — y 2 2

=

1+ 26 X 1— X 22 =

25

41 41 25

X 41

=寸

【对点练习2】(2014合肥模拟)如图8-8-5所示,以原点O 为圆心的两个 同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于 点Q , P 在

y 轴上的射影为 M.动点N 满足PM = ?PN 且PM QN = 0.

(1)求点N 的轨迹方程;

⑵过点A (0,3)作斜率分别为k 1, k 2的直线|1, |2与点N 的轨迹分别 交于E , F 两点,k 1 k 2= — 9.求证:直线EF 过定点.

【解】(1 )由PM = ?PN 且PM (QN = 0可知N , P , M 三点共线且PM

QN.

过点Q 作QN 丄PM ,垂足为N ,设N(x , y), v|OP|= 3, |OQ|= 1,由相似可知P(3x , y).

2 2

??P 在圆 x 2 + y 2 = 9 上, (3x)2 + y 2 = 9,即£ + x 2= 1.所以点 N 的轨迹方程为 £+ x 2= 1.

y = k 1x + 3,

(2)证明:设 E(X E , y E ), F(X F , y F ),依题意,由

y 2

9

+ x

= 1 (k 1 + 9)x 2 + 6k 1x = 0,①

解得x = 0或x = —

6k 1 k 2

+ 9

所以X E = —6k 1 k 1+ 9,

6k 1

27— 3k 1

yE

=

k1

-

k ?

+9

+ 3

=2+9,

6k 1 27 - 3k1 E

k 1+ 9, k 1 + 9

9

9

vk1k 2=- 9,Ak 2=- ■.用 k 2=-

话替代①中的 k 1,

同理可得F

6k 1

k 1+ 9, 3k 2- 27

k 2

+ 9

显然E , F 关于原点对称,?直线EF 必过原点O.

一、选择题

1.若M , N 为两个定点,

【达标训练】且|MN|= 6,动点P满足PM PN = 0,则P点的轨迹是(

A ?圆

B ?椭圆

C .双曲线

D ?抛物线

1 1

2. 已知点F 4,0,直线I : x = — 4,点B 是I 上的动点?若过B 垂直于y 轴的直线与线

段BF 的垂直平分线交于点M ,则点M 的轨迹是(

)

A .双曲线

B .椭圆

C .圆

D .抛物线

3.

(2014天津模拟)平面

直角坐标系中,已知两点A(3,1), B( —1,3),若点C 满足OC = 2iOA +來金(0为原点),其中21,位€ R ,且刀+龙=1,则点C 的轨迹是(

)

A .直线

B .椭圆

C .圆

D .双曲线

4.

(2014合

肥模拟)如图8-8-4所示,A 是圆0内一定点,B 是圆周上 一个动点,AB 的中垂线

CD 与OB 交于E ,则点E 的轨迹是(

)

A .圆

B .椭圆

C .双曲线

D .抛物线

5. 设过点P(x , y)的直线分别与x 轴的正半轴和y 轴的正半轴交于 A , B 两点,点Q 与点P 关于y 轴对称, 且OQ AB = 1,则点P 的轨迹方程是(

A.3x 2 +

1(x >0, y >0)

C . 3x 2 — 2v 2= 1(x >0, y >0)

6?已知动点P 在曲线2x 2 — y = 0上移

动,则点A(0, — 1)与点P 连线中点的轨迹方程是(

)

7. 平面上有三个点 A( — 2, y), B 0, 2 , C(x , y),若AB 丄BC ,则动点C 的轨迹方程是

8. 动圆与。C 1: x 2 + — 1外切,与O C 2: x 2 + y 2 — 8x + 12 = 0内切,则动圆圆心的轨迹是 9. 已知△ ABC 的顶点B(0,0), C(5,0), AB 边上的中线长|CD 匸3,则顶点A 的轨迹方程为 1 2

a a

10. (2014佛山模拟)在厶ABC 中,A 为动点,B , C 为定点,B — 2, 0 , C 2,0 (a >0),

2

且满足条件sin C — sin B = 2sin A ,则动点A 的轨迹方程是 _________________ .

三、解答题

11. 已知定点F(0,1)和直线l 1: y =— 1,过定点F 与直线I 1相切的动圆的圆心为点C. (1)求动点C 的轨迹方程;

⑵过点F 的直线I 2交轨迹于P , Q 两点,交直线I 1于点R ,求RPRQ 的最小值.

O 为坐标原点,若BP = 2PA , )

B.|x 2-3y 2 = 1(x >0, y >0) D . 3x 2 + 2y 2= 1(x >0, y >0)

B . y = 8x 2

C . 2y = 8x 2— 1

D . 2y = 8x 2 + 1

图 8-8-4

、填空题

— — —— ——

上,M 点满足MB // OA , MAAB = MB BA , M 点的轨迹为曲线 C.

(1) 求C 的方程;

(2) P 为C 上的动点,I 为C 在P 点处的切线,求0点到I 距离的最小值.

13. (2013课标全国卷U )在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为2 2, 在y

轴上截得线段长为2 3.

(1) 求圆心P 的轨迹方程;

(2) 若 P 点到直线y = x 的距离为 乎,求圆P 的方程.

【达标训练】

参考答案

一、选择题

——

1. A.【解析】TPM PN = 0,:PM 丄PN ,「.点P 的轨迹是以线段MN 为直径的圆.

2. D.【解析】由已知:|MF 匸|MB|,由抛物线定义知,点 M 的轨迹是以F 为焦点,I 为准线 的抛物线.

x = 3 入一左, 3. A.I 解析】设C(x,y),因为OC =入OA +龙OB,所以(x,y)=入(3,1)+烈一1,3),即

y = A 1 + 3 ?2,

y + 3x 3y —x

又入+龙=1,所以〔° + —= 1,即x + 2y = 5,所以点C 的轨迹为

直线,故选A.

4. B .【解析】由题意知,|EA|+ |EO|=|EB| + |EO|= r(r 为圆的半径)且r > |OA|,故E 的轨迹为

以O , A 为焦点的椭圆,故选B.

x y ,— 1 x ,=

2x

,

6. C .【解析】设 AP 中点 M(x , y), P(x ,, y ),则 x =

, y =

,二

2

2

y ,= 2y +1,

代入 2x 2 — y = 0,得 2y = 8x 2— 1,故选 C.

12. (2011课标全国卷)在平面直角坐标系xOy 中,已知点A(0,— 1), B 点在直线y = — 3

解得

y + 3x 為=10

3y —

5. A.【解析】设 P(x , y), A(X A ,0),

— —

??BP = 2PA ,

X = 2 x A — x , y — y B = — 2y ,

B(0, y B ),则 BP = (x , y — y B ), PA = (X A — x ,— y),

3 x A = 2x , 即 2 y B = 3y.

?A 2x , 0 , B(0,3y).

,OQ = ( — x , y), AB =— 2x , 又 Q(—x , y), 则点P 的轨迹方程是|x 2 + 3y 2= 1(x >0, y >0).

3y , 「?OQ AB =^x 2 + 3y 2 = 1,

二、填空题

7. y2= 8x。【解析】AB= 0, 2 —( —2, y)= 2,—孑,E—C= (x, y)—0, 2 = x, 2 ,

相关主题
相关文档
最新文档