高考数学总复习(山东专用)第六章第3课时 二元一次不等式(组)与简单的线性规划问题 随堂检测(含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考数学总复习(山东专用)第六章第3课时 二元一次不等

式(组)与简单的线性规划问题 随堂检测(含解析)

1.在直角坐标平面内,不等式组⎩⎪⎨⎪

y ≤x +1y ≥0

0≤x ≤t

所表示的平面区域的面积为3

2

,则t 的

值为( )

A .-3或 3

B .-3或1

C .1 D. 3 解析:选C.

不等式组⎩⎪⎨⎪

y ≤x +1y ≥0

0≤x ≤t

所表示的平面区域如图中阴影部分所示.由⎩

⎪⎨

⎪⎧

y =x +1

x =t 解得交

点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),

由平面区域的面积S =1+t +1×t 2=32

,得t 2

+2t -3=0,解得t =1或t =-3(不合题

意,舍去),故选C.

2.O 为坐标原点,点M 的坐标为(1,1),若点N (x ,y )的坐标满足⎩⎪⎨⎪

x 2+y 2

≤4,2x -y ≥0,

y ≥0,

OM →·ON →

的最大值为( )

A. 2 B .2 2 C. 3 D .2 3

解析:选B.如图,点N 在图中阴影区域内,当O 、M 、N 共线时,OM →·ON →

最大,此时N (2,2),OM →·ON →

=(1,1)·(2,2)=22,故选B.

3.(2011·高考陕西卷)如图,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为________.

解析:

令b =2x -y ,则y =2x -b ,如图所示,作斜率为2的平行线y =2x -b ,

当经过点A 时,直线在y 轴上的截距最大,为-b ,此时b =2x -y 取得最小值,为b =2×1-1=1.

答案:1

4.设不等式组⎩⎪⎨⎪

2x +y -6≤0x +y -3≥0

y ≤2

表示的平面区域为M ,若函数y =k (x +1)+1的图象

经过区域M ,则实数k 的取值范围是________.

解析:作出平面区域,如图所示.因为函数的图象是过点P (-1,1),且斜率为k 的直

线l ,由图知,当直线l 过点A (1,2)时,k 取最大值1

2

;当直线l 过点B (3,0)时,k 取最小

值-14,故k ∈[-14,12

].

答案:[-14,1

2

]

相关文档
最新文档