电机测温用高精度NTC温度传感器-S

电机测温用高精度NTC温度传感器-S
电机测温用高精度NTC温度传感器-S

确定空调温度传感器阻值的方法

确定空调温度传感器阻值的方法 (摘自《家电维修》杂志2008年第2期) 采用CPU电路控制的空调中,温度传感器是必备元件,也是易损元件。其损坏或性能不良,空调轻则工作状态失常,重则根本不能开机。 由于各品牌空调所使用的传感器阻值不同,甚至同一品牌不同型号的空调所使用的也不一样,这就给维修人员检修造成一定难度,不能准确地判断传感器是否正常,或不知道到底该使用多大阻值的传感器。 下面通过对温度传感器电路结构的分析,结合多年的维修经验,向大家介绍一种快速判断其阻值的方法。 温度传感器的基本电路如图1所示,从图中可以看出,三路传感器都是分别和一个电阻串联后,对+5V(部分空调使用的是+3.3V)电压进行分压,分压后的电压送入CPU内部。 由于空调温度传感器采用的都是负温度系数热敏电阻,即在温度升高时其阻值减小,温度降低时阻值增大。所以CPU的输入电压规律就是:温度升高时,CPU 的输入电压升高,温度降低时,CPU的输入电压随之降低。这一变化的电压进入CPU内部电路进行分析处理,来判断当前的管温或室温,并通过内部程序和人为设定,来控制空调的运行状态。 由于送到CPU的采样电压会随温度高低变化而在较大范围内变化,所以厂家在设计时,一般都以25℃为准,将该采样电压设计成电源电压的一半,以便给温度变化导致的电压变化留出充分的余地。如果采样电压设计得过高或过低,都将不能正常反映出当前的温度变化。由于R1、R2、R3三个电阻的阻值是恒定的,如果不考虑CPU接口的内部电路阻值(事实上该接口的内部阻值比较大,可以不予考虑),那么要保证其A、B、C三点的电压为2.5V左右(在25℃状态下),RT1、RT2、RT3就只能尽量使用和R1、R2、R3同阻值的传感器,否则该点电压压降偏离较多。 据上述分析可以推断,在检修空调时,完全可以通过与传感器串联的电阻阻值来判断传感器是否正常,但要注意温度对传感器阻值的影响。当需要更换某个传感器时,只要测量与之串联电阻的阻值,然后选用和它阻值接近的传感器即可。 表1 常见空调传感器阻值、品牌对照表 传感器阻 值封装形式 使用部 位 适用品牌

高压异步电动机的在线监测及故障防范

高压异步电动机的在线监测及故障防范 发表时间:2019-12-23T14:50:58.733Z 来源:《电力设备》2019年第18期作者:邱俊杰 [导读] 摘要:异步电动机(尤其是鼠笼式异步电动机)以其结构简单、制造成本低廉、使用寿命长、维护工作量小而在传动领域占有极其重要的地位。 (江苏利港电力有限公司江苏江阴市 214444) 摘要:异步电动机(尤其是鼠笼式异步电动机)以其结构简单、制造成本低廉、使用寿命长、维护工作量小而在传动领域占有极其重要的地位。目前,对生产设备的维护主要是进行定期维护和故障后维修。这种传统的维修模式容易造成维修过量和维修不足,从而导致维修成本增加,降低设备使用寿命,严重时将导致发生严重的停机或损坏事故。基于此,本文对高压异步电动机的在线监测及故障防范进行分析。 关键词:高压异步;电动机;在线监测;故障防范 1高压异步电动机在线状态监测的重要意义 高压异步电动机归属于能量转换设备的范畴,它可以将电能转换为机械能,由于高压异步电动机的使用和控制非常方便,从而使其在多个领域中得到了广泛应用,如工业生产、国防、交通运输、医疗电器设备等等,高压异步电动机作为一种动力驱动装置,它最主要的作用是为相应的设备提供动能,由此使得高压异步电动机具有了不可替代性的特点。随着各行各业的不断发展,对高压异步电动机的需求量日益增大,为了满足不同领域的实际应用需要,高压异步电动机产品的类型进一步增多,每一类高压异步电动机有着不同的规格、结构形式及使用条件,虽然高压异步电动机的类型有所差别,但是几乎所有高压异步电动机的内部结构都非常近似,具体包括机械部分、电路、磁路及绝缘等等。在很多应用领域中,高压异步电动机经常都需要保持连续不间断地运转,加之运行环境的影响,使得高压异步电动机的故障发生率相对较高,由于高压异步电动机的故障较为复杂,且与多方面因素有关,从而导致了高压异步电动机的维修技术难度大,对维修人员的技术水平要求较高。就工业生产而言,其应用的高压异步电动机多为大型异步电机,其运行状态的优劣,对工业生产过程有着直接影响,如果高压异步电动机出现故障,不但会导致自身受损,而且还可能造成工业生产过程中断,由此会给企业带来巨大的经济损失。为了有效减少或杜绝高压异步电动机故障问题的发生,需要对其运行状态进行监测,高压异步电动机在线状态监测技术的出现及其在高压异步电动机上的应用,除了可以防止高压异步电动机重大事故的发生,还能在较短的时间内找到故障原因,给维修工作提供可靠依据。由此可见,对高压异步电动机的运行状态进行监测显得尤为重要。 2高压异步电动机的在线监测技术 对于一些较为重要的生产工序而言,其通常需要电动机保持长时间、连续不间断地运行,在这样的工序当中配置状态监测系统能够起到如下作用:一是能够对电动机进行有效的保护,提前发现电动机中潜在的故障和隐患问题,避免突发性故障引起设备损坏和危及操作人员人身安全的情况发生;二是对电动机的运行状态参数进行持续监测与采集,并将采集到的数据信息存储到数据库当中,通过对参数的比较分析,对电动机的实际运行状态进行评估,为检修提供依据。 2.1电流监测技术 这种监测技术在异步电动机中比较常见,它是目前异步电动机监测最为有效的方式之一。由于电流信号的采集比较容易,因此可将之做成非侵入式,这种监测技术较为突出的应用优势在于能够与电动机保护和调速系统进行有效集成。当电动机的定子绕组发生匝间短路故障时,可将负序电流及负序阻抗作为故障监测及诊断依据;若是电动机出现气隙偏心问题时,在圆周上气隙磁导会呈现出不均匀分布的状态,这样便可在定子电流中感应出故障特征的谐波分量,从而对故障性质进行判断。 2.2振动监测技术 这是一种借助振动传感器对电动机轴承或机座振动频率进行监测的方法(如图1所示)。电动机处于正常运行状态时,轴承及机座的振动频率一般不会出现较大的变化,如果电动机发生故障,则会导致轴承的振动频率出现变化,通过传感器可以对电动机的振动频率进行实时采集,与已知的故障特征频率进行比较后,可以判断故障的性质,并找出故障部位。 2.3温度监测技术 这种监测方法是通过埋置在电动机轴承、定子绕组等部位的温度传感器,对电动机运行过程中的温度信号进行检测,从而判断电动机是否存在故障。温度监测是应用较早的一种电动机状态监测方法,虽然这种方法能够对电动机的运行状态进行监测,但由于受传感器布设位置的限制,使其很难准确对电动机故障进行定位,所以这种监测技术常被用于电动机的运行状态分析。 2.4功率监测技术 这是一种新型的电动机状态监测技术,其主要是通过对电动机运行过程中瞬时功率的分析进行故障监测与诊断。如,对线电压与线电流构成的瞬时功率进行监测,能够发现电动机转子侧的故障问题;对三相线电压与线电流构成的瞬时功率进行监测,可以诊断电动机的其它故障问题。 图1 3异步电动机的故障诊断 设备的故障诊断方法有算法诊断、基于规则的诊断和基于模型的诊断等型式。算法诊断由逻辑和算法构成,实时性强,但诊断知识和推理混在一起,不利于诊断知识的扩充与修改。基于规则的诊断是利用领域专家的启发性经验知识来进行诊断,具有知识表达直观、推理

空调温度传感器损坏后阻值的确定和变通代换

空调温度传感器损坏后阻值的确定和变通代换 天津陶龙 市上常见的空调,温度控制都是由微处理器(CPU) 控制的,其感温元件温度传感器的损坏率,在控制电路中是较高的,一但出现开路、短路或特性曲线不良等故障,空调将不能正常工作。显示不正常的代码。 由于温度传感器上没有标明参数和阻值,往往在维修中难以确定,就是同一品牌,小同型号。其阻值不一定相同。 CPU 控温接口电路和控温的原理( 示意图如图1 所示) 。温度传感器采用的是负温度系数热敏电阻,即在温度升高时阻值减小。相反温度降低时阻值增大。CPU 内部与温度传感器接口是一个运放比较器,例如空调室温、管温传感器比较器的负端取样电压为CPU 电源电压的 1 / 2 ,也就是 2.5V 。外围电路由RT1 和RT2 、R1 和R2 构成分压电路,且以常温25 ℃为基准,也就是25 ℃时,RT1=R1 、RT2=R2 ,A 、B 点电压为 2.5V 。有些电路设有R3 、R4 主要起缓冲作用。当环境温度升高时RT1 阻值减小, A 点电压上升,比较器输出一差压,经CPU 内部一系列处理,去控制内外机运行状态。 还有部分大型空调、变频空调外机控制板,温度传感器( 如压缩机排放传感热敏电阻和化霜传感热敏电阻) 接口的取样电压不是 2.5V ,而是1 /4 电源电压( 也就是1.25V) ,必须使温度传感器的阻值是下偏置电阻的3 倍,才符合电路设计要求。 这样, A 、 B 两点电压在常温25 ℃时,RT1 阻值为250k Ω ( 排气热敏电阻耍大) ,下偏置电阻R1 定为82k Ω,同理:化霜热敏电阻RT2 为10k Ω.下偏置电阻R2 为3.3k Ω。 有人认为“看下偏置电阻确定热敏电阻的阻值”,对于图 1 电路是可行的,但当分压比不同时,就不成立了 其实确定热敏电阻阻值有一种方法特别简单.选一只50k Ω电位器和一个热敏电阻通用插头.为了方便,之间用一米多长导线连接好,拔下有故障的热敏电阻,插上通用插头,给空调上电,用万用表5V 挡测试电位器两端子的电压,慢慢转动电位器手柄,当电压为 2.5V 时,停止转动,此时电位器的阻值就是热敏电阻当时的阻值。参考当时的环境温度.例如:环境温度30 ℃左右,实测阻值为8k Ω,参考温度曲线,那么该温度传感器阻值为10k Ω。如果是排气传感器.电压应为 1.25V 时动作.把电位器换为470k Ω即可.方法相同。 在维修中手头上住住只有常用的5k Ω和10k Ω的热敏电阻,对于15kQ 、20k Ω和50k Ω的代换,那只能暂作变通代换,其方法有二。第一种方法:可靠、对运行参数影响不大,即准备几只5k Ω和10k Ω的固定电 5 且,将热敏电阻和下偏置电阻一起换。 例如一台原装大金FVl25DAV1 空调。内机管温热敏电阻特性曲线不良,压机工作几分钟停机.经确定其阻值为20k Ω,因手头只有10k Ω配件,用10k Ω热敏电阻代换原20k Ω热敏电阻,将下偏置20k Ω碳膜电阻换为10k Ω固定电阻后整机工作正常。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

空调温度传感器的作用

空调温度传感器的作用,好像是有2 个温度传感器,以及它们的位置 最佳答案 控制室内环境温度冷凝器管子温度 空调专用温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。 空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。 空调温度传感器的作用 一、室内环境温度传感器: (1)制热或制冷时用于自动控制室内温度 (2)制热是用于控制辅助电加热器工作. 二、室内盘管温度传感器: (1)冬季制热时用来防冷风控制. (2)夏季制冷时用来防冻结保护 (3)用于控制室内机风速. (4)与芯片配合实现故障自珍. (5)在制热时控制室外机出霜. 三、室外环境温度传感器: (1)室外温度过高或过低时系统自动保护. (2)制冷或制热时用于室外机风速. 四、室外盘管温度传感器: (1)制热时用于室外机除霜. (2)制冷或制热时用于过热保护或防冻结保护. 五、室外机压缩机排气温度传感器: (1)压缩机排气温度过高时系统进行自动保护 (2)在变频空调中用于控制电子膨胀阀的开启度以及压缩机频率的升降室内环温NTC作用: 室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。 值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。 变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

NTC热敏电阻温度传感器

APPLICATIONS Temperature test in all kinds of air-condition,refrigerator,water boiler,microwave oven. PART NUMBERING FEATURES High precision and high stability Quick temperature response Resistant to heat shock Moisture resistant Excellent quality and high stability Guang Dong Fenghua Advanced Technology (Holding)Co.,LTD.code NTC NTC temperature sensors code 25 Rated zero-power resistance R unit: The first two are significant figure of resistance and the third one expresses number of following zeros 25 FH -CWF XXX X XXXX X X /XXXX X % Tolerance of R % 25 B B value Code B %Tolerance of B value % B B value Temperature Code Length of the sensor unit:mm Termination shape code NTC NTC THERMISTOR TEMPERATURE SENSORS

高精度温度传感器芯片调研及选型指导

型号ADT7410ADT7411输出类型:Digital Digital 精度:±0.5°C(?40°C 至+105°C,2.7 V 至3.6 V)Typ=±0.5 Max =±3 °C from 0°C to 85°C. Typ=±2 Max=±5 °C from ?40°C to +120°C (@VDD=3.3V±10%) 数字输出 - 总线接口:2-Wire, I2C, SMBus3-Wire, Microwire, SPI 电源电压-最大: 5.5 V 5.5 V 电源电压-最小: 2.7 V 2.7 V 最大工作温度:+ 150 C+ 120 C 最小工作温度:- 55 C- 40 C 安装风格:SMD/SMT SMD/SMT 封装 :SOIC-8QSOP-16 设备功能:Temperature Sensor Temperature Sensor 商标:ADI ADI 数字输出 - 位数:16 bit10 bit 电源电流:230 uA 3 mA 温度分辨率:0.0078°C0.25°C 温漂: 温度迟滞:0.02°C(温度循环= 25°C至125°C 并返回至25°C) 可重复性:0.01°C(25°C)

型号AD592ADT6501 输出类型:Analog Digital 精度:0.5°C MAX @ 25°C Typ=±0.5 Max= ±6 °C from ?45°C to ?25° C Typ=±0.5 Max=±4 °C from ?15°C to +15° Typ=±0.5 Max=±4 °C from +35°C to +65 °C 数字输出 - 总线接口:2-Wire, I2C, SMBus- 电源电压-最大:30 V 5.5 V 电源电压-最小: 4 V 2.7 V 最大工作温度:+ 105 C+ 125 C 最小工作温度:- 25 C- 55 C 安装风格:Through Hole SMD/SMT 封装 :TO-92-3SOT-23-5 设备功能:Temperature Transducer Temperature Switch 商标:ADI ADI 数字输出 - 位数:11 bit 电源电流:50 uA 温度分辨率: 温漂:0.08°C (Drift over 10 years, if part is operated at 55°C) 温度迟滞:可重复性:

温度传感器常见故障的处理方法

温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。在实际使用上通常会和一些仪表配套使用,但也会出现很多故障现象。下面就让艾驰商城小编对温度传感器常见故障的处理方法来一一为大家做介绍吧。 第一,被测介质温度升高或者降低时变送器输出没有变化,这种情况大多是温度传感器密封的问题,可能是由于温度传感器没有密封好或者是在焊接的时候不小心将传感器焊了个小洞,这种情况一般需要更换传感器外壳才能解决。 第二,输出信号不稳定,这种原因是温度源本事的原因,温度源本事就是一个不稳定的温度,如果是仪表显示不稳定,那就是仪表的抗干扰能力不强的原因。 第三,变送器输出误差大,这种情况原因就比较多,可能是选用的温度传感器的电阻丝不对导致量程错误,也有可以能是传感器出厂的时候没有标定好。 温度传感器出现故障的情况很少见,只要出厂的时候进行仔细的检测,这些情况都是可以避免的,所以温度传感器在出厂的时候一地要进行检验,客户也可找传感器厂家索要出厂检测报告进行参考。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/9b15590551.html,/

选择ntc温度传感器的注意事项

ntc温度传感器是温度测量仪表的核心部分,品种繁多。我们在选购ntc温度传感器的时候需要通过多个方面来考虑,如果选购的ntc温度传感器不合适在使用的时候很容易造成一定的损坏。那么我们具体要怎样选用呢?下面就让艾驰商城小编对选择ntc温度传感器的注意事项来一一为大家做介绍吧。 一是要根据应用的工作温度范围不同来选材.ntc温度传感器作为测温用的敏感元器件。根据其工作温度范围的不同来选择不同的材质至关重要。传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成。要根据不同的工作环境温度来选择不同的材质。如:工作温度在105度以内的,我们会选用耐温105度pvc线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线。 二是要根据工作场合所要求测温的精度来选型。精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以。决定ntc温度传感器精度的有两个因素:一是热敏电阻本身的误差。热敏电阻的阻值误差,b值误差越小,测量精度越高。二是传感器的感温头与测温对象的接触方式。直接接触的比间接接触的测量精度要高。另因ntc热敏电阻的r-t曲线是非线性的。它不可能保证在很宽的工作温度范围内的精度都是一样的。因此,要想得到较高的测量精度。选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据r-t曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大)。如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点。 三是要根据所使用的工作场合所要求的灵敏度来选型。不同的应用场合要求ntc温度传感器的响应速度快慢不一。而不同的材料有不同的导热系数。. 影响ntc温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数。热时间常数小的,响应速度快。二是感温头外壳材质的导热系数,。导热系数高的材料热传导性能优良。三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点。四是感温头内部填充的导热胶。感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/9b15590551.html,/

空调温度传感器工作原理及故障分析

空调温度传感器为负温度系数热敏电阻,简称ntc,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。 空调常用的ntc有室内环温ntc、室内盘管ntc、室外盘管ntc等三个,较高档的空调还应用外环温ntc、压缩机吸气、排气ntc等。温度变化使ntc阻值变化,cpu端子的电压也随之变化,cpu根据电压的变化来决定空调的工作状态。 1、室内环温ntc作用:室内环温ntc根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值 +1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。 2、室内盘管ntc 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。 3、室外盘管ntc 制热化霜温度检测,制冷冷凝温度检测。制热化霜是热泵机一个重要的功能,第一次化霜为cpu定时(一般在50分钟),以后化霜则由室外盘管ntc控制(一般为—11℃要化霜,+9℃则制热)。制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。外环温ntc 控制室外风机的转速、冬季预热压缩机等。 4、排气ntc 使变频压缩机降频,避免外机过热,缺氟检测等。 5、吸气ntc 控制制冷剂流量,有步进电机控制节流阀实现。 故障分析 室内外盘管ntc损坏率最高,故障现象也各种各样。室内外盘管ntc由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。化霜故障可代换室外盘管ntc或室外化霜板。在电源正常而空调不工作时也要查室内环温ntc;空调工作不停机或达不到设定温度停机,也要先查室内环温ntc;变频空调工作不正常也会和它有关。因室内环温ntc若出现故障会使得cpu 错误地判断室内环温而引起误动作。室内环温ntc损坏率不是很高。 三星高新空调器疑难故障维修一例 故障现象:三星kfr-72lw/bds柜式空调器制冷效果下降,高压压力偏低于正常值分析与检测:四通阀吸气管温度较高,阀体内制冷剂气流声增大,贮液器温度较高。 维修方法:更换四通阀后,试机正常。 温馨提示:四通阀的常见故障及检修方法 (1)电磁换向阀的常见故障为:电磁阀阀芯不动作,堵塞、滑块变形、漏造成滑块不动作或动作不到位。 (2)四通阀的更换方法及注意事项 在更换四通阀时,首先将制冷系统中的制冷剂放出,给制冷系统充注氮气,并焊下损坏的四通阀。 将新更换的四通阀线圈取下,采取降温措施,将阀体放入水槽中,把焊接管口留在水面上,注意不要让水分进入阀体。或用水浸湿面纱后放在阀体上进行降温维修,以防止因烧

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

电机轴承温度传感器

电机轴承温度传感器 一、电机轴承温度传感器概述: 轴承温度传感器分为PWZD普通型电机轴承温度传感器、AWZD增安型电机轴承温度传感器,BWZD隔爆型电机轴承温度传感器,两轴承共用一个接线盒(BWZG),传感器探头可根据客户要求制作,订货时需标明安装螺母的规格和探头直径及长度。 ※正常产品不带绝缘,需zmkj013带绝缘产品则在型号后加“J”如(BWZDJ)。 ※正常产品测温元件为两线制,而三线制则在型号后加“3”如(BWZD3) ※正常产品的压紧螺母或安装螺栓为可动式,如要求不可动,订货时需标注如(BWZD不动)。 ※正常产品引线电缆长度为0.5-3M,如有不同要求订货时需注明。 ※正常产品测温元件为单支,如需双支,请在型号前面加“2”如(2BWZD)。 二、电机轴承温度传感器基本技术参数: ※传感器主体外壳防护能力为IP54 ※传感器为连续工作制(S1) 名称:传感器 电流:4-20mA 电压:18-24V 测量范围:0-200℃ WZD系列温度传感器(请咨询:152贾1537广7753伟)是专为测量轴承温度(也可测量固体、液体、气体温度)的温度传感器,其测量元件为Pt100铂热电阻,配置恰当的测温仪表后,可监测轴承温度并可实现报警和控制。 三、电机轴承温度传感器安装及使用 ※用于测量电机轴承温度时,首先将传感器接线盒安装在电机的适当位置,拧紧连接螺丝,接上地线。 ※将传感器的感温元件(探头)插入电机轴承附近的螺孔中(如电机壳,轴壳上钻孔),并拧紧安装螺母。 ※将传感器的接线盒打开,将引出电缆接好,盖上盒盖,将引出电缆接到指定地点与本安型二次仪表连接。 ※安装时引线每间隔300mm用扎头固定,护线弹簧管弯曲半径不小于60mm,引线过长时可挽圈挂于合适处,并远离发热设备。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

温度传感器工作原理

空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC 根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC 室内盘管制冷过冷(低于+3℃)保护检测、制冷缺氟检测;制热防冷风吹出、过热保护检测。空调制冷30分钟自动检查室内盘管的温度,若降温达不到20℃则自动诊断为缺氟而保护。若因某些原因室内盘管温度降到+3℃以下为防结霜也停机(过冷)制热时室内盘管温度底于32℃内风机不吹风(防冷风),高于52℃外风机停转,高于58℃压缩机停转(过热);有的空调制热自动控制内风机风速;有的空调自动切换电辅热变频空调转速控制等。室外盘管NTC 制热化霜温度检测,制冷冷凝温度检测。制热化霜是热泵机一个重要的功能,第一次化霜为CPU定时(一般在50分钟),以后化霜则由室外盘管NTC控制(一般为—11℃要化霜,+9℃则制热)。制冷冷凝温度达68℃停压缩机,代替高压压力开关的作用;变频制冷则降频阻止盘管继续升温。外环温NTC 控制室外风机的转速、冬季预热压缩机等。排气NTC 使变频压缩机降频,避免外机过热,缺氟检测等。吸气NTC 控制制冷剂流量,有步进电机控制节流阀实现。故障分析室内外盘管NTC损坏率最高,故障现象也各种各样。室内外盘管NTC由于位处温度不断变化及结露或高温的环境,所以其损坏率较高。主要表现在电源正常而整机不工作、工作短时间停机、制热时外机正常内风机不运转、外风机不工作或异常停转,压缩机不启动,变频效果差,变频不工作,制热不化霜等。化霜故障可代换室外盘管NTC或室外化霜板。在电源正常而空调不工作时也要查室内环温NTC;空调工作不停机或达不到设定温度停机,也要先查室内环温NTC;变频空调工作不正常也会和它有关。因室内环温NTC若出现故障会使得CPU错误地判断室内环温而引起误动作。室内环温NTC损坏率不是很高。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

相关文档
最新文档