2016年辽宁省抚顺市中考数学试卷
2016年中考数学真题试题及答案(word版)
(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
辽宁省抚顺市抚顺县2016-2017学年八年级(上)期中数学试卷(解析版)
2016-2017学年辽宁省抚顺市抚顺县八年级(上)期中数学试卷一、选择题:每小题3分,共30分,下列各题的备选答案中只有一个是正确的.1.下列标志中,可以看作是轴对称图形的是()A.B. C.D.2.在一个三角形的外角中,钝角至少有()A.0个 B.1个 C.2个 D.3个3.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.184.将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位5.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,三角形纸片中,有一个角为60°,剪去这个角后,得到一个四边形,则∠1+∠2的度数为()7.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7 B.14 C.17 D.208.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.9.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个 B.2个 C.3个 D.4个10.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC 的度数是()二、填空题:每小题3分,共24分.11.如图所示,图中的x的值是.12.如图,点P在∠AOB的平分线上,PE⊥OA于E,PF⊥OB于F,若PE=3,则PF=.13.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=度.15.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是.(只填一个即可)16.如图,△ABC中,AB=5,AC=7,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N,且MN∥BC,则△AMN的周长等于.17.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=cm.18.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有个.三、解答题:6分.19.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.四、解答题:8分.20.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.五、解答题:8分.21.如图,△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点坐标;(2)将△ABC向左平移1个单位,作出平移后的△A2B2C2,并写出△A2B2C2的坐标.六、解答题:8分.22.如图,AB=AC,AD=AE,∠1=∠2,求证:∠B=∠C.七、解答题:8分.23.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.八、解答题:8分.24.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.2016-2017学年辽宁省抚顺市抚顺县八年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共30分,下列各题的备选答案中只有一个是正确的.1.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.2.在一个三角形的外角中,钝角至少有()A.0个 B.1个 C.2个 D.3个【考点】三角形的外角性质.【分析】因为三角形的内角和为180°,所以至少有两个锐角,因为外角和相邻的内角互补,所以外角中至少有两个钝角.【解答】解:一个三角形的三个内角中,至少有两个锐角,三个外角中至少有两个钝角.故选C.3.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.18【考点】等腰三角形的性质.【分析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.【解答】解:8+8+5=16+5=21.故这个三角形的周长为21.故选:A.4.将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位【考点】关于x轴、y轴对称的点的坐标.【分析】熟悉:平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.故选B.5.如果一个多边形的内角和是720°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是6.故选:C.6.如图所示,三角形纸片中,有一个角为60°,剪去这个角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240° D.300°【考点】多边形内角与外角;三角形内角和定理.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360°即可求得∠1+∠2的度数.【解答】解:∵∠A=60°,∴∠B+∠C=180°﹣60°=120°.∵四边形的内角和等于360°,∴∠1∠+2=360°﹣120°=240°.故选C.7.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A.7 B.14 C.17 D.20【考点】线段垂直平分线的性质.【分析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC 的周长为10,求得AC+BC的长,则可求得△ABC的周长.【解答】解:∵在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.8.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.9.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【解答】解:∵,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.10.已知:点P、Q是△ABC的边BC上的两个点,且BP=PQ=QC=AP=AQ,∠BAC 的度数是()A.100°B.120°C.130° D.150°【考点】等腰三角形的性质.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°.故选:B.二、填空题:每小题3分,共24分.11.如图所示,图中的x的值是65°.【考点】多边形内角与外角.【分析】根据四边形内角和等于360°列出方程求解即可.【解答】解:依题意有:x+x+140°+90°=360°,解得x=65°.故答案为:65°.12.如图,点P在∠AOB的平分线上,PE⊥OA于E,PF⊥OB于F,若PE=3,则PF=3.【考点】角平分线的性质.【分析】由点P在∠AOB的平分线上,PE丄0A于E,PF丄OB于F,根据角平分线上的点到角的两边的距离相等得到PF=PE=3.【解答】解:∵点P在∠AOB的平分线上,PE丄0A于E,PF丄OB于F,∴PF=PE,而PE=3,∴PF=3.故答案为:3.13.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【考点】多边形内角与外角.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=++++=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=25度.【考点】三角形的外角性质;三角形内角和定理.【分析】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=80°,AB=AD=DC,∴∠ABD=∠ADB=50°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=130°,又∵AD=DC,∴∠C=∠DAC==25°,∴∠C=25°.15.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是BD=CE.(只填一个即可)【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,如BD=CE,根据SAS推出即可;也可以∠BAD=∠CAE等.【解答】解:BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),故答案为:BD=CE.16.如图,△ABC中,AB=5,AC=7,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB、AC相交于点M、N,且MN∥BC,则△AMN的周长等于12.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据BO平分∠CBA,CO平分∠ACB,且MN∥BC,可得出MO=MB,NO=NC,所以三角形AMN的周长是AB+AC.【解答】解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=12,AC=18,∴△AMN的周长=AM+MN+AN=AB+AC=12.故答案为:12.17.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=6cm.【考点】等边三角形的判定与性质.【分析】首先证明△ABC为等边三角形,然后依据SSS证明△ABD全等△ACD,从而可得到∠BAD=∠CAD,然后依据等腰三角形三线合一的性质可得到BE=CE,从而可求得BC的长,故此可得到AB的长.【解答】解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠BAC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.18.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4或2个.【考点】等腰三角形的判定;坐标与图形性质.【分析】分为三种情况:①OA=OP,②AP=OP,③OA=OA,分别画出即可.【解答】解:以O为圆心,以OA为半径画弧交x轴于点P和P′,此时三角形是等腰三角形,即2个;以A为圆心,以OA为半径画弧交x轴于点P″(O除外),此时三角形是等腰三角形,即1个;作OA的垂直平分线交x轴于一点P1,则AP=OP,此时三角形是等腰三角形,即1个;2+1+1=4,当OA与x轴正半轴夹角等于60°的时候,图中的P1,P'和P'会重合,是一个点,加上原来的负半轴的P点,总共2个点,故答案为4或2.三、解答题:6分.19.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4,求x的值.【考点】多边形内角与外角;三角形内角和定理.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出x=108°﹣72°=36度.【解答】解:因为五边形的内角和是540°,则每个内角为540°÷5=108°,∴∠E=∠C=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=÷2=36°,∴x=∠EDC﹣∠1﹣∠3=108°﹣36°﹣36°=36°.四、解答题:8分.20.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.五、解答题:8分.21.如图,△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点坐标;(2)将△ABC向左平移1个单位,作出平移后的△A2B2C2,并写出△A2B2C2的坐标.【考点】作图﹣轴对称变换;作图﹣平移变换.【分析】(1)作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据图形平移的性质作出平移后的△A2B2C2,并写出△A2B2C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求,A1(3,2),B1(4,﹣3),C1(1,1);(2)如图,△A2B2C2即为所求,A2(﹣4,2)B2(﹣5,﹣3),C2(﹣2,1).六、解答题:8分.22.如图,AB=AC,AD=AE,∠1=∠2,求证:∠B=∠C.【考点】全等三角形的判定与性质.【分析】由条件证明△ABD≌△ACE即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠B=∠C.七、解答题:8分.23.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【考点】等边三角形的性质.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.八、解答题:8分.24.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.2017年3月19日。
2017年辽宁省抚顺市中考数学试卷(含解析版)
2017年辽宁省抚顺市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)﹣2的相反数是( )A .﹣12B .12C .﹣2D .22.(3分)目前,中国网民已经达到731 000 000人,将数据731 000 000用科学记数法表示为( ) A .0.731×109 B .7.31×108C .7.31×109D .73.1×1073.(3分)如图在长方形中挖出一个圆柱体后,得到的几何体的左视图为( )A .B .C .D .4.(3分)下列运算正确的是( )A .a 8÷a 4=a 2B .(﹣2a 2)3=﹣8a 6C .a 2•a 3=a 6D .(a ﹣3)2=a 2﹣95.(3分)我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s 2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是( )选手 甲 乙 丙 丁 s 20.50.50.60.4A .甲B .乙C .丙D .丁6.(3分)为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( )A .30x+2=25xB .30x =25x+2C .30x =25x−2D .30x−2=25x7.(3分)如图,分别过矩形ABCD 的顶点A 、D 作直线l 1、l 2,使l 1∥l 2,l 2与边BC交于点P,若∠1=38°,则∠BPD为()A.162°B.152°C.142° D.128°8.(3分)若一次函数y=kx+b的图象如图所示,则()A.k<0,b<0 B.k>0,b>0 C.k<0,b>0 D.k>0,b<09.(3分)下列事件中是必然事件的是()A.任意画一个正五边形,它是中心对称图形B.实数x使式子√x−3有意义,则实数x>33,b=√4,则a>bC.a,b均为实数,若a=√8D.5个数据是:6,6,3,2,1,则这组数据的中位数是310.(3分)如图,菱形ABCD的边长为2,∠A=60°,一个以点B为顶点的60°角绕点B旋转,这个角的两边分别与线段AD的延长线及CD的延长线交于点P、Q,设DP=x,DQ=y,则能大致反映y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:ab2﹣a=.12.(3分)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是.13.(3分)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为.14.(3分)已知A(x1,y1),B(x2,y2)是反比例函数y=﹣3x图象上的两点,且x1>x2>0,则y1y2(填“>”或“<”).15.(3分)一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中有绿球个.16.(3分)如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB 方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB的高度为米(结果保留根号).17.(3分)如图,在矩形ABCD中,CD=2,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为.18.(3分)如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1的周长和为.(n≥2,且n为整数)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(a﹣2﹣5a+2)÷a−32a+4,其中a=(3﹣π)0+(14)﹣1.20.(12分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)在平面直角坐标系中,A,B,C,三点坐标分别为A(﹣6,3),B (﹣4,1),C(﹣1,1).(1)如图1,顺次连接AB,BC,CA,得△ABC.①点A关于x轴的对称点A1的坐标是,点B关于y轴的对称点B1的坐标是;②画出△ABC关于原点对称的△A2B2C2;③tan∠A2C2B2=;(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为60°,原来的格点A,B,C分别对应新网格中的格点A′,B′,C′,顺次连接A′B′,B′C′,C′A′,得△A′B′C′,则tan∠A′C′B′=.22.(12分)学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?五、解答题(满分12分)23.(12分)如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA 于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若HB=2,cosD=35,请求出AC的长.六、解答题(满分12分)24.(12分)某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如下表:销售第x天第1天第2天第3天第4天 (30)销售单价m(元/件)49484746 (20)日销售量(件)45505560 (190)(1)过程表中数据,分别直接写出m与x,n与x的函数关系式:,;(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?七、解答题(满分12分)25.(12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设APOQ=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点E从点A出发,以每秒√2个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB 于点F,以线段EF为斜边向右作等腰直角△EFG.(1)求抛物线的解析式;(2)当点G落在第一象限内的抛物线上时,求出t的值;(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经过的路径长.2017年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)﹣2的相反数是( )A .﹣12B .12C .﹣2D .2【考点】14:相反数.【分析】依据相反数的定义求解即可. 【解答】解:﹣2的相反数是2. 故选:D .【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(3分)目前,中国网民已经达到731 000 000人,将数据731 000 000用科学记数法表示为( ) A .0.731×109 B .7.31×108C .7.31×109D .73.1×107【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将数据731 000 000用科学记数法表示为7.31×108, 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)如图在长方形中挖出一个圆柱体后,得到的几何体的左视图为( )A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是长方形,中间两条竖的虚线.故选:A.【点评】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)下列运算正确的是()A.a8÷a4=a2B.(﹣2a2)3=﹣8a6 C.a2•a3=a6 D.(a﹣3)2=a2﹣9【考点】4I:整式的混合运算.【分析】各项计算得到结果了,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=﹣8a6,符合题意;C、原式=a5,不符合题意;D、原式=a2﹣6a+9,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.(3分)我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s2如下表示数,如果要选出一名跳远成绩最稳定的选手参加抚顺市运动会,应选择的选手是()选手甲 乙 丙 丁 s 2 0.5 0.5 0.6 0.4A .甲B .乙C .丙D .丁【考点】W7:方差;W1:算术平均数.【分析】根据方差的大小即可解决问题.【解答】解:由题意丁的方差最小,所以丁的成绩最稳定,故选D .【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x 公里,根据题意列出的方程正确的是( )A .30x+2=25xB .30x =25x+2C .30x =25x−2D .30x−2=25x【考点】B6:由实际问题抽象出分式方程.【分析】设甲每小时骑行x 公里,则乙每小时骑行(x ﹣2)公里,根据题意可得等量关系:甲匀速骑行30公里的时间=乙匀速骑行25公里的时间,根据等量关系列出方程即可.【解答】解:设甲每小时骑行x 公里,根据题意得:30x =25x−2故选:C .【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.7.(3分)如图,分别过矩形ABCD 的顶点A 、D 作直线l 1、l 2,使l 1∥l 2,l 2与边BC 交于点P ,若∠1=38°,则∠BPD 为( )A.162°B.152°C.142° D.128°【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠ADP的度数,再根据平行线的性质,即可得到∠BPD的度数.【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵矩形ABCD的对边平行,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°,故选:C.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.8.(3分)若一次函数y=kx+b的图象如图所示,则()A.k<0,b<0 B.k>0,b>0 C.k<0,b>0 D.k>0,b<0【考点】F7:一次函数图象与系数的关系.【分析】观察图象,找到一次函数y=kx+b的图象经过的象限,进而分析k、b的取值范围,即可得答案.【解答】解:∵一次函数y=kx+b的图象经过第一、二、三象限,∴k>0,b>0.故选B.【点评】本题考查了一次函数图象与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.①k>0,b>0时,y=kx+b的图象在一、二、三象限;②k>0,b<0时,y=kx+b的图象在一、三、四象限;③k<0,b>0时,y=kx+b的图象在一、二、四象限;④k<0,b<0时,y=kx+b的图象在二、三、四象限.9.(3分)下列事件中是必然事件的是()A.任意画一个正五边形,它是中心对称图形B.实数x使式子√x−3有意义,则实数x>33,b=√4,则a>bC.a,b均为实数,若a=√8D.5个数据是:6,6,3,2,1,则这组数据的中位数是3【考点】X1:随机事件.【分析】根据中心对称图形的概念,二次根式有意义的条件,立方根和算术平方根的定义,中位数的定义对各选项分析判断即可得解.【解答】解:A、任意画一个正五边形,它是中心对称图形,是不可能时事件,故本选项错误;B、实数x使式子√x−3有意义,则实数x>3,是不可能时事件,应为x≥3,故本选项错误;3,b=√4,则a=2,b=2,所以,a=b,故a>b是不可C、a,b均为实数,若a=√8能事件,故本选项错误;D、5个数据是:6,6,3,2,1,则这组数据的中位数是3,是必然事件,故本选项正确.故选D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.(3分)如图,菱形ABCD 的边长为2,∠A=60°,一个以点B 为顶点的60°角绕点B 旋转,这个角的两边分别与线段AD 的延长线及CD 的延长线交于点P 、Q ,设DP=x ,DQ=y ,则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【考点】E7:动点问题的函数图象.【分析】根据菱形的性质得到∠ABD=∠CBD=∠ADB=∠BDC=60°,由邻补角的定义得到∠BDQ=∠BDP=120°,根据平行线的性质得到∠P=∠PBC ,于是得到∠QBD=∠P ,根据相似三角形的性质得到xy=4,于是得到结论.【解答】解:∵四边形ABCD 是菱形,∠A=60°,∴∠ABD=∠CBD=∠ADB=∠BDC=60°,∴∠BDQ=∠BDP=120°,∵∠QBP=60°,∴∠OBD=∠PBC ,∵AP ∥BC ,∴∠P=∠PBC ,∴∠QBD=∠P ,∴△BDQ ∽△PDB ,∴DQ BD =BD PD ,即y 2=2x, ∴xy=4,∴y 与x 的函数关系的图象是双曲线,故选A .【点评】本题考查了菱形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:ab2﹣a=a(b+1)(b﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)已知关于x的方程x2+2x﹣m=0有实数解,那么m的取值范围是m ≥﹣1.【考点】AA:根的判别式.【分析】有解的意思就是指△≥0,把a、b、c的值代入计算即可.【解答】解:根据题意得△=b2﹣4ac=4+4m≥0,解得m≥﹣1,故答案是m≥﹣1.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(3分)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=3时,线段BC的长为3.【考点】LA:菱形的判定与性质.【分析】由条件可知AB∥CD,AD∥BC,可证明四边形ABCD为平行四边形,可得到AD=BC.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=3.故答案为3.【点评】本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行的四边形⇔平行四边形,②两组对边分别相等的四边形⇔平行四边形,③一组对边平行且相等的四边形⇔平行四边形,④两组对角分别相等的四边形⇔平行四边形,⑤对角线互相平分的四边形⇔平行四边形.14.(3分)已知A(x1,y1),B(x2,y2)是反比例函数y=﹣3x图象上的两点,且x1>x2>0,则y1>y2(填“>”或“<”).【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数的增减性解答.【解答】解:∵在反比例函数y=﹣3x图象的每个分支上y随x的增大而增大,∴y1>y2,故答案为>.【点评】本题考查了反比例函数的增减性,要分两个分支讨论.15.(3分)一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的概率稳定在0.2,则袋中有绿球3个.【考点】X8:利用频率估计概率.【分析】直接利用绿球个数÷总数=0.2,进而得出答案.【解答】解:设绿球的个数为x,根据题意,得:x9+3+x=0.2,解得:x=3,经检验x=3是原分式方程的解,即袋中有绿球3个,故答案为:3【点评】此题主要考查了利用频率估计概率,正确掌握频率求法是解题关键.16.(3分)如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB 方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB的高度为100√2米(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先求出∠ANB=45°,进而排的AN=MN,最后用等腰直角三角形的性质即可得出结论.【解答】解:如图,连接AN,由题意知,BM⊥AA',BA=BA'∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=√22AN=100√2(米),故答案为100√2.【点评】此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.17.(3分)如图,在矩形ABCD中,CD=2,以点C为圆心,CD长为半径画弧,交AB边于点E,且E为AB中点,则图中阴影部分的面积为3√32﹣2π3.【考点】MO:扇形面积的计算;LB:矩形的性质.【分析】根据扇形面积公式以及梯形面积公式即可求出答案.【解答】解:由题意可知:AB=CD=2,∴EB=12AB=1,∴∠ECB=30°,∴∠DCE=60°,∴扇形CDE 的面积为:60°π×4360°=23π, ∵EB=1,CE=2, ∴由勾股定理可知:BC=√3,∴AD=BC=√3梯形EADC 的面积为:(AE+CD)⋅AD 2=(1+2)×√32=32√3, ∴阴影部分的面积为:3√32﹣2π3故答案为:3√32﹣2π3【点评】本题考查扇形的面积公式,解题的关键是熟练运用扇形的面积公式以及梯形的面积公式,本题属于中等题型.18.(3分)如图,等边△A 1C 1C 2的周长为1,作C 1D 1⊥A 1C 2于D 1,在C 1C 2的延长线上取点C 3,使D 1C 3=D 1C 1,连接D 1C 3,以C 2C 3为边作等边△A 2C 2C 3;作C 2D 2⊥A 2C 3于D 2,在C 2C 3的延长线上取点C 4,使D 2C 4=D 2C 2,连接D 2C 4,以C 3C 4为边作等边△A 3C 3C 4;…且点A 1,A 2,A 3,…都在直线C 1C 2同侧,如此下去,则△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长和为 2n −12n−1 .(n ≥2,且n 为整数)【考点】KK :等边三角形的性质.【分析】根据等边三角形的性质分别求出△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长即可解决问题.【解答】解:∵等边△A 1C 1C 2的周长为1,作C 1D 1⊥A 1C 2于D 1,∴A 1D 1=D 1C 2,∴△A 2C 2C 3的周长=12△A 1C 1C 2的周长=12, ∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长分别为1,12,122,…,12n−1,∴△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长和为1+12+122+…+12n−1=2n −12n−1.故答案为2n −12n−1.【点评】本题考查等边三角形的性质、解题的关键是理解题意,灵活运用所学知识,属于中考常考题型.三、解答题(第19题10分,第20题12分,共22分) 19.(10分)先化简,再求值:(a ﹣2﹣5a+2)÷a−32a+4,其中a=(3﹣π)0+(14)﹣1.【考点】6D :分式的化简求值;6E :零指数幂;6F :负整数指数幂.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入即可解答本题.【解答】解:(a ﹣2﹣5a+2)÷a−32a+4=(a−2)(a+2)−5a+2⋅2(a+2)a−3=(a+3)(a−3)a+2⋅2(a+2)a−3=2a +6, 当a=(3﹣π)0+(14)﹣1=1+4=5时,原式=2×5+6=16. 【点评】本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.(12分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A .非常了解.B .了解.C .知道一点.D .完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生? (2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【分析】(1)由D 选项的人数及其百分比可得总人数; (2)总人数减去A 、C 、D 选项的人数求得B 的人数即可; (3)总人数乘以样本中B 选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得. 【解答】解:(1)本次调查的学生人数为6÷20%=30;(2)B 选项的人数为30﹣3﹣9﹣6=12, 补全图形如下:(3)估计“了解”的学生约有600×1230=240名;(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为46=2 3.【点评】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(第21题12分,第22题12分,共24分)21.(12分)在平面直角坐标系中,A,B,C,三点坐标分别为A(﹣6,3),B (﹣4,1),C(﹣1,1).(1)如图1,顺次连接AB,BC,CA,得△ABC.①点A关于x轴的对称点A1的坐标是(﹣6,﹣3),点B关于y轴的对称点B1的坐标是(4,1);②画出△ABC关于原点对称的△A2B2C2;③tan∠A2C2B2=25;(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为60°,原来的格点A,B,C分别对应新网格中的格点A′,B′,C′,顺次连接A′B′,B′C′,C′A′,得△A′B′C′,则tan∠A′C′B′=√34.【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换;T7:解直角三角形.【分析】(1)①直接得到对称点的坐标即可; ②画图;③根据正切的定义:等于对边比邻边,即tan ∠A 2B 2C 2=25;(2)作高线A'E ,构建直角三角形,利用勾股定理求A'E 和EC'的长,可得结论. 【解答】解:(1)①点A 关于x 轴的对称点A 1的坐标是(﹣6,﹣3),点B 关于y 轴的对称点B 1的坐标是(4,1); 故答案为:(﹣6,﹣3),(4,1); ②如图1所示;③tan ∠A 2B 2C 2=25;故答案为:25;(2)如图2,过A'作A'E ⊥B′C′于E ,延长C′B′至D ,使DC'=5,连接A'D , Rt △A′ED 中,∵∠A′DE=60°,A'D=2, ∴DE=1,A'E=√3, ∴EC'=5﹣1=4,Rt △A′EC′中,tan ∠A'C'B'=A′E EC′=√34,故答案为:√34.【点评】本题考查了关于原点、x 轴、y 轴对称,菱形的性质,解直角三角形,熟练掌握正切的定义是关键.22.(12分)学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题; (2)根据题意可以列出相应的不等式,从而可以解答本题. 【解答】解:(1)设一个篮球和一个足球的售价各是x 元、y 元,{x +2y =1702x +y =190,得{x =70y =50,答:一个篮球和一个足球的售价各是70元、50元; (2)设购进足球a 个, a ≤2(100﹣a ),解得,a ≤6623,∴最多购买足球66个, 答:最多购买足球66个.【点评】本题考查一元一次不等式的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组和不等式,利用方程的思想和不等式的性质解答.五、解答题(满分12分)23.(12分)如图,AB 为⊙O 直径,AC 为⊙O 的弦,过⊙O 外的点D 作DE ⊥OA 于点E ,交AC 于点F ,连接DC 并延长交AB 的延长线于点P ,且∠D=2∠A ,作CH ⊥AB 于点H .(1)判断直线DC 与⊙O 的位置关系,并说明理由;(2)若HB=2,cosD=35,请求出AC的长.【考点】MB:直线与圆的位置关系;KQ:勾股定理;T7:解直角三角形.【分析】(1)连接OC,易证∠COB=∠D,由于∠P+∠D=90°,所以∠P+∠COB=90°,从而可知半径OC⊥DC;(2)由(1)可知:cos∠COP=cos∠D=35,设半径为r,所以OH=r﹣2,从而可求出r的值,利用勾股定理即可求出CH的长度,从而可求出AC的长度.【解答】解:(1)连接OC,∵∠COB=2∠A,∠D=2∠A∴∠COB=∠D,∵DE⊥AP,∴∠DEP=90°,在Rt△DEP中,∠DEP=90°,∴∠P+∠D=90°∴∠P+∠COB=90°,∴∠OCP=90°,∴半径OC⊥DC,∴DC与⊙O相切(2)由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=3 5,∵CH⊥OP∴∠CHO=90°,设⊙O的半径为r,则OH=r﹣2在Rt△CHO中,cos∠HOC=OHOC=r−2r=35∴r=5∴OH=5﹣2=3∴由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=4√5【点评】本题考查圆的综合问题,涉及勾股定理、锐角三角函数,切线的判定,解方程等知识,本题属于中等题型.六、解答题(满分12分)24.(12分)某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如下表:销售第x天第1天第2天第3天第4天 (30)销售单价m(元/件)49484746 (20)日销售量(件)45505560 (190)(1)过程表中数据,分别直接写出m与x,n与x的函数关系式:m=﹣x+50,n=5x+40;(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)由表格中数据的变化,用含x的代数式表示出m、n即可;(2)根据总价=单价×数量即可得出关于x的一元二次方程,解之即可得出x的值,由1≤x≤30可确定x的值;(3)设日销售额为w元,根据总价=单价×数量即可找出w关于x的函数关系式,根据二次函数的性质即可解决最值问题.【解答】解:(1)观察表中数据可知:每过一天,销售单价降低1元/件、销量增加5件,∴m=49﹣(x﹣1)=﹣x+50,n=45+5(x﹣1)=5x+40.故答案为:m=﹣x+50;n=5x+40.(2)根据题意得:(﹣x+50)(5x+40)=3600,整理得:x2﹣42x+320=0,解得:x1=10,x2=32.∵32>30,∴x=32舍去.答:第10天的日销售额为3600元.(3)设日销售额为w元,根据题意得:w=(﹣x+50)(5x+40)=﹣5x2+210x+2000=﹣5(x﹣21)2+4205.∵a=﹣5<0,∴抛物线开口向下.又∵对称轴为直线x=21,∴当1≤x≤14时,w随x的增大而增大,∴当x=14时,w取最大值,最大值为3960.答:在儿童节前(不包括儿童节当天)销售该商品第14天时该商品的日销售额最多,商场可捐款3960元.。
抚顺市中考数学试卷
抚顺市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·宿州期末) 已知关于x的方程3x+2a=2的解是a﹣1,则a的值是()A . 1B .C .D . ﹣12. (2分)(2018·十堰) 今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A .B .C .D .3. (2分)(2020·沈阳模拟) 已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是()A .B .C .D .4. (2分)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是()A . 40°B . 60°5. (2分)(2012·杭州) 下列计算正确的是()A . (﹣p2q)3=﹣p5q3B . (12a2b3c)÷(6ab2)=2abC . 3m2÷(3m﹣1)=m﹣3m2D . (x2﹣4x)x﹣1=x﹣46. (2分)(2016·聊城) 某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.48.68.67.6S20.740.560.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A . 甲B . 乙C . 丙D . 丁7. (2分) (2019九上·新兴期中) 菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长约是()A . 4cmB . 1cmC . cmD . cm8. (2分) (2017九上·滦县期末) 如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长为()A . 6cmB . 7cm9. (2分)(2020·许昌模拟) 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A .B .C .D .10. (2分) (2019九上·德清期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是().A . a>0B . abc>OC . 2a+b<0D . ax2+bx+c=o有两个不相等的实数根二、填空题 (共6题;共6分)11. (1分)(2018·铜仁) 分式方程 =4的解是x=________.12. (1分)(2020·河南模拟) 计算: ________.13. (1分) (2019九上·十堰期末) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,则三辆车全部同向而行的概率是________.14. (1分)(2019·长沙模拟) 如图,在▱ABCD中,点F在CD上,且CF:DF=1:2,则S△CEF:S▱ABCD=________.15. (1分) (2017八上·丹东期末) 甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的距离分别为y甲(km)、y乙(km),甲车行驶的时间为x(h),y甲、y乙与x之间的函数图像如图所示,现有4种说法:①甲车的速度是80km/h;②乙车休息了1小时;③两车相距80km时,甲车行驶了3小时;④乙车两次行驶的速度相同.上述说法正确的有________个.16. (1分) (2018八上·宁波期中) 如图,在Rt△ABC中,∠ABC=90°,AB=6,D为AC中点,过点A作AE∥BC,连结BE,∠EBD=∠CBD,BD=5,则BE的长为________.三、解答题 (共9题;共98分)17. (5分) (2016八上·遵义期末) 先化简代数式,求:当 a=2时代数式值.18. (15分)(2017·临沂模拟) 为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把成绩结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数;(2)求扇形图中∠α的度数,并把条形统计图补充完整;(3)该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有多少人?19. (5分)如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.20. (12分)已知一元二次方程M:x2﹣bx﹣c=0和N:y2+cy+b=0(1)若方程M的两个根分别为x1=﹣1,x2=3,求b,c的值及方程N的两根;(2)若方程M和N有且只有一个根相同,则这个根是________,此时b﹣c=________;(3)若x为方程M的根,y为方程N的根,是否存在x,y,使下列四个代数式① x+y② x﹣y ③ ④xy 的数值中有且仅有三个数值相同.若存在,请求出x和y的值;若不存在,请说明理由.21. (15分)(2017·薛城模拟) 如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使kx+b<成立的x的取值范围;(3)求△AOB的面积.22. (10分)(2019·南京模拟) 如图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.(1)求证:PB与⊙O相切;(2)当PD=2 ,∠DPC=30°时,求⊙O的半径长.23. (15分) (2020七下·山西期中) 今年3月12日植树节,美华中学为了进一步绿化学校,计划购买甲、乙两种树苗共计50棵.设购买甲种树苗棵,有关甲、乙两种树苗的信息如下:甲种树苗每棵50元,乙种树苗每棵80元;甲种树苗的成活率为90%,乙种树苗的成活率为95%.(1)根据信息填表(用含的式子表示):树苗类型甲种树苗乙种树苗购买树苗的数量(单位:棵)购买树苗的费用(单位:元)(2)如果购买甲、乙两种树苗共用去2560元,那么甲、乙两种树苗各购买了多少棵?(3)如果要使这批树苗的成活率不低于92%,请设计一种购买甲、乙树苗的方案,使购买甲、乙两种树苗的费用最少,写出购买方案并计算出购买甲、乙两种树苗的总费用.24. (6分) (2018九上·丰台期末) 对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:如果⊙C的半径为r,⊙C外一点P到⊙C的切线长小于或等于2r,那么点P叫做⊙C的“离心点”.(1)当⊙O的半径为1时,①在点P1(,),P2(0,-2),P3(,0)中,⊙O的“离心点”是________;②点P(m,n)在直线 y = − x + 3 上,且点P是⊙O的“离心点”,求点P横坐标m的取值范围;(2)⊙C的圆心C在y轴上,半径为2,直线与x轴、y轴分别交于点A,B.如果线段AB上的所有点都是⊙C的“离心点”,请直接写出圆心C纵坐标的取值范围.25. (15分)(2017·龙岩模拟) 已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数图象的顶点坐标;(2)当c=10时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共98分)17-1、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
辽宁省抚顺市中考数学考试(解析版)
辽宁省抚顺市中考数学考试(解析版)————————————————————————————————作者:————————————————————————————————日期:2016年辽宁省抚顺市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.﹣ B.﹣3 C.3 D.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<34.下图所示几何体的主视图是()A.B.C.D.5.下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4C.(﹣2ab)2=﹣4a2b2 D.a4÷a=a36.一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.87.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A .10(1+x )2=36.4B .10+10(1+x )2=36.4C .10+10(1+x )+10(1+2x )=36.4D .10+10(1+x )+10(1+x )2=36.410.如图,矩形ABCD 的顶点D 在反比例函数y=(x <0)的图象上,顶点B ,C 在x 轴上,对角线AC 的延长线交y 轴于点E ,连接BE ,若△BCE 的面积是6,则k 的值为( )A .﹣6B .﹣8C .﹣9D .﹣12二、填空题(本题共8小题,每小题3分,共24分)11.2016年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为________. 12.分解因式:a 2b ﹣2ab +b=________.13.不等式组的解集是________.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分) 15﹣19 20﹣24 25﹣29 30人数 1 5 9 25从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为________.15.八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是________米.16.若关于x 的一元二次方程(a ﹣1)x 2﹣x +1=0有实数根,则a 的取值范围为________. 17.如图,点B 的坐标为(4,4),作BA ⊥x 轴,BC ⊥y 轴,垂足分别为A ,C ,点D 为线段OA 的中点,点P 从点A 出发,在线段AB 、BC 上沿A →B →C 运动,当OP=CD 时,点P 的坐标为________.18.如图,△A 1A 2A 3,△A 4A 5A 5,△A 7A 8A 9,…,△A 3n ﹣2A 3n ﹣1A 3n (n 为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n ,顶点A 3,A 6,A 9,…,A 3n 均在y 轴上,点O 是所有等边三角形的中心,则点A 2016的坐标为________.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(1+),其中x=﹣1.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了________名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为________,“综艺节目”在扇形统计图中所对应的圆心角的度数为________;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.五、解答题(满分12分)23.小明要测量公园北湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A 的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C 的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)六、解答题(满分12分)24.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?七、解答题(满分12分)25.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.八、解答题(满分14分)26.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t 的值;若不存在,请说明理由.2016年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.﹣ B.﹣3 C.3 D.【考点】相反数.【分析】根据相反数的定义即可求解.【解答】解:3的相反数是﹣3,故选B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形既是轴对称图形又是中心对称图形,故本选项正确;B、该图形是轴对称图形,但不是中心对称图形,故本选项错误;C、该图形是中心对称图形,但不是轴对称图形,故本选项错误;D、该图形既不是中心对称图形,也不是轴对称图形,故本选项错误;故选:A.3.函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<3【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得3﹣x≥0,解得x≤3.故选:C.4.下图所示几何体的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据主视图的意义和几何体得出即可.【解答】解:几何体的主视图是,故选A.5.下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4C.(﹣2ab)2=﹣4a2b2 D.a4÷a=a3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;因式分解-运用公式法.【分析】根据完全平方公式;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2+4a+4=(a+2)2,故A错误;B、a2+a2=2a2,故B错误;C、(﹣2ab)2=4a2b2,故C错误;D、a4÷a=a3,故D正确.故选:D.6.一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB的面积是()A.2 B.4 C.6 D.8【考点】一次函数图象上点的坐标特征.【分析】由直线解析式可求得A、B两点的坐标,从而可求得OA和OB的长,再利用三角形的面积可求得答案.【解答】解:在y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,∴S△AOB=OA•OB=×2×4=4,故选B.7.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查某批次汽车的抗撞击能力,破坏力强,适宜抽查;B、端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况,范围比较广,适宜抽查;C、调查某班40名同学的视力情况,调查范围比较小,适宜全面调查;D、调查某池塘中现有鱼的数量,调查难度大,适宜抽查,故选C.8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、购买一张彩票,中奖,是随机事件;B、通常加热到100℃时,水沸腾,是必然事件;C、任意画一个三角形,其内角和是360°,是不可能事件;D、射击运动员射击一次,命中靶心,是随机事件;故选:B.9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【考点】由实际问题抽象出一元二次方程.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.10.如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12【考点】反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例.【分析】先设D(a,b),得出CO=﹣a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,得出=,即BC•EO=AB•CO,求得ab的值即可.【解答】解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选(D).二、填空题(本题共8小题,每小题3分,共24分)11.2016年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为9.4×106.【考点】科学记数法—表示较大的数.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:9 400 000=9.4×106;故答案为:9.4×106.12.分解因式:a2b﹣2ab+b=b(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式b,再利用完全平方公式进行二次分解.【解答】解:a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)13.不等式组的解集是﹣7<x≤1.【考点】解一元一次不等式组.【分析】分别解出不等式组中两个不等式的解,合在一起即可得出不等式组的解集.【解答】解:.解不等式①,得x≤1;解不等式②,得x>﹣7.∴不等式组的解集为﹣7<x≤1.故答案为:﹣7<x≤1.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣19 20﹣24 25﹣29 30人数 1 5 9 25从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.【考点】概率公式.【分析】根据统计表的意义,将各组的频数相加可得班级的总人数;读表可得恰好是获得30分的学生的频数,计算可得答案.【解答】解:该班共有1+5+9+25=40人.P(30)==,故答案为:.15.八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是 1.70米.【考点】中位数.【分析】先把这些数从小到大排列,找出最中间的数即可得出答案.【解答】解:把这些数从小到大排列为:1.68,1.68,1.70,1.72,1.75,最中间的数是1.70,则这五名男生身高的中位数是1.70米;故答案为:1.70.16.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a≤且a≠1.【考点】根的判别式.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a≤,∴a 的取值范围是a ≤且a ≠1. 故答案为:a ≤且a ≠1.17.如图,点B 的坐标为(4,4),作BA ⊥x 轴,BC ⊥y 轴,垂足分别为A ,C ,点D 为线段OA 的中点,点P 从点A 出发,在线段AB 、BC 上沿A →B →C 运动,当OP=CD 时,点P 的坐标为 (2,4)或(4,2) .【考点】全等三角形的判定与性质;坐标与图形性质.【分析】分两种情况①当点P 在正方形的边AB 上时,根据正方形的性质用HL 判断出Rt △OCD ≌Rt △OAP ,得出AP=2,得出点P 的坐标,②当点P 在正方形的边BC 上时,同①的方法即可.【解答】解:①当点P 在正方形的边AB 上时, 在Rt △OCD 和Rt △OAP 中,∴Rt △OCD ≌Rt △OAP , ∴OD=AP ,∵点D 是OA 中点, ∴OD=AD=OA , ∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时, 同①的方法,得出CP=BC=2,∴P (2,4)∴P (2,4)或(4,2)故答案为(2,4)或(4,2)18.如图,△A 1A 2A 3,△A 4A 5A 5,△A 7A 8A 9,…,△A 3n ﹣2A 3n ﹣1A 3n (n 为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n ,顶点A 3,A 6,A 9,…,A 3n 均在y 轴上,点O 是所有等边三角形的中心,则点A 2016的坐标为 (0,448) .【考点】等边三角形的性质;规律型:点的坐标.【分析】先关键等边三角形的性质和已知条件得出A3的坐标,根据每一个三角形有三个顶点确定出A2016所在的三角形,再求出相应的三角形的边长以及A2016的纵坐标的长度,即可得解;【解答】解:∵,△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,∴A3的坐标为(0,),∵2016÷3=672,∴A2016是第672个等边三角形的第3个顶点,∴点A2016的坐标为(0,×),即点A2016的坐标为(0,448);故答案为:(0,448).三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.20.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【考点】菱形的判定.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了200名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为40%,“综艺节目”在扇形统计图中所对应的圆心角的度数为63°;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数;(2)用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比,然后用360度乘以喜欢“综艺节目”的人数所占的百分比得到综艺节目”在扇形统计图中所对应的圆心角的度数;(3)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(4)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.【解答】解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=40%;“综艺节目”在扇形统计图中所对应的圆心角的度数为360°×=63°;故答案为200,40%,63°;(3)最喜爱“新闻节目”的人数为200﹣50﹣35﹣45=70(人),如图,(4)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.22.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.【解答】解:(1)连接OC.∵OA=OC.∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD=AD=4,∵∠MAC=∠OAC=60°,OA=OC , ∴△AOC 是等边三角形,∴S 阴=S △ACD ﹣(S 扇形OAC ﹣S △AOC ) =×4×4﹣(﹣×82)=24﹣π.五、解答题(满分12分)23.小明要测量公园北湖水隔开的两棵大树A 和B 之间的距离,他在A 处测得大树B 在A 的北偏西30°方向,他从A 处出发向北偏东15°方向走了200米到达C 处,测得大树B 在C 的北偏西60°方向.(1)求∠ABC 的度数; (2)求两棵大树A 和B 之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)【考点】解直角三角形的应用-方向角问题. 【分析】(1)先利用平行线的性质得∠ACM=∠DAC=15°,再利用平角的定义计算出∠ACB=105°,然后根据三角形内角和计算∠ABC 的度数;(2)作CH ⊥AB 于H ,如图,易得△ACH 为等腰直角三角形,则AH=CH=AC=100,在Rt △BCH 中利用含30度的直角三角形三边的关系得到BH=CH=100,AB=AH +BH=100+100,然后进行近似计算即可. 【解答】解:(1)∵CM ∥AD , ∴∠ACM=∠DAC=15°,∴∠ACB=180°﹣∠BCN ﹣∠ACM=180°﹣60°﹣15°=105°, 而∠BAC=30°+15°=45°,∴∠ABC=180°﹣45°﹣105°=30°;(2)作CH⊥AB于H,如图,∵∠BAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×200=100,在Rt△BCH中,∵∠HBC=30°,∴BH=CH=100,∴AB=AH+BH=100+100≈141.4+244.9≈386.答:两棵大树A和B之间的距离约为386米.六、解答题(满分12分)24.有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【考点】二次函数的应用;一元一次不等式的应用;一次函数的应用.【分析】(1)利用待定系数法求两个函数的解析式;(2)根据总投资成本为10万元,设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,列函数关系式,发现是二次函数,画出函数图象,找出当2≤x≤8时的最小利润和最大利润.【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,=4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=(8﹣4)2+4=5,当x=8时,W有最大值,W大答:苗圃至少获得4万元利润,最多能获得8万元利润.七、解答题(满分12分)25.如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【考点】三角形综合题.【分析】(1)①根据ASA证明△AFC≌△EDC,可得结论;②结论是:DE+AD=2CH,根据CH是等腰直角△FCD斜边上的中线得:FD=2CH,再进行等量代换可得结论;(2)如图b,根据(1)作辅助线,构建全等三角形,证明△FAC≌△DEC得AF=DE,FC=CD,得等腰△FDC,由三线合一的性质得CH,是底边中线和顶角平分线,得直角△CHD,利用三角函数得出HD与CH的关系,从而得出结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜边FD的中线,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;(2)AD+DE=2CH,理由是:如图b,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,即:AD+DE=2CH.八、解答题(满分14分)26.如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t 的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),可以求得b、c的值,从而可以求得抛物线的解析式;(2)要求△DMN的面积,根据题目中的信息可以得到梯形AEDC的面积、△ANM的面积、△MDE的面积、△CND的面积,从而可以解答本题;(3)①根据MN∥DE,可以得到△AMN和△AOC相似,从而可以求得t的值;②根据题目中的条件可以求得点N、点M、点A、点D的坐标,由AD⊥MN可以求得相应的t的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),∴,解得,,即抛物线的解析式为:y═﹣x2+x+4;(2)作NH⊥AM于点H,如由图1所示,∵y═﹣x2+x+4,∴对称轴x=﹣=,∵点A(﹣3,0),点C(0,4),CD∥x轴交抛物线于点D,DE⊥x轴,垂足为E,∴点D(3,4),点E(3,0),OA=3,OC=4,∴AC=5,AE=6,CD=3,∵NH⊥AM,AN=tME=2t,∴△ANH∽△ACO,AM=6﹣2t,∴,即,得NH=0.8t,∴S=S﹣S△AMN﹣S△DME﹣S△CDN梯形AECD==0.8t2﹣5.2t+12,即S与t的函数关系式是S=0.8t2﹣5.2t+12(0<t≤3);(3)①当MN∥DE时,t的值是,理由:如右图2所示∵MN∥DE,AE=6,AC=5,AO=3,∴AM=6﹣2t,AN=t,△AMN∽△AOC,∴,即,解得,t=;②存在某一时刻,使MN⊥AD,此时t的值是,理由:如右图3所示,设过点A(﹣3,0),C(0,4)的直线的解析式为y=kx+b,则,得,即直线AC的解析式为y=,∵NH=0.8t,∴点N的纵坐标为0.8t,将y=0.8t代入y=得x=0.6t﹣3,∴点N(0.6t﹣3,0.8t)∵点E(3,0),ME=2t,∴点M(3﹣2t,0),∵点A(﹣3,0),点D(3,4),点M(3﹣2t,0),点N(0.6t﹣3,0.8t),AD⊥MN,∴,解得,t=.2016年9月13日。
辽宁省抚顺市2016中考数学试卷(答案与解析)
2016年辽宁省抚顺市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.3的相反数是()A.-—B.-3C.3D.—332.下列图形既是轴对称图形又是中心对称图形的是()A.a2+4a-4=(a+2)2B.a2+a2=a4C.(- 2ab)2=- 4a2b2D.a44-a=a36.一次函数y=2x-4的图象与x轴、y轴分别交于A,B两点,O为原点,则ZkAOB的面积是()A.2B.4C.6D.87.下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量8.下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100°C时,水沸腾C.任意画一个三角形,其内角和是360。
D.射击运动员射击一次,命中靶心9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4B.10+10(1+x)2=36.4C.10+10(1+x)+10(l+2x)=36.4D.10+10(1+x)+10(1+x)2=36.410.如图,矩形ABCD的顶点D在反比例函数y=K(x<0)的图象上,顶点B,C在x轴x上,对角线AC的延长线交y轴于点E,连接BE,若ABCE的面积是6,则k的值为()A.-6B.-8C.-9D.-12二、填空题(本题共8小题,每小题3分,共24分)11.2016年我国约有9400000人参加高考,将9400000用科学记数法表示为12.分解因式:a2b-2ab+b=.14.某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段7分)15-1920-2425-2930人数15925从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.15.八年三班五名男生的身高(单位:米)分别为1.68, 1.70, 1.68, 1.72, 1.75,则这五名男生身高的中位数是米.16.若关于x的一元二次方程(a-1)x2-x+l=0有实数根,则a的取值范围为.17.如图,点B的坐标为(4,4),作BA±x轴,BC±y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿ATBf C运动,当OP=CD时,点P的坐标为.18.如图,△A1A2A3,△A4A5A5,△A7A8A9,△A3n-2A3n-lA3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,2n,顶点A3,A6,A9,A3n均在y轴上,点O 是所有等边三角形的中心,则点A2016的坐标为•三、解答题(第19题10分,第20题12分,共22分)Y1—19.先化简,再求值:飞一-(1+—^),其中x=M-l.x'-lxT20.如图,AE//BF, AC 平分ZBAE,且交BF 于点C, BD 平分ZABF,且交AE 于点D,AC 与BD 相交于点O,连接CD(1) 求ZAOD 的度数;(2) 求证:四边形ABCD 是菱形.四、解答题(第21题12分,第22题12分,共24分)21.某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要你最喜爱的电视节目条求回答下列问题:你最喜爱的电视节目 扇形统计图图②(1) 本次问卷调查共调查了 名观众;(2) 图②中最喜爱“新闻节目”的人数占调查总人数的百分比为,“综艺节目"在扇形统计图中所对应的圆心角的度数为;(3) 补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱"B”和"C”两位观众的概率.22.如图,AB是。
辽宁省抚顺市中考数学试卷
辽宁省抚顺市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)-2的倒数是()A . 2B . -2C .D .2. (2分)(2019·禅城模拟) 下列图形:①等腰三角形;②菱形;③平行四边形;④直角三角形;⑤圆;⑥矩形,这些图形中既是轴对称图形有事中心对称图形的有()A . 1种B . 2种C . 3种D . 4种3. (2分) (2020七上·醴陵期末) 据统计,2019年醴陵高铁站年客运进出量约为237000人次.将237000用科学记数法表示为()A .B .C .D .4. (2分)如图,从上向下看几何体,得到的图形是()A .B .C .D .5. (2分) (2017八上·忻城期中) 下列运算,正确的是()A .B .C .D .6. (2分)(2017·长春模拟) 一次数学考试后,小明想知道成绩是否能排在前一半,那么他应该知道本次成绩的统计量是()A . 平均数B . 众数C . 中位数D . 方差7. (2分)(2016·深圳模拟) 一次函数y=kx+b(k≠0,k与b都是常数)图像如图示,当y<2时,变量x 的取值范围是()A . x>0B . x<0C . x<2D . x>28. (2分) (2016七下·恩施期末) 把不等式组的解集表示在数轴上,下列选项正确的是()A .B .C .D .9. (2分) (2016八上·靖江期末) 甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A . 甲的速度是4千米/小时B . 乙的速度是10千米/小时C . 甲比乙晚到B地3小时D . 乙比甲晚出发1小时10. (2分)“5•12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.若原计划每天修x米,则所列方程正确的是()A . -=4B . -=4C . -=4D . -=411. (2分) (2019八下·长沙开学考) 如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在中,= 90°,= 30°,若OE = ,则正方形的面积为()A . 5B . 4C . 3D . 212. (2分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=8,AO=6,则四边形DEFG的周长为()A . 12B . 14C . 16D . 18二、填空题 (共5题;共5分)13. (1分) (2019七下·甘井子期中) 计算: ________.14. (1分) (2017八上·罗山期中) 如图,∠ADC=________°.15. (1分) (2018七上·江海期末) 已知x=5是方程ax﹣7=20+2a的解,则a=________16. (1分)某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是________ .17. (1分)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.三、解答题 (共7题;共90分)18. (5分) (2013·连云港) 先化简,再求值:(﹣)÷ ,其中m=﹣3,n=5.19. (20分) (2017七下·马龙期末) 在我县开展的“阳光体育”跳绳活动中,为了了解初中学生跳绳活动的开展情况,随机抽查了全县七年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x<155所在扇形的圆心角度数;(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全县8000名初中学生中有多少名学生的成绩为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.20. (15分)(2017·荆州) 如图在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO 运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.21. (10分)(2017·河北模拟) 如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.(1)请在图4中画出拼接后符合条件的平行四边形;(2)请在图2中,计算裁剪的角度(即∠ABM的度数).22. (15分) (2018九上·上虞月考) 某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.23. (10分)如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24. (15分)(2017·黄石) 如图,直线l:y=kx+b(k<0)与函数y= (x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE,设A、C两点的坐标分别为(a,)、(c,),其中a>c>0.(1)如图①,求证:∠EDP=∠ACP;(2)如图②,若A、D、E、C四点在同一圆上,求k的值;(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共90分)18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
抚顺市中考数学试卷
抚顺市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2016·曲靖) 4的倒数是()A . 4B .C . ﹣D . ﹣42. (2分)(2020·武汉模拟) 如图图案中,不是中心对称图形的是()A .B .C .D .3. (2分) (2020八下·洛宁期中) 人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A .B .C .D .4. (2分) (2019七上·沙河口期末) 长方形的长是,宽是,则长方形的周长是().A .B .C .D .5. (2分)某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是()A . 33吨B . 32吨C . 31吨D . 30吨6. (2分) (2016八上·鞍山期末) 已知:如图,四边形ABCD是⊙O的内接正方形,点P是CD弧上不同于点C的任意一点,则∠BPC的度数是()A . 45°B . 60°C . 75°D . 90°7. (2分)(2020·大通模拟) 如图,正比例函数与反比例函数的图象相交于点A、B两点,若点A的坐标为(2,1),则点B的坐标是()A . (1,2)B . (-2,1)C . (-1,-2)D . (-2,-1)8. (2分)已知二次函数y=ax2+bx+c,且ac<0,则它的图象经过()A . 一、二、三象限B . 二、三、四象限C . 一、三、四象限D . 一、二、三、四象限二、填空题 (共10题;共12分)9. (2分) 16的算术平方根是________,﹣8的立方根是________.10. (1分) (2019九上·东莞期末) 在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余都相同,如果摸到红球的概率是,那么口袋中有白球________个11. (1分) (2019八上·嘉定期中) 如果有意义,那么a的取值范围是________.12. (1分)(2016·深圳模拟) 如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y= (x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=________.13. (1分) (2015八下·武冈期中) △ABC的周长为16,点D,E,F分别是△ABC的边AB、BC、CA的中点,连接DE,EF,DF,则△DEF的周长是________.14. (2分)(b+a)(b﹣a)=________,(x﹣2)(x+2)=________.15. (1分) (2017八下·临泽期末) 一个多边形的每一个内角都是108°,你们这个多边形的边数是________.16. (1分)(2017·大石桥模拟) 如图,直线AB与⊙O相切于点A,AC,CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为________.17. (1分)(2020·陕西模拟) 如图,已知直线与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线(x>0)正好经过C,M两点,则直线AC的解析式为:________.18. (1分) (2020八下·无锡期中) 如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边上一点,且,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为________.三、解答题 (共10题;共94分)19. (5分) (2019九下·揭西期中) 计算:20. (10分)解方程(组):(1)(2) 1+ = .21. (9分)(2017·襄阳) 中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题做法全校学生中进行了抽样调查,根据调查结果绘制城如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部,扇形统计图中“1部”所在扇形的圆心角为________度.(2)请将条形统计图补充完整;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,则他们选中同一名著的概率为________.22. (5分)一只不透明的袋子中装有2个白球和一个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,请用树状图或列表的方法列出所有可能的结果,求出两次摸出的球颜色相同的概率.23. (15分)(2017·潮南模拟) △ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q 两点,线段MN运动的时间为ts.(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3) t为何值时,以C,P,Q为顶点的三角形与△ABC相似?24. (15分)(2017·玉田模拟) 已知:等腰三角形OAB在直角坐标系中的位置如下图,点A的坐标为(,3),点B的坐标为(﹣6,0).(1)若△OAB关于y轴的轴对称图形是△OA'B',请直接写出A、B的对称点A'、B'的坐标;(2)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数的图象上,求a的值;(3)若△OAB绕点O按逆时针方向旋转30°,此时点B恰好落在反比例函数的图象上,求k的值.25. (10分)(2018·金华模拟) 如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若,,求菱形BMDN的面积和对角线MN的长.26. (10分)如图,P是☉O外一点,PO交☉O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连结PB,BC.(1)求BC的长;(2)求证:PB是☉O的切线.27. (10分) (2019九上·虹口期末) 如图,在平面直角坐标系中,抛物线与轴相交于原点和点,点在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求的值.28. (5分) (2017·徐州) 4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共12分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共94分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、28-1、。
辽宁省抚顺市中考数学真题试题(含解析)
辽宁省抚顺市xx年中考数学真题试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣ D.2.(3.00分)下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸3.(3.00分)下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x24.(3.00分)二次根式在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<15.(3.00分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数 C.平均数D.方差6.(3.00分)一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三,四象限 D.第二、三、四象限7.(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)8.(3.00分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B. C.πD.2π9.(3.00分)如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4 B.4 C.2 D.210.(3.00分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(本题共8小题,每小题3分,共24分)11.(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为.12.(3.00分)分解因式:xy2﹣4x= .13.(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,的成绩更稳定.14.(3.00分)一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为.15.(3.00分)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .16.(3.00分)如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是.17.(3.00分)如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为.18.(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O xx的坐标为.三、解答题(第19题10分,第20题12分,共22分)19.(10.00分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(12.00分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)22.(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?五、解答验(满分12分)23.(12.00分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.六、解答题(满分12分)24.(12.00分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?七、解答题(满分12分)25.(12.00分)如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC在AC 下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).八、解答题(满分14分)26.(14.00分)如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3.00分)﹣的绝对值是()A.﹣ B.C.﹣ D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣的绝对值是:.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.2.(3.00分)下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、球的左视图是圆形,故此选项符合题意;B、水杯的左视图是等腰梯形,故此选项不合题意;C、圆锥的左视图是等腰三角形,故此选项不合题意;D、长方体的左视图是矩形,故此选项不合题意;故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3.00分)下列运算正确的是()A.2x+3y=5xy B.(x+3)2=x2+9 C.(xy2)3=x3y6D.x10÷x5=x2【分析】根据同底数幂的乘除法,完全平方公式,以及合并同类项的•法则解答即可.【解答】解:A、原式不能合并,错误;B、(x+3)2=x2+6x+9,错误;C、(xy2)3=x3y6,正确;D、x10÷x5=x5,错误;故选:C.【点评】此题考查了同底数幂的乘除法,完全平方公式,以及合并同类项,熟练掌握公式及运算法则是解本题的关键.4.(3.00分)二次根式在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<1【分析】根据二次根式有意义的条件可得1﹣x≥0,再解不等式即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1,故选:B.【点评】此题主要考查了二次根式有意义的条件,二次根式中的被开方数是非负数.5.(3.00分)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数 C.平均数D.方差【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.6.(3.00分)一次函数y=﹣x﹣2的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三,四象限 D.第二、三、四象限【分析】根据一次函数y=kx+b(k≠0)中的k、b判定该函数图象所经过的象限.【解答】解:∵﹣1<0,∴一次函数y=﹣x﹣2的图象一定经过第二、四象限;又∵﹣2<0,∴一次函数y=﹣x﹣2的图象与y轴交于负半轴,∴一次函数y=﹣x﹣2的图象经过第二、三、四象限;故选:D.【点评】本题考查了一次函数的性质.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.7.(3.00分)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1).故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.8.(3.00分)如图,AB是⊙O的直径,CD是弦,∠BCD=30°,OA=2,则阴影部分的面积是()A.B. C.πD.2π【分析】根据圆周角定理可以求得∠BOD的度数,然后根据扇形面积公式即可解答本题.【解答】解:∵∠BCD=30°,∴∠BOD=60°,∵AB是⊙O的直径,CD是弦,OA=2,∴阴影部分的面积是:=,故选:B.【点评】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.(3.00分)如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4 B.4 C.2 D.2【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【解答】解:作AH⊥BC交CB的延长线于H,∵反比例函数y=的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB==2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=4,故选:A.【点评】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.10.(3.00分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线的系数与图象的关系即可求出答案.【解答】解:①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴抛物线与y轴交于正半轴,∴c>0,∴abc>0.故正确;②∵0<2a≤b,∴>1,∴﹣<﹣1,∴该抛物线的对称轴在x=﹣1的左侧.故错误;③由题意可知:对于任意的x,都有y=ax2+bx+c≥0,∴ax2+bx+c+1≥1>0,即该方程无解,故正确;④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴当x=﹣1时,y>0,∴a﹣b+c>0,∴a+b+c≥2b,∵b>0,∴≥2.故正确.综上所述,正确的结论有3个.故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数的关系,本题属于中等题型.二、填空题(本题共8小题,每小题3分,共24分)11.(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为8.27×109.【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8270000000=8.27×109,故答案为:8.27×109.【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)分解因式:xy2﹣4x= x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(3.00分)甲,乙两名跳高运动员近期20次的跳高成绩统计分析如下:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,则两名运动员中,乙的成绩更稳定.【分析】根据方差的性质,可得答案.【解答】解:=1.70m,=1.70m,s甲2=0.007,s乙2=0.003,∵=,s甲2>s乙2,则两名运动员中,乙的成绩更稳定,故答案为:乙.【点评】本题考查了方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3.00分)一个不透明布袋里有3个红球,4个白球和m个黄球,这些球除颜色外其余都相同,若从中随机摸出1个球是红球的概率为,则m的值为 2 .【分析】根据题目中的数据可以计算出总的球的个数,从而可以求得m的值.【解答】解:由题意可得,m=3÷﹣3﹣4=9﹣3﹣4=2,故答案为:2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的m的值.15.(3.00分)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= 40°.【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°﹣(∠6+∠7)=40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.16.(3.00分)如图,▱ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC 的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是10 .【分析】根据平行四边形的性质可知AD=BC=3,CD=AB=7,再由垂直平分线的性质得出AE=CE,据此可得出结论【解答】解:∵四边形ABCD是平行四边形,AB=7,BC=3,∴AD=BC=3,CD=AB=7.∵由作图可知,MN是线段AC的垂直平分线,∴AE=CE,∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10.故答案为:10.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.17.(3.00分)如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为或.【分析】分两种情形画出图形,即可解决问题;【解答】解:如图,在Rt△AOB中,OB==10,①当△A′OB′在第三象限时,MM′=.②当△A″OB″在第二象限时,MM′=,故答案为或.【点评】本题考查位似变换,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O xx的坐标为(21010﹣2,21009).【分析】由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O xx的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O xx的坐标为(21010﹣2,21009).【解答】解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O xx的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O xx的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).【点评】本题考查规律型:点的坐标,一次函数的应用,解题的关键是学会探究规律的方法,灵活运用所学知识解决问题,属于中考常考题型.三、解答题(第19题10分,第20题12分,共22分)19.(10.00分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.【解答】解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.20.(12.00分)抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.【分析】(1)根据B组人数以及百分比计算即可解决问题;(2)求出C组人数,画出条形图即可解决问题;(3)用500ד十分了解”所占的比例即可;(4)先画出树状图,继而根据概率公式可求出两位参赛选手恰好是一男一女的概率.【解答】解:(1)15÷30%=50(人),答:本次调查了50名学生.(2)50﹣10﹣15﹣5=10(人),条形图如图所示:(3)500×=100(人),答:该校共有500名学生,请你估计“十分了解”的学生有100名.(4)树状图如下:共有12种等可能情况,其中所选两位参赛选手恰好是一男一女有6种.所以,所选两位参赛选手恰好是一男一女的概率P==.【点评】本题考查了折线统计图、树状图法求概率的知识,信息量较大,注意仔细认真审题,培养自己的读图能力,善于寻找解题需要的信息,属于中考常考题型.四、解答题(第21题12分,第22题12分,共24分)21.(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12.00分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.五、解答验(满分12分)23.(12.00分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E==,推出=,可得CD=BC=6,再利用勾股定理即可解决问题;【解答】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.【点评】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.六、解答题(满分12分)24.(12.00分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w 的值即可.【解答】解:(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.七、解答题(满分12分)25.(12.00分)如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC在AC 下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).【分析】(1)①先判断出△ABC是等边三角形,进而判断出∠CBP=∠CAQ,即可判断出△BPC ≌△AQC,再判断出△PCQ是等边三角形,进而得出CE=QE,即可得出结论;②同①的方法即可得出结论;(2)先判断出,∠PAQ=90°﹣∠ACQ,∠BAP=90°﹣∠ACQ,进而得出∠BCP=∠ACQ,即可判断出进而判断出△BPC∽△AQC,最后用锐角三角函数即可得出结论.【解答】解:(1)①DE=AQ,DE∥AQ,理由:连接PC,PQ,在△ABC中,AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AB=BC,BD⊥AC,∴AD=CD,∠ABD=∠CBD=∠BAC,∵∠CAF=∠ABC,∴∠CBP=∠CAQ,在△BPC和△AQC中,,∴△BPC≌△AQC(SAS),。
辽宁省抚顺市中考数学试卷
辽宁省抚顺市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A . -5B . -11C . 5D . 112. (2分)下列各式的约分,正确的是()A .B .C . =a-bD . =a+b3. (2分)下列计算中,正确的是()A . a3•a2=a6B . =±3C . ()﹣1=﹣2D . (π﹣3.14)0=14. (2分)(2019·葫芦岛模拟) 如图,在中,,,那么以为圆心、6为半径的⊙ 与直线的位置关系是()A . 相交B . 相切C . 相离D . 不能确定5. (2分)图中给出的直线和反比例函数的图像,判断下列结论正确的个数有()①;②直线与坐标轴围成的△ABO的面积是4;③方程组的解为,,;④当-6<x<2时,有。
A . 1个B . 2个C . 3个D . 4个6. (2分) (2015七上·宜春期末) 立方体盒子的每个面上都写了一个字,其平面展开图如图所示,那么该立方体盒子上,“强”相对的面上所写的文字是()A . 文B . 明C . 主D . 富二、填空题 (共10题;共10分)7. (1分)一个数a的相反数是非负数,那么这个数a与0的大小关系是a________0.8. (1分)化简:﹣=________ .9. (1分)当x________时,分式有意义.10. (1分)根据滨湖区旅游局数据统计显示,今年“五一”小长假,鼋头渚、灵山圣境、三国水浒城三大5A景区共接待旅游总人数254000人,这个数据用科学记数法可表示为________人.11. (1分) (2017九上·西城期中) 如图,等腰Rt△ABC中,∠C=90°,BC=6cm,将△ABC绕点A顺时针旋转15°后得到△AB′C′,则图中阴影部分的面积是________ cm2 .12. (1分)如图,在▱ABCD中,AB=5,AC=6,当BD=________时,四边形ABCD是菱形.13. (1分)(2019·信丰模拟) 如图,正六边形的面积为6a ,则图中阴影部分的面积为________.14. (1分) (2018九上·宜城期中) 为提高学生足球水平,某市将开展足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排28场比赛,应邀请________多少个球队参赛?15. (1分)两直线y=x﹣1与y=﹣x+3的交点坐标________.16. (1分)化简:(x+5)2﹣x2=________三、解答题 (共11题;共113分)17. (10分)(2020·重庆模拟) 计算:(1)(a﹣1)(a﹣3)﹣(a+2)(a﹣2)(2)(m﹣1+ )÷18. (5分) (2018八上·汽开区期末) 解方程:19. (10分)如图,CG=CF,BC=DC,AB=ED,点A、B、C、D、E在同一直线上.求证:(1) AF=FG;(2)BF∥DG.20. (10分)(2020·莆田模拟) 某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元,三年后如果备件多余,每个以元()回收.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得到如下频数分布直方图:记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(1)以100台机器为样本,请利用画树状图或列表的方法估计不超过19的概率;(2)以这100台机器在购买易损零件上所需费用的平均数为决策依据,在与之中选其一,当为何值时,选比较划算?21. (8分) (2020八下·高邮期末) 今年疫情期间,为了保证学生们能正常学习,我市开展了“线上教学”.在八年级“线上教学”结束后,为了解学生每天“线上学习”的时间情况,抽查了部分学生进行课查.根据调查结果,绘制了两幅不完整的统计图装.请根据统计图表中的信息回答下列问题:(1)本次调查的学生人数是________,表格中的m=________(2)图中C所占的扇形的圆心角的度数为________°(3)请估算我市4500名八年级学生每天线上学习时间多于1小时有多少人.22. (5分)(2020·浙江模拟) 图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为70°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=60厘米,DC=40厘米,求点D' 到BC的距离.(参考数据:sin70°≈0.94,cos70°≈0.34)23. (6分)(2019·广州模拟) 我国东南沿海某地的风力资源丰富,一年风日平均风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间约占60天,为了充分利用风能这种绿色资源,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:日平均风速v(m/s)v<33≤v<6 v≥6日发电量/kw.h A型0≥36≥150B型0≥24≥90根据上面的数据回答:(1)若这个发电厂购买x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为________/kw•h;(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元该发电厂拟购买风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电机厂每年的发电量不少于102000kw•h,请你提供符合条件的购机方案.24. (15分)(2019·澧县模拟) 第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套?(3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?25. (15分)(2017·浙江模拟) 如图,△ABC中,AB=AC=10,BC= ,以AB为直径的⊙O分别交BC、AC 于点D、E.(1)求AE;(2)过D作DF⊥AC于F,请画出图形,说明DF是否是⊙O的切线,并写出理由;(3)延长FD,交AB的延长线于G,请画出图形,并求BG.26. (15分)(2017·淮安模拟) 如图,在平面直角坐标系中,已知点A(0,1),直线l:y=﹣1.动点P满足条件:①P在这个平面直角坐标系中;②P到A的距离和P到l的距离相等;(1)求点P所经过的轨迹方程,并在网格中绘制这个图象.(提示:平面直角坐标系中两点之间的距离可以通过勾股定理来求得)(2)已知直线y=kx+1,小明同学说,这条直线与(1)中所绘的图象有两个交点?你能说明小明为什么这么说吗?(3)经过了上述的计算、绘图,小明发现,如果第(2)问的两个交点分别为B、C,那么,过BC的中点M 作直线l的垂线,垂足为H,连接BH、CH,所得到的三角形BCH是个特殊的三角形,你能说明它是什么三角形吗?为什么?27. (14分)(2017·五莲模拟) 爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(1)如图1,当tan∠PAB=1,c=4 时,a=________,b=________;如图2,当∠PAB=30°,c=2时,a=________,b=________;(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE 于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共113分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
2017年辽宁省抚顺中考数学试卷(含答案解析版)
2017年辽宁省抚顺市中考数学试卷一、选择题(此题共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.﹣2的相反数是()A.﹣12B.12C.﹣2 D.2【答案】D.2.目前,中国网民已经达到731 000 000人,将数据731 000 000用科学记数法表示为()A.0.731×109B.7.31×108C.7.31×109D.73.1×107【答案】B.3.如图在长方形中挖出一个圆柱体后,取得的几何体的左视图为()A.B.C.D.【答案】A.4.以下运算正确的选项是()A .842a a a ÷=B .236(2)8a a -=-C .236a a a ⋅=D .22(3)9a a -=- 【答案】B .5.我校四名跳远运动员在前的10次跳远测试中成绩的平均数相同,方差s 2如下表示数,若是要选出一名跳远成绩最稳固的选手参加抚顺市运动会,应选择的选手是( )选手 甲 乙 丙 丁 s 20.50.50.60.4A .甲B .乙C .丙D .丁 【答案】D .6.为了践行“绿色生活”的理念,甲、乙两人天天骑自行车出行,甲匀速骑行30千米的时刻与乙匀速骑行25千米的时刻相同,已知甲每小时比乙多骑行2千米,设甲每小时骑行x 千米,依照题意列出的方程正确的选项是( )A .30252x x =+ B .30252x x =+ C .30252x x =- D .30252x x=- 【答案】C .7.如图,别离过矩形ABCD 的极点A 、D 作直线l 1、l 2,使l 1∥l 2,l 2与边BC 交于点P ,假设∠1=38°,那么∠BPD 为( )A .162°B .152°C .142°D .128° 【答案】C .8.假设一次函数y=kx+b的图象如下图,那么()A.k<0,b<0B.k>0,b>0C.k<0,b>0D.k>0,b<0【答案】B.9.以下事件中是必然事件的是()A.任意画一个正五边形,它是中心对称图形x 成心义,那么实数x>3B.实数x使式子3C.a,b均为实数,假设a=38,b=4,那么a>bD.5个数据是:6,6,3,2,1,那么这组数据的中位数是3【答案】D.10.如图,菱形ABCD的边长为2,∠A=60°,一个以点B为极点的60°角绕点B旋转,那个角的两边别离与线段AD的延长线及CD的延长线交于点P、Q,设DP=x,DQ=y,那么能大致反映y与x的函数关系的图象是()A. B. C. D.【答案】A.二、填空题(本大题共8小题,每题3分,共24分)11.分解因式:2-= .ab a【答案】a(b+1)(b﹣1).12.已知关于x的方程220x x m+-=有实数解,那么m的取值范围是.【答案】m≥﹣1.13.如图,剪两张对边平行的纸条,随意交叉叠放在一路,重合部份组成了一个四边形ABCD,当线段AD=3时,线段BC的长为.【答案】3.14.已知A(x1,y1),B(x2,y2)是反比例函数3=-图象上的两点,且x1>x2>0,那么y1y2yx(填“>”或“<”).【答案】>.15.一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,假设干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复实验后,发觉摸到绿球的概率稳固在0.2,那么袋中有绿球个.【答案】3.16.如图,某城市的电视塔AB 座落在湖边,数学教师率领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米抵达湖边点N 处,测得塔尖点A 在湖中的倒影A ′的俯角∠A ′NB 为45°,那么电视塔AB 的高度为 米(结果保留根号).【答案】1002.17.如图,在矩形ABCD 中,CD =2,以点C 为圆心,CD 长为半径画弧,交AB 边于点E ,且E 为AB 中点,那么图中阴影部份的面积为 .3323π. 18.如图,等边△A 1C 1C 2的周长为1,作C 1D 1⊥A 1C 2于D 1,在C 1C 2的延长线上取点C 3,使D 1C 3=D 1C 1,连接D 1C 3,以C 2C 3为边作等边△A 2C 2C 3;作C 2D 2⊥A 2C 3于D 2,在C 2C 3的延长线上取点C 4,使D 2C 4=D 2C 2,连接D 2C 4,以C 3C 4为边作等边△A 3C 3C 4;…且点A 1,A 2,A 3,…都在直线C 1C 2同侧,如此下去,那么△A 1C 1C 2,△A 2C 2C 3,△A 3C 3C 4,…,△A n C n C n +1的周长和为 .(n ≥2,且n 为整数)【答案】1212n n --.三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:53(2)224a a a a ---÷++,其中a =011(3)()4π--+. 【答案】2a +6,16.20.学校想明白九年级学生对我国提倡的“一带一路”的了解程度,随机抽取部份九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A .超级了解.B .了解.C .明白一点.D .完全不明白.将调查的结果绘制如下两幅不完整的统计图,请依照两幅统计图中的信息,解答以下问题:(1)求本次共调查了多少学生? (2)补全条形统计图;(3)该校九年级共有600名学生,请你估量“了解”的学生约有多少名?(4)在“超级了解”的3人中,有2名女生,1名男生,教师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.【答案】(1)30;(2)作图观点析;(3)240;(4)2.3四、解答题(第21题12分,第22题12分,共24分)21.在平面直角坐标系中,A,B,C,三点坐标别离为A(﹣6,3),B(﹣4,1),C(﹣1,1).(1)如图1,按序连接AB,BC,CA,得△ABC.①点A关于x轴的对称点A1的坐标是,点B关于y轴的对称点B1的坐标是;②画出△ABC关于原点对称的△A2B2C2;③tan∠A2C2B2= ;(2)利用四边形的不稳固性,将第二象限部份由小正方形组成的网格,转变为如图2所示的由小菱形组成的网格,每一个小菱形的边长仍为1个单位长度,且较小内角为60°,原先的格点A,B,C别离对应新网格中的格点A′,B′,C′,按序连接A′B′,B′C′,C′A′,得△A′B′C′,那么tan∠A′C′B′=.【答案】(1)①(﹣6,﹣3),(4,1);②答案观点析;③2;(2)3.522.学校预备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?【答案】(1)一个篮球的售价是70元,一个足球的售价是50元;(2)66.五、解答题(总分值12分)23.如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)判定直线DC与⊙O的位置关系,并说明理由;(2)假设HB=2,cos D=3,请求出AC的长.5【答案】(1)DC与⊙O相切;(2)六、解答题(总分值12分)24.某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n别离是x(1≤x≤30,且x为整数)的一次函数,销售情形如下表:(1)进程表中数据,别离直接写出m与x,n与x的函数关系式:,;(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将此日该商品的日销售额捐献给儿童福利院,试求出商场可捐钱多少元?【答案】(1)m=﹣x+50;n=5x+40;(2)第10天的日销售额为3600元;(3)在儿童节前(不包括儿童节当天)销售该商品第14天时该商品的日销售额最多,商场可捐钱3960元.七、解答题(总分值12分)25.如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右边,且PQ=OA,作线段OQ的垂直平分线,别离交直线OF、ON交于点B、点C,连接AB、PB.(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是不是还存在(1)中的数量关系?假设存在,请写出证明进程;假设不存在,请说明理由;(3)如图3,∠MON=60°,连接AP,设AP=k,当P和Q两点都在射线ON上移动时,k是不是存OQ在最小值?假设存在,请直接写出k的最小值;假设不存在,请说明理由.【答案】(1)AB=PB;(2)存在;(3)k=0.5.八、解答题(总分值14分)26.如图,抛物线24=++交y轴于点A,并通过B(4,4)和C(6,0)两点,点D的坐标为y ax bx(4,0),连接AD,BC,点E从点A动身,以每秒2个单位长度的速度沿线段AD向点D运动,抵达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时刻为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角△EFG.(1)求抛物线的解析式;(2)当点G落在第一象限内的抛物线上时,求出t的值;(3)设点E从点A动身时,点E,F,G都与点A重合,点E在运动进程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从动身到现在所通过的途径长.【答案】(1)214433y x x =-++;(2)t =103;(3)当t 1=85,当t 2=5秒,现在途径长度为1+。
【初中数学】辽宁省抚顺市抚顺县2016年中考数学一模试卷(解析版) 人教版
辽宁省抚顺市抚顺县2016年中考数学一模试卷(解析版)一、选择题:每小题3分,共30分1.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.2.sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:sin60°=.故选C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容,要注意积累.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.4.抛物线y=﹣(x+1)2﹣2的顶点坐标是()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=﹣(x+1)2﹣2,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2).故选A【点评】考查将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.5.在Rt△ABC中,∠C=90°,BC=6,AC=8,则cos∠BAC等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案.【解答】解:由勾股定理,得AB==10.由余弦等于邻边比斜边,得cos∠BAC==,故选:C.【点评】本题考查了锐角三角函数的定义,利用勾股定理得出AB的长是解题关键.6.已知如图在Rt△ABC中,∠C=90°.CD是斜边AB上的高,若得到CD2=BD•AD这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断【考点】相似三角形的判定与性质.【分析】根据三角形内角和定理和已知求出∠B=∠ACD,根据相似三角形的判定得出△ADC ∽△CDB,根据相似三角形的性质得出比例式,即可得出选项.【解答】解:△ADC∽△CBD,理由是:∵在Rt△ABC中,∠C=90°.CD是斜边AB上的高,∴∠ACB=∠CDB=∠CDA=90°,∴∠B+∠BCD=90°,∠BCD+∠ACD=90°,∴∠B=∠ACD,∵∠CDB=∠ADC=90°,∴△ADC∽△CDB,∴=,∴CD2=BD•AD,即只有选项C正确;选项A、B、D都错误;故选C.【点评】本题考查了相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.7.一个反比例函数在第二象限的图象如图所示,点A是图象上任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,求这个反比例函数的解析式是()A.y=﹣B.y=C.y=D.y=﹣【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.【解答】解:由题意得,k<0,=3,故可得:k=﹣6,即函数解析式为:y=﹣.故选D.【点评】本题考查了待定系数法求反比例函数解析式,反比例函数系数k的几何意义,注意掌握在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.8.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.12【考点】反比例函数系数k的几何意义.【分析】根据反比例函数中k的几何意义分别求出△AOC的面积和△OBD的面积,根据坐标特征求出四边形MCOD的面积,结合图形计算即可.【解答】解:∵A、B两点在反比例函数y=的图象上,∴△AOC的面积为2,△OBD的面积为2,∵点M(﹣3,2),∴四边形MCOD的面积为6,∴四边形MAOB的面积为6+2+2=10,故选:C.【点评】本题考查的是反比例函数系数k的几何意义,反比例函数中k的几何意义:图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.4B.6 C.3D.3【考点】旋转的性质.【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=4,接着根据旋转的性质得A′B′=AB=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=2,然后利用AA′=AB′+A′B′进行计算.【解答】解:∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×2=4,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°﹣30°=30°,∴B′A=B′C=2,∴AA′=AB′+A′B′=2+4=6.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.10.如图,二次函数y=ax2+bx+c的图象如图所示,则下列说法①ac<0;②2a+b<0;③当x=1时,a+b+c>0;④当x=﹣1时,a﹣b+c>0;⑤关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.你认为其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得到a>0,由抛物线与y轴的交点在x轴上方得到c>0,则可对①进行判断;利用抛物线的对称轴方程可得到b=﹣2a,则可对②进行判断;利用x=1时,y<0可对③进行判断;利用x=﹣1时,y>0,可对④进行判断;根据抛物线与x轴有2个交点可对⑤进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac>0,所以①错误;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,所以②错误;∵x=1时,y<0,∴a+b+c<0,所以③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,所以④正确;∵抛物线与x轴有2个交点,∴关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以⑤正确.故选B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数有△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共24分11.反比例函数,在每个象限内,y随x的增大而增大,则m的取值范围是m<1.【考点】反比例函数的性质.【分析】由于反比例函数的图象在每个象限内y随x的增大而增大,则满足m﹣1<0即可.【解答】解:由题意得的图象在每个象限内y随x的增大而增大,则m﹣1<0,即m<1.故答案为:m<1.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.计算:sin45°+cos45°﹣tan30°sin60°=﹣.【考点】特殊角的三角函数值.【分析】把特殊角是三角函数值代入计算即可.【解答】解:原式=+﹣×=﹣.故答案为:﹣.【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.【考点】锐角三角函数的定义;勾股定理.【分析】根据勾股定理,可得AC的长,根据邻边比斜边,可得角的余弦值.【解答】解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.【点评】本题考查了锐角三角函数的定义,角的余弦是角邻边比斜边.14.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为4.【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=2:3.【考点】位似变换.【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质,即可得AB∥DE,即可求得△ABC的面积:△DEF面积=,得到AB:DE═2:3.【解答】解:∵△ABC与△DEF位似,位似中心为点O,∴△ABC∽△DEF,∴△ABC的面积:△DEF面积=()2=,∴AB:DE=2:3,故答案为:2:3.【点评】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.16.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S=1,阴影则S1+S2=6.【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故答案为6.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.17.如图,菱形ABCD的边长为2,∠ADC=120°,弧CD是以点B为圆心BC长为半径的弧.则图中阴影部分的面积为(结果保留π).【考点】扇形面积的计算;菱形的性质.【分析】根据菱形的对角线平分每一组对角,进而得出∠BDC=∠DBC=60°,即可得出△DBC 是等边三角形,进而利用扇形面积求出即可.【解答】解:∵菱形ABCD的边长为2,∠ADC=120°,∴∠BDC=∠DBC=60°,∴△DBC是等边三角形,∴BD=BC=2,∴图中阴影部分的面积为:=.故答案为:.【点评】此题主要考查了菱形的性质以及等边三角形判定和扇形的面积公式的应用,根据已知得出△DBC是等边三角形是解题关键.18.观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:19题10分,20题12分,共22分19.(10分)(2016•抚顺县一模)某课外小组有做气体实验时,获得压强P(帕)与体积V(立方厘米)之间有下列对应数据:根据表中信息回答下列问题:(1)猜想P与V之间的关系,并写出函数解析式;(2)当气体的体积是12立方厘米时,压强是多少?【考点】反比例函数的应用.【分析】(1)先利用表中数据判断P与V成反比例,则可设P=,然后把P=1,V=6代入求出k即可得到P与V的关系式;(2)计算V=12所对应的函数值即可.【解答】解:(1)从表中数据得P与V的积为定值6,所以P与V成反比例,设P=,把P=1,V=6代入得k=1×6=6,所以P与V的关系式为y=;(2)当V=12时,P==0.5,即当气体的体积是12立方厘米时,压强是0.5帕.【点评】本题考查了反比例函数的运用:能把实际的问题转化为数学问题,建立反比例函数的数学模型.注意在自变量和函数值的取值上的实际意义.20.(12分)(2014•长沙)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.【考点】条形统计图;用样本估计总体;列表法与树状图法.【分析】(1)总人数以及条形统计图求出喜欢“唆螺”的人数,补全条形统计图即可;(2)求出喜欢“臭豆腐”的百分比,乘以2000即可得到结果;(3)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3)列表如下:所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.【点评】此题考查了条形统计图,用样本估计总体,以及列表法与树状图法,弄清题意是解本题的关键.四、每题12分,共24分21.(12分)(2016•抚顺县一模)如图,在矩形ABCD中,E为CD边上的点,将△BCE 沿BE折叠,点C恰好落在AD边上的点F处.(1)求证:△ABF∽△DFE.(2)若AB=3,AF=4,求DE的长.【考点】相似三角形的判定与性质;矩形的性质;翻折变换(折叠问题).【分析】(1)根据四边形ABCD是矩形,于是得到∠A=∠D=∠C=90°,求得∠BFE=∠C=90°,根据余角的性质得到∠ABF=∠DFE,根据相似三角形的判定定理即可得到结论;(2)由勾股定理得到BF==5,求得DF=AD﹣AF=1,根据相似三角形的性质列比例式即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣90°=90°,∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE;(2)解:∵BF==5,∴AD=BC=BF=5,∴DF=AD﹣AF=1,∵△ABF∽△DFE,∴,即,∴DE=.【点评】本题考查了相似三角形的判定和性质,矩形的性质,翻折变换﹣折叠的性质,熟练掌握相似三角形的判定和性质是解题的关键.22.(12分)(2016•抚顺县一模)如图,已知一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A、B两点,且点A的横坐标与点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)直接写出x取何值时,反比例函数的函数值大于一次函数的函数值.【考点】反比例函数与一次函数的交点问题.【分析】(1)先利用待定系数法求出点A、B坐标,再把A、B坐标代入y=kx+b,列出方程组解决问题即可.(2)根据S△AOB=S△AOC+S△BOC计算即可.(3)观察图象反比例函数图象在一次函数图象上面,由此即可写出自变量取值范围.【解答】解:(1)把x A=﹣2,y B═﹣2代入y=﹣,得到y A=4,x B=4,∴点A(﹣2,4),B(4,﹣2),把A(﹣2,4),B(4,﹣2)代入y=kx+b得到,解得,∴一次函数的解析式为y=﹣x+2.(2)∵y=﹣x+2与y轴的交点为C(0,2),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6.(3)由图象可知反比例函数的函数值大于一次函数的函数值﹣2<x<0或x>4.【点评】本题考查一次函数与反比例函数图象的交点、三角形面积等知识,解题的关键是灵活运用待定系数法确定函数解析式,学会利用分割法求三角形面积,属于中考常考题型.五、本题12分23.(12分)(2016•抚顺县一模)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为F,E为BA延长线上的一点,连接CE、CA,∠ECA=∠ACD.(1)求证:CE为⊙O的切线;(2)若EA=2,tanE=,求⊙O的半径.【考点】切线的判定.【分析】(1)由AB为⊙O的直径,弦CD⊥AB,得到=,∠ACD=∠ABC,结合∠OCB+∠OCA=90°即可;(2)在Rt△ECO中,tan∠E=,设OC=R,得到CE=R,OE=R+2即可.【解答】(1)证明:连接BC,OC,∵AB为⊙O的直径,弦CD⊥AB,∴=,∴∠ACD=∠ABC,∵OB=OC,∴∠ABC=∠OCB,∴∠ACD=∠OCB,∵∠ECA=∠ACD.∴∠EAC=∠OCB,∵∠OCB+∠OCA=90°,∴∠ECA+∠OCA=90°,∴∠OCE=90°,∵点C在⊙O上,∴CE是⊙O的切线.(2)在Rt△ECO中,tan∠E=,设OC=R,∴CE=R,OE=R+2,∴(R)2+R2=(R+2)2,∴R=3或R=﹣(舍).【点评】此题是切线的判定,涉及到圆中的性质,弦切角,勾股定理,判断∠OCE=90°是解本题的关键,六、本题12分24.(12分)(2016•抚顺县一模)放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).【考点】解直角三角形的应用.【分析】作DH⊥BC于H,设DH=x米,根据三角函数表示出AH于BH的长,根据AH﹣BH=AB得到一个关于x的方程,解方程求得x的值,进而求得AD﹣BD的长,即可解题.【解答】解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°=x,在直角△BDH中,∠DBH=45°,BH=DH=x,BD=x,∵AH﹣BH=AB=10米,∴x﹣x=10,∴x=5(+1),∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣x=(2﹣)×5(+1)≈(2﹣1.414)×5×(1.732+1)≈8米.答:小明此时所收回的风筝线的长度约是8米.【点评】本题考查了直角三角形的运用,考查了30°角所对直角边是斜边一半的性质,本题中求得DH的长是解题的关键.七、本题12分25.(12分)(2015•长春)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为AF=DE.探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE 的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.【考点】四边形综合题.【分析】①根据题意证明△AEF≌△DCE即可;②证明方法与①相同可以证明结论;③根据平行线分线段成比例定理列出比例式,计算得到答案.【解答】解:①AF=DE;②AF=DE,证明:∵∠A=∠FEC=∠D=90°,∴∠AEF=∠DCE,在△AEF和△DCE中,,∴△AEF≌△DCE,∴AF=DE.③∵△AEF≌△DCE,∴AE=CD=AB=2,AF=DE=3,FB=FA﹣AB=1,∵BG∥AD,∴=,∴BG=.【点评】本题考查的是矩形的性质、全等三角形的判定和性质、相似三角形的性质和判定,灵活运用相关的定理和性质是解题的关键.八、本题12分26.(14分)(2016•抚顺县一模)如图,已知抛物线y=﹣x2+bx+c经过A(0,4),B (3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A(0,4),B(3,0)代入抛物线的解析式得到关于b、c的二元一次方程组,然后解得b、c的值,从而得到抛物线的解析式;(2)①先求得BC=4,AB的长,接下来依据平行线分线段成比例定理得到PQ=DO=2,然后证明∠PQN=∠QBN,由相似三角形的判定定理可知当或时,△PQN与△ABC相似,从而可求得BQ的长,从而得到点P的坐标;②由题意可知QN=2,然后再求得sin∠ABO=,最后在△QBN中,依据锐角三角函数的定义可求得QB的长,从而得到点P的坐标.【解答】解:(1)将A(0,4),B(3,0)代入抛物线的解析式得:,解得;b=,c=4.∴抛物线的解析式为y=﹣+x+4.(2)①如图1所示:∵令y=0,解得x1=﹣1,x2=3,∴C(﹣1,0).∴BC=4,AB==5.∵D、E分别为AC、AB的中点,∴DE∥BC.∴=1.∴PQ=DO=2.∵PQ⊥BC,QN⊥AB,∴∠PQN+∠NQB=90°,∠NQB+∠QBN=90°.∴∠PQN=∠QBN.∴当或时,△PQN与△ABC相似.∵当时,,解得;QN=.∵=,∴QB=QN=×=2.∴OQ=3﹣2=1.∴点P的坐标为(1,2).当时,,解得;QN=2.5.∵=,∴QB=QN=×=.∴OB﹣BQ=﹣.∴点P的坐标为(﹣,2).综上所述点P的坐标为(1,2)或(﹣,2).②如图2所示:∵PQ=QN,PQ=2,∴QN=2.∵QN⊥AB,∴∠QNB=90°.∵由(2)可知OA=4,AB=5,∴sin∠ABO=.∴,即,解得;QB=.∴OQ=OB﹣QB=3﹣=.∴P(,2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、平行线分线段成比例定理、相似三角形的性质和判定、特殊锐角三角函数的定义以及勾股定理,证得当当或时,△PQN与△ABC相似是解题的关键.。
辽宁省抚顺市2016届九年级下第三次质检数学试卷含答案解析
2015-2016学年辽宁省抚顺市九年级(下)第三次质检数学试卷一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠26.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.7.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0 B.m>0 C.m D.m8.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2二、填空题11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c=.13.某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是.14.如图是一几何体的三视图,则这个几何体的全面积是.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要mm.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S1=,S n=(用含n的式子表示).三、解答题(第19题10分,第20题12分,共22分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1,画出△A1B1C1并直接写出点C1的坐标为;(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.四、21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.五、(本题12分)23.如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)六、(本题12分)24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题12分)25.如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN(1)线段MN和GD的数量关系是,位置关系是;(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN 的最大值和最小值.八、(本题14分)26.如图,直线y=﹣x+3与x轴交于A点,与y轴交于B点,对称轴为x=1的抛物线经过A、B两点,与x轴的另一个交点为C,抛物线与对称轴交于D点,连接CE、CB、BD.(1)求抛物线的解析式;(2)求证:BD∥CE;(3)在直线AB上是否存在点P,使以B、D、P为顶点的三角形与△BCE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.2015-2016学年辽宁省抚顺市房申中学九年级(下)第三次质检数学试卷参考答案与试题解析一、选择题1.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AB==5.sinB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【考点】可能性的大小.【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【解答】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.【点评】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【考点】概率公式.【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是:=.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.7.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0 B.m>0 C.m D.m【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得x1=,x2=,而x1<x2<0时,y1<y2,则2﹣5m<0,然后解不等式即可.【解答】解:∵反比例函数y=的图象上有A(x1,y1)、B(x2,y2),∴x1=,x2=,∵x1<x2<0时,y1<y2,∴2﹣5m<0,∴m>.故选D.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.8.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°【考点】圆周角定理.【分析】首先在优弧AB上取点D,连接AD,BD,然后由圆周角定理,求得∠D的度数,又由圆的内接四边形的性质,求得∠ACB的度数.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D=∠AOB=50°,∴∠ACB=180°﹣∠D=130°.故选B.【点评】此题考查了圆周角定理以及圆的内接四边形的性质.注意准确作出辅助线是解此题的关键.9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】先根据平行四边形的性质得AB∥CD,AB=CD,而E是AB的中点,BE=AB=CD,再证明△BEF∽△DCF,然后根据相似三角形的性质可计算的值.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选C.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【专题】压轴题.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF 中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二、填空题11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有,12种等可能的结果数,再找出两个数和为负数的结果数,然后根据概率公式计算.【解答】解:画树状图为:,共有12种等可能的结果数,其中两个数和为负数的结果数为2,所以两个数和为负数的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c=﹣4.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线与x轴的交点坐标,则可用交点式表示解析式为y=(x+1)(x﹣4),然后变形为一般式即可得到c的值.【解答】解:抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4,所以c=﹣4.故答案为﹣4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.13.某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x,根据题意即可列出方程.【解答】解:设平均增长率为x,根据题意可列出方程为:1000(1+x)2=1440.解得:(1+x)2=1.44.1+x=±1.2.所以x1=0.2,x2=﹣2.2(舍去).故x=0.2=20%.答:这个增长率为20%,故答案为:20%【点评】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.14.如图是一几何体的三视图,则这个几何体的全面积是33π.【考点】圆锥的计算;由三视图判断几何体.【分析】首先确定几何体的形状,根据三视图中提供的数据即可计算.【解答】解:几何体是圆锥,底面直径是6,则底面周长是6π,母线长是8.则侧面积是:×6π×8=24π,底面面积是:9π.则全面积是:24π+9π=33π.故答案为:33π.【点评】本题主要考查了三视图,以及圆锥的侧面积的计算,正确根据三视图确定圆锥的底面直径以及母线长是解题的关键.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12mm.【考点】正多边形和圆.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm .故答案为:12.【点评】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.【考点】旋转的性质.【分析】先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AB=2BC=4,AC=2,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S=DF×CF=×=.阴影【点评】考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP= 1或4或2.5.【考点】相似三角形的判定;矩形的性质.【专题】分类讨论.【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【解答】解:①当△APD∽△PBC时,=,即=,解得:PD=1,或PD=4;②当△PAD∽△PBC时,=,即=,解得:DP=2.5.综上所述,DP的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△B n+1D n C n的面积为S n,则S1=,S n=(用含n的式子表示).【考点】相似三角形的判定与性质;三角形的面积;等腰直角三角形.【专题】压轴题;规律型.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,所以S2=×=,同样的道理,即可求出S3,S4…S n.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,故答案为:;同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(第19题10分,第20题12分,共22分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1,画出△A1B1C1并直接写出点C1的坐标为(2,3);(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.【考点】作图-位似变换;作图-旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(2)利用关于原点中心对称的点的特征特征,把A、B、C点的横纵坐标都乘以﹣2得到A2、B2、C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作,点C1的坐标为(2,3);(2)如图,△A2B2C2为所作.故答案为(2,3).【点评】本题考查了位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的长.【考点】解直角三角形;特殊角的三角函数值.【分析】(1)将特殊角的三角函数值代入求解;(2)根据三角函数的定义和直角三角形的解法解答即可.【解答】解:(1)sin30°+3tan60°﹣cos245°===;(2)Rt△DBC 中,sin∠DBC=,sin60°=,,BD=4,∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∠A+∠ABC=90°,∠A=90°﹣∠ABC=90°﹣75°=15°,∴∠ABD=∠A,∴AD=BD=4.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.四、21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?【考点】反比例函数的应用;一次函数的应用.【分析】(1)需要分类讨论:AD段为直线;AB段平行于x轴的直线;BC段为双曲线的一部分,利用待定系数法求解即可;(2)把x=16代入反比例函数解析式进行解答.【解答】解:(1)设AD解析式是y=mx+n(m≠0),则,解得,∴y=5x+8.∵双曲线y=经过B(12,18),∴18=,解得k=216.∴y=.综上所述,y与x的函数解析式为:y=;(2)当x=16时,y==13.5.答:当x=16时,大棚内的温度约为13.5度.【点评】此题主要考查了反比例函数的应用,求函数解析式时,一定要结合图形,对自变量x的取值范围进行分类讨论,以防漏解或错解.22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OA ,如图,先根据圆周角定理得到∠AOC=2∠B=120°,则∠AOP=60°,再计算出∠OCA 的度数,接着利用AP=AC 得到∠P=∠ACO=30°,然后根据三角形内角和可计算出∠PAO=90°,于是利用切线的判定定理可判断PA 是⊙O 的切线;(2)在Rt △AOP 中,利用含30度的直角三角形三边的关系得到PO=2OA=6,PA=OA=3,然后根据三角形面积公式和扇形面积公式,利用S 阴影部分=S △PAO ﹣S 扇形OAD 进行计算即可.【解答】(1)证明:连接OA ,如图,∵∠AOC=2∠B=120°,∴∠AOP=60°,∵OA=OC ,∴∠OCA=∠OAC=(180°﹣120°)=30°,∵AP=AC ,∴∠P=∠ACO=30°,∴∠PAO=180°﹣30°﹣60°=90°,∴OA ⊥PA ,∴PA 是⊙O 的切线;(2)解:在Rt △AOP 中,PO=2OA=6,PA=OA=3, ∴S 阴影部分=S △PAO ﹣S 扇形OAD =•3•3﹣=.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积公式.五、(本题12分)23.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE 的影长CD 为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE 的坡度为1:2.4,求楼AB 的高度.(坡度为铅直高度与水平宽度的比)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,设CM=5x,根据坡度的概念求出CM、DM,根据平行线的性质列出比例式,计算即可.【解答】解:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得CD==13x=13∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20﹣5=15,答:楼AB的高度为15米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,注意平行线的性质的应用.六、(本题12分)24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意列出二元一次方程组,求出a、b的值即可求出函数关系式的解.(2)已知w=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t),用配方法化简函数关系式即可求出w的最大值.【解答】解:(1)由题意,得:解得∴y乙=﹣0.1x2+1.5x.(2)W=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t)∴W=﹣0.1t2+1.2t+3.W=﹣0.1(t﹣6)2+6.6.∴t=6时,W有最大值为6.6.∴10﹣6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.【点评】本题考查学生利用二次函数解决实际问题的能力,注意二次函数的最大值往往要通过顶点坐标来确定.七、(本题12分)25.如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN(1)线段MN和GD的数量关系是MN=DG,位置关系是MN⊥DG;(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN 的最大值和最小值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;正方形的性质;梯形中位线定理;相似形综合题.【专题】探究型.【分析】(1)连接FN并延长,与AD交于点S,如图①,易证△SDN≌△FGN,则有DS=GF,SN=FN,然后运用三角形中位线定理就可解决问题;(2)过点M作MT⊥DC于T,过点M作MR⊥BC于R,连接FC、MD、MG,如图②,根据平行线分线段成比例可得BR=GR=BG,DT=ET=DE,根据梯形中位线定理可得MR=(FG+AB),MT=(EF+AD),从而可得MR=MT,RG=TD,由此可得△MRG≌△MTD,则有MG=MD,∠RMG=∠TMD,则有∠RMT=∠GMD,进而可证到△DMG是等腰直角三角形,然后根据等腰三角形的性质和直角三角形斜边上的中线等于斜边的一半,就可解决问题;(3)连接GM到点P,使得PM=GM,延长GF、AD交于点Q,连接AP,DP,DM如图③,易证△APD≌△CGD,则有PD=DG,根据等腰三角形的性质可得DM⊥PG,根据直角三角形斜边上的中线等于斜边的一半可得MN=DG.要求MN的最大值和最小值,只需求DG的最大值和最小值,由GC=CE=3可知点G在以点C为圆心,3为半径的圆上,再由DC=BC=7,就可求出DG的最大值和最小值.【解答】解:(1)连接FN并延长,与AD交于点S,如图①.∵四边形ABCD和四边形EFGC都是正方形,∴∠D=90°,AD=DC,GC=GF,AD∥BE∥GF,∴∠DSN=∠GFN.在△SDN和△FGN中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八、解答题(满分 14 分) 26.(14 分)(2016•抚顺)如图,抛物线 y=﹣ x2+bx+c 经过点 A(﹣3,0),点 C(0,4), 作 CD∥x 轴交抛物线于点 D,作 DE⊥x 轴,垂足为 E,动点 M 从点 E 出发在线段 EA 上
第 5 页(共 36 页)
以每秒 2 个单位长度的速度向点 A 运动,同时动点 N 从点 A 出发在线段 AC 上以每秒 1 个单位长度的速度向点 C 运动,当一个点到达终点时,另一个点也随之停止运动,设运动 时间为 t 秒. (1)求抛物线的解析式; (2)设△DMN 的面积为 S,求 S 与 t 的函数关系式; (3)①当 MN∥DE 时,直接写出 t 的值; ②在点 M 和点 N 运动过程中,是否存在某一时刻,使 MN⊥AD?若存在,直接写出此时 t 的值;若不存在,请说明理由.
第 6 页(共 36 页)
2016 年辽宁省抚顺市中考数学试卷
参考答案与试题解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分) 1.(3 分)(2016•抚顺)3 的相反数是( ) A.﹣ B.﹣3 C.3 D.
【考点】相反数. 【分析】根据相反数的定义即可求解.
【解答】解:3 的相反数是﹣3,
(1)分别求出利润 y1(万元)和利润 y2(万元)关于投资成本 x(万元)的函数关系式; (2)如果这家苗圃以 10 万元资金投入种植桃树和柏树,桃树的投资成本不低于 2 万元且 不高于 8 万元,苗圃至少获得多少利润?最多能获得多少利润? 七、解答题(满分 12 分) 25.(12 分)(2016•抚顺)如图,在△ABC 中,BC>AC,点 E 在 BC 上,CE=CA,点 D 在 AB 上,连接 DE,∠ACB+∠ADE=180°,作 CH⊥AB,垂足为 H. (1)如图 a,当∠ACB=90°时,连接 CD,过点 C 作 CF⊥CD 交 BA 的延长线于点 F. ①求证:FA=DE; ②请猜想三条线段 DE,AD,CH 之间的数量关系,直接写出结论; (2)如图 b,当∠ACB=120°时,三条线段 DE,AD,CH 之间存在怎样的数量关系?请证 明你的结论.
3.(3 分)(2016•抚顺)函数 y=
中自变量 x 的取值范围是( )
A.x≥3 B.x>3 C.x≤3 D.x<3 【考点】函数自变量的取值范围. 【分析】根据被开方数大于等于 0 列式计算即可得解.
【解答】解:由题意得 3﹣x≥0,
解得 x≤3. 故选:C. 【点评】本题考查了函数自变量的范围,一般从三个方面考虑:源自【解答】解:几何体的主视图是,
故选 A.
【点评】本题考查了简单几何体的三视图的应用,能理解三视图的意义是解此题的关键.
5.(3 分)(2016•抚顺)下列运算正确的是( )
A.a2+4a﹣4=(a+2)2 B.a2+a2=a4 C.(﹣2ab)2=﹣4a2b2 D.a4÷a=a3
【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;因式分解-运用公式法. 【分析】根据完全平方公式;合并同类项法则:把同类项的系数相加,所得结果作为系 数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相 乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解. 【解答】解:A、a2+4a+4=(a+2)2,故 A 错误; B、a2+a2=2a2,故 B 错误;
6.(3 分)(2016•抚顺)一次函数 y=2x﹣4 的图象与 x 轴、y 轴分别交于 A,B 两点,O 为
原点,则△AOB 的面积是( ) A.2 B.4 C.6 D.8 7.(3 分)(2016•抚顺)下列调查中最适合采用全面调查的是( ) A.调查某批次汽车的抗撞击能力 B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况 C.调查某班 40 名同学的视力情况 D.调查某池塘中现有鱼的数量 8.(3 分)(2016•抚顺)下列事件是必然事件的为( ) A.购买一张彩票,中奖 B.通常加热到 100℃时,水沸腾 C.任意画一个三角形,其内角和是 360°
2016 年辽宁省抚顺市中考数学试卷
一、选择题(本题共 10 小题,每小题 3 分,共 30 分) 1.(3 分)(2016•抚顺)3 的相反数是( ) A.﹣ B.﹣3 C.3 D.
2.(3 分)(2016•抚顺)下列图形既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
3.(3 分)(2016•抚顺)函数 y=
(1)本次问卷调查共调查了______名观众; (2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为______,“综艺节目”在扇形 统计图中所对应的圆心角的度数为______; (3)补全图①中的条形统计图; (4)现有最喜爱“新闻节目”(记为 A),“体育节目”(记为 B),“综艺节目”(记为 C), “科普节目”(记为 D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请 用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率. 22.(12 分)(2016•抚顺)如图,AB 是⊙O 的直径,点 C 是⊙O 上一点,连接 AC,∠ MAC=∠CAB,作 CD⊥AM,垂足为 D. (1)求证:CD 是⊙O 的切线; (2)若∠ACD=30°,AD=4,求图中阴影部分的面积.
第 1 页(共 36 页)
D.射击运动员射击一次,命中靶心 9.(3 分)(2016•抚顺)某公司今年销售一种产品,一月份获得利润 10 万元,由于产品畅 销,利润逐月增加,一季度共获利 36.4 万元,已知 2 月份和 3 月份利润的月增长率相 同.设 2,3 月份利润的月增长率为 x,那么 x 满足的方程为( ) A.10(1+x)2=36.4 B.10+10(1+x)2=36.4 C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4
故选 B. 【点评】本题考查了相反数的定义,熟练相反数的定义是解题的关键. 2.(3 分)(2016•抚顺)下列图形既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
【考点】中心对称图形;轴对称图形. 【分析】根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形, 以及轴对称图形的定义即可判断出. 【解答】解:A、该图形既是轴对称图形又是中心对称图形,故本选项正确; B、该图形是轴对称图形,但不是中心对称图形,故本选项错误; C、该图形是中心对称图形,但不是轴对称图形,故本选项错误; D、该图形既不是中心对称图形,也不是轴对称图形,故本选项错误; 故选:A. 【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问 题的关键.
15.(3 分)(2016•抚顺)八年三班五名男生的身高(单位:米)分别为 1.68,1.70,
1.68,1.72,1.75,则这五名男生身高的中位数是______米.
16.(3 分)(2016•抚顺)若关于 x 的一元二次方程(a﹣1)x2﹣x+1=0 有实数根,则 a 的取值
范围为______. 17.(3 分)(2016•抚顺)如图,点 B 的坐标为(4,4),作 BA⊥x 轴,BC⊥y 轴,垂足分 别为 A,C,点 D 为线段 OA 的中点,点 P 从点 A 出发,在线段 AB、BC 上沿 A→B→C 运动,当 OP=CD 时,点 P 的坐标为______.
12.(3 分)(2016•抚顺)分解因式:a2b﹣2ab+b=______.
13.(3 分)(2016•抚顺)不等式组
的解集是______.
14.(3 分)(2016•抚顺)某校九年二班在体育加试中全班所有学生的得分情况如表所示:
分数段(分) 15﹣19
20﹣24
25﹣29
30
人数
1
5
9
25
从九年二班的学生中随机抽取一人,恰好是获得 30 分的学生的概率为______.
第 2 页(共 36 页)
18.(3 分)(2016•抚顺)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n
(n 为正整数)均为等边三角形,它们的边长依次为 2,4,6,…,2n,顶点 A3,A6, A9,…,A3n 均在 y 轴上,点 O 是所有等边三角形的中心,则点 A2016 的坐标为______.
五、解答题(满分 12 分) 23.(12 分)(2016•抚顺)小明要测量公园被湖水隔开的两棵大树 A 和 B 之间的距离,他 在 A 处测得大树 B 在 A 的北偏西 30°方向,他从 A 处出发向北偏东 15°方向走了 200 米到 达 C 处,测得大树 B 在 C 的北偏西 60°方向. (1)求∠ABC 的度数; (2)求两棵大树 A 和 B 之间的距离(结果精确到 1 米)(参考数据: ≈1.414, ≈ 1.732, ≈2.449)
中自变量 x 的取值范围是( )
A.x≥3 B.x>3 C.x≤3 D.x<3 4.(3 分)(2016•抚顺)下图所示几何体的主视图是( )
A.
B.
C.
D.
5.(3 分)(2016•抚顺)下列运算正确的是( )
A.a2+4a﹣4=(a+2)2 B.a2+a2=a4 C.(﹣2ab)2=﹣4a2b2 D.a4÷a=a3
四、解答题(第 21 题 12 分,第 22 题 12 分,共 24 分) 21.(12 分)(2016•抚顺)某电视台为了解本地区电视节目的收视情况,对部分广州开展 了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅