1.资金的时间价值 工程经济学优秀课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1200
4
1300
单利年末计息
1000×10%=100 1000×10%= 100 1000×10%= 100 1000×10%= 100
年末本利和 年末偿还
1100 1200 1300 1400
0 0 0 1400
使用期 年初款额
1
1000
2
1100
3
1210
4
1331
复利年末计息
1000×10%=100 1100×10%=110 1210×10%=121 1331×10%=133.1
= 1464.1元
可查表 或计算
2.整付现值公式
0
1
P =?
2 3 … n –1
F (已知) n
PF(1 1i)nF(P/F,i,n)
1/(1+i)n —— 整付现值利率系数
21
例:若年利率为10%,如要在第4年年末得到的 本利和为1464.1元,则第一年年初的投资为多少?
解:
P
F(11i)n
年末本利和 年末偿还
1100 1210 1331 1464.1
0 0 0 1464.1
单利、复利小结
单利仅考虑了本金产生的时间价值,未考虑前期利息 产生的时间价值
复利完全考虑了资金的时间价值 债权人——按复利计算资金时间价值有利
债务人——按单利计算资金时间价值有利 按单利还是按复利计算,取决于债权人与债务人的地
位 同一笔资金,当i、n相同,复利计算的利息比单利计
算的利息大,本金越大、利率越高、计息期数越多, 两者差距越大
16
复利计息利息公式
符号定义: i —— 利率 n —— 计息期数 P —— 现在值,本金 F —— 将来值、本利和 A —— n次等额支付系列中的一次支付,在各计息期末
实现 G —— 等差额(或梯度),含义是当各期的支出或收入
是均匀递增或均匀递减时,相临两期资金支出或 收入的差额
17
1.整付终值公式
01
2
P (已知)

3 n –1
F=? n
F = P(1+i)n = P(F/P,i,n)
整付终值利率系数
18
公式的推导
年份 1 2
年初本金P P
P(1+i)
当年利息I P·i
P(1+i) ·i
年末本利和F P(1+i) P(1+i)2
1464.11110%4
1464.10.6830
1000(元)
例:某单位计划5年后进行厂房维修,需资金40 万元,银行年利率按9%计算,问现在应一次性存 入银行多少万元才能使这一计划得以实现?
方案的支出——现金流出(cash outflow 净CO现)金流量(net cash flow)=CI-CO
现金流量
同一时点的现金流量才能相加减
现金流量只计算现金收支(包括现钞、转账支票等凭证), 不计算项目内部的现金转移(如折旧等)
9
现金流量表
单位:万元
t年末 现金流入
1
2
3
4
5
6
0
100 700 700 700 700
3000
0
方案C
1
2
3
4
5
6
6000
0
1
方案D
3000 23
3000
3000
4
5
6
3000 3000 3
哪个方案好?
200 200 200
300
方案E
0
1
2
34
400
300
200 200
100
0
1
2
3
4
方案F
400
4
货币的支出和收入的经济效应不仅与货币量的 大小有关,而且与发生的时间有关。由于货币的 时间价值的存在,使不同时间上发生的现金流量 无法直接加以比较,这就使方案的经济评价变得 比较复杂了。
… … … …
n-1 n
P(1+i)n-2 P(1+i)n-1
P(1+i)n-2 ·i P(1+i)n-1 ·i
P(1+i)n-1 P(1+i)n
19
例:在第一年年初,以年利率10%投资1000元, 则到第4年年末可得本利和多少?
F=?
i=10%Baidu Nhomakorabea
0
1
2
3 4年
1000
F=P(1+i)n =1000 (1+10%)4
7
资金时间价值原理应用的基本原则:
充分利用资金的时间价值 最大限度的获得资金的时间价值
注意
资金的 时间价值
性质不同
资金与劳动相结 合的产物
通货膨胀导 致货币贬值
通货膨胀:货币发行量超过 商品流通实际需要量引起货 币贬值和物价上涨现象
8
2.现金流量 (Cash Flow)
方案的收入——现金流入(cash inflow-CI )
×100%
计息周期通常用年、半年、季度、月、日等表示
13
二、利息公式
利息计算
单利法 (利不生利)
复利法(利滚利)
I = P ·i ·n F=P(1+i ·n)
F=P(1+i)n I=F-P=P[(1+i)n-1]
P—本金
n—计息周期数
F—本利和 i—利率
14
使用期 年初款额
1
1000
2
1100
3
6
影响资金时间价值的主要因素
资金的使用时间 资金增值率一定,时间越长,时间价值越大
资金数量的大小 其他条件不变,资金数量越大,时间价值越大
资金投入和回收的特点 总投资一定,前期投入越多,资金负效益越大; 资金回收额一定,较早回收越多,时间价值越大
资金的周转速度 越快,一定时间内等量资金的时间价值越大
200 200
01
2
现金流出
400
300 200
3
4
时间
注意
第一年年末的时刻点同时也表示第二年年初 立脚点不同,画法刚好相反
12
4.利息与利率
利息(I)
——一定数额货币经过一定时间后资金的绝对增值
广义的利息
信贷利息 经营利润
利率(i)——利息递增的比率
利率 (i%)=
每单位时间增加的利息 原金额(本金)
1 资金的时间价值
主要内容
资金时间价值计算 名义利率和有效利率转化 等值计算
1
年末 0 1 2 3 4
你选哪个
方案?
A方案 -10000 +7000 +5000 +3000 +1000
单位:元
B方案 -10000 +1000 +3000 +5000 +7000
2
你又选哪个
方案?
3000
3000
现金流出
600 200 200 200 200 200
净现金流量 -600 -100 500 500 500 500
10
3.现金流量图(cash flow diagram)
——描述现金流量作为时间函数的图形, 它能表示资金在不同时间点流入与流出的情 况。
现金流量图的三大要素
大小 流向 时间点
11
现金流入
如何比较两个方案的优劣——构成了本课程要 讨论的重要内容。这种考虑了货币时间价值的经 济分析方法,使方案的评价和选择变得更现实和 可靠。
5
一、基本概念
1.资金的时间价值 ——指初始货币在生产与流通中与劳动相结合,
即作为资本或资金参与再生产和流通,随着时间 的推移会得到货币增值,用于投资就会带来利润; 用于储蓄会得到利息。
相关文档
最新文档