八年级上学期数学 12月月考试卷 后面带答案
福建省永春县崇贤中学2022-2023学年八年级上学期12月月考数学试题(含答案解析)
19.如图,在 4 3 的正方形网格中, ABC 的顶点都在正方形网格的格点上请你在图① 和图②中分别画出一个三角形,同时满足以下两个条件:
(1)以点 A 为一个顶点,另外两个顶点也在正方形网格点上; (2)与 ABC 全等,且不与 ABC 重合. 20.如图,△ABC 中,AB=AC,点 E,F 在边 BC 上,BE=CF,点 D 在 AF 的延长线上, AD=AC,
在 Rt△ABP 中,BP= 52 -1.42 = 23.04=4.8, ∴AP+BP+CP=AC+BP=5+4.8=9.8. 故选:D.
由勾股定理可得, Rt△ADE 中, DE AD2 AE2 5 , 又CE 3 ,
CD 3 5 ,
故选:C.
答案第 2页,共 16页
【点睛】本题考查了勾股定理的运用,由勾股定理求出 DE 是解决问题的关键. 8.B 【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求 AB,根据翻折不变性,可知 △DAE≌△DBE,从而得到 BD=AD,BE=AE,设 CE=x,则 AE=8-x,在 Rt△CBE 中,由勾 股定理列方程求解. 【详解】∵△CBE≌△DBE, ∴BD=BC=6,DE=CE, 在 RT△ACB 中,AC=8,BC=6, ∴AB= AC2 BC2 = 62 82 =10. ∴AD=AB-BD=10-6=4. 根据翻折不变性得△EDA≌△EDB ∴EA=EB ∴在 Rt△BCE 中,设 CE=x, 则 BE=AE=8-x, ∴BE2=BC2+CE2, ∴(8-x)2=62+x2, 解得 x= 7 .
2022-2023学年山西省太原市八年级第一学期12月月考数学试卷及参考答案
2022-2023学年山西省太原市八年级(上)月考数学试卷说明:共三大题,23小题,满分120分,作答时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.) 1.()02-等于( ) A.2-B.0C.1D.22.下列图标形象地表示了“二十四节气”中的“立春”“芒种”“白露”“大雪”,其中是轴对称图形的是( )A. B. C. D.3.下列计算结果正确的是( ) A.1234a a a ÷=B.()236aa -= C.2510a a a ⋅=D.()2236a a -=4.在ABC △中,B C ∠=∠,2AB =,则AC 的长为( ) A.1B.2C.3D.45.现需要在某条街道l 上修建一个核酸检测点P ,向居住在A ,B 小区的居民提供核酸检测服务,要使P 到A ,B 的距离之和最短,则核酸检测点P 符合题意的是( )A. B. C . D.6.下列各式从左到右的变形是因式分解,并因式分解正确的是( ) A.()2222m n mn m n -+=-B.()()21454x x x x ++=++C.()()22444x y x y x y -=-+D.()()()()21a b a b a b a b -+-=--+7.如图,在33⨯的正方形网格中,12∠+∠等于( )A.60°B.75°C.90°D.105°8.若225x mx ++是完全平方式,则m 的值是( ) A.10±B.5±C.10D.59.如图,将图1中的一个小长方形变换位置得到如图2所示的图形,根据两个图形中阴影部分的面积关系得到的等式是( )A.()2222a b a ab b +=++ B.()2222a b a ab b -=-+ C.()()22a b a b a b -=+-D.()()2222a b a b a ab b +-=+-10.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,BH 平分ABC ∠,6BH =,P 是边AB 上一动点,则H ,P 之间的最小距离为( )A.2B.3C.4D.6二、填空题(本大题共5个小题,每小题3分,共15分) 11.分解因式:225x -=______.12.若点A 位于第三象限,则点A 关于y 轴的对称点落在第______象限. 13.已知45m =,49n =,则4m n +的值为______.14.如图,在ABC △中,AB AC =,AB 的垂直平分线交边AB 于点D ,交边AC 于点E ,若ABC △与EBC △的周长分别是15,9,则BC =______.15.如图,某山的山顶E 处有一个观光塔EF ,已知该山的山坡面与水平面的夹角EAB ∠为30°,山高EB 为120米,点C 距山脚A 处180米,CD AB ∥,交EB 于点D ,在点C 处测得观光塔顶端F 的仰角FCD ∠为60°,则观光塔EF 的高度是______米.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)计算:(1)()3232a a a -⋅+.(2)()()()2a b a b b a b +---.先化简,再求值:()()22x xy y x y ++-,其中1x =,2y =-.18.(本题8分)课本再现:(1)如图,ABC △是等边三角形,DE BC ∥,分别交AB ,AC 于点D ,E .求证:ADE △是等边三角形.(2)如图,等边三角形ABC 的两条角平分线相交于点D ,延长BD 至点E ,使得AE AD =,求证:ADE △是等边三角形.19.(本题8分) 观察以下等式:第1个等式:223181-=⨯;第2个等式:225382-=⨯;第3个等式:227583-=⨯;第4个等式:229784-=⨯;…按照以上规律,解决下列问题: (1)写出第5个等式:______.(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.下列方框中的内容是小宇分解因式的解题步骤.请回答下列问题:(1)小宇分解因式中第二步到第三步运用了______. A.提公因式法B.平方差公式法C.两数和的完全平方公式法D.两数差的完全平方公式法(2)小宇得到的结果能否继续因式分解?若能,直接写出分解因式的结果;若不能,请说明理由. (3)请对多项式()()22262425x x xx +++-+进行因式分解.21.(本题8分)为了推进节能减排,助力实现碳达峰、碳中和,某市新换了一批新能源公交车(如图1).图2、图3分别是该公交车双开门关闭、打开中某一时刻的俯视(从上面往下看)示意图.ME ,EF ,FN 是门轴的滑动轨道,90E F ∠=∠=︒,两门AB ,CD 的门轴A ,B ,C ,D 都在滑动轨道上,两门关闭时(如图2),点A ,D分别在点E ,F 处,门缝忽略不计(B ,C 重合),两门同时开启时,点A ,D 分别沿E M →,F N →的方向同时以相同的速度滑动,如图3,当点B 到达点E 处时,点C 恰好到达点F 处,此时两门完全开启,若1EF =米,AB CD =,在两门开启的过程中,当60ABE ∠=︒时,求BC 的长度.22.(本题13分)综合与探究【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如,由图可以得到()2222a b a ab b +=++,基于此,请解答下列问题.【直接应用】(1)若3x y +=,225x y +=,求xy 的值. 【类比应用】(2)若()32x x -=,则()223x x +-=______.【知识迁移】(3)将两块全等的特制直角三角板(90AOB COD ∠=∠=︒)按如图所示的方式放置,其中点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上,连接AC ,BD .若14AD =,50AOC BOD S S +=△△,求一块直角三角板的面积.23.(本题13分)综合与实践课间,小鑫在草稿纸上画了一个直角三角形.如图,在Rt ABC △中,90ACB ∠=︒,他想到了作AC 的垂直平分线ED ,交AC 于点E ,交AB 于点D .他和同桌开始探讨线段AD 与BD 的大小关系.(1)尝试探究:当30A ∠=︒时,直接写出线段AD 与BD 的大小关系:AD ______BD .(填“>”、“<”或“=”)(2)得出结论:若A ∠为任意锐角,则线段AD 与BD 的大小关系是AD ______BD ,请说明理由.(填“>”、“<”或“=”)(3)应用结论:利用上面的结论继续研究,如图,P 是FHG △的边HG 上的一个动点,PM FH ⊥于点M ,PN FG ⊥于点N ,FP 与MN 交于点K .当点P 运动到某处时,MN 与FP 正好互相垂直,此时FP 平分HFG ∠吗?请说明理由.数学参考答案1.C2.D3.B4.B5.A6.D7.C8.A9.C 10.B 11.()()55x x +- 12.四 13.45 14.3 15.6016.(1)解:原式3338a a =-+……3分35a =.……5分(2)解:原式2222a b ab b =--+……3分22a ab =-.……5分 17.解:原式322223x x y xy x y xy y =++---……3分33x y =-.……5分 当1x =,2y =-时,原式()33129=--=.……7分18.解:(1)①AED ∠;……1分②ADE ∠; ③AED ∠;……3分④等角对等边.……4分(2)证明:∵ABC △是等边三角形,∴60BAC ABC ∠=∠=︒.……5分 ∵BE 和AD 分别为ABC ∠和BAC ∠的平分线,∴1302ABD ABC ∠=∠=︒,1302BAD BAC ∠=∠=︒. ∵ADE ∠为ABD △的外角,∴60ADE ABD BAD ∠=∠+∠=︒.……7分∵AE AD =,∴ADE △是等边三角形.……8分 19.解:(1)2211985-=⨯.……3分(2)第n 个等式:()()2221218n n n +--=.……5分证明:∵等式左边()()212121218n n n n n =++-+-+==等式右边,∴等式成立.……8分 20.解:(1)C.……2分(2)能,分解因式的结果为()42x +.……4分 (3)设22y x x =+.原式()()6425y y =+-+……5分()22211y y y =++=+……6分()()2222211x x x ⎡⎤=++=+⎣⎦……7分()41x =+.……8分21.解:由题意,得BE CF =,1EF AB CD =+=米.∵AB CD =,∴12AB CD ==米.……2分 在Rt AEB △中,∵90E ∠=︒,60ABE ∠=︒,∴30EAB ∠=︒,∴1124BE AB ==米,∴14CF BE ==米,……6分∴12BC EF BE CF =--=米. 答:BC 的长度为12米.……8分 22.解:(1)∵()2222x y x xy y +=++,又∵3x y +=,225x y +=,∴952xy =+,∴2xy =.……4分 (2)5.……7分 提示:设3y x =-,则()33x y x x +=+-=.∵()32x x -=,即2xy =,∴()()222222323225x x x y x y xy +-=+=+-=-⨯=.(3)∵两块直角三角板全等,∴AO CO =,BO DO =,90AOB COD ∠=∠=︒.……8分 ∵点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上, ∴18090AOC COD ∠=︒-∠=︒,90BOD AOC ∠=∠=︒. 设AO CO x ==,BO DO y ==.∵14AD AO OD x y =+=+=, 又∵22115022AOC BOD S S x y +=+=△△,∴22100x y +=,解得48xy =,……11分 ∴112422AOBS OA OB xy =⋅==△.答:一块直角三角板的面积为24.……13分 23.解:(1)=.……2分 (2)=.……4分理由:∵ED 垂直平分AC ,∴AD CD =,∴A ACD ∠=∠.……5分 ∵90ACB ∠=︒,∴90A B ACD BCD ∠+∠=∠+∠=︒, ∴B BCD ∠=∠,∴BD CD =,∴AD BD =.……7分 (3)FP 平分HFG ∠.……8分理由:如图,作MF 的垂直平分线交FP 于点O ,连接OM ,ON .∵PM FH ⊥,PN FG ⊥,∴MPF △和NPF △都是直角三角形. 由(2)中所证可知OF OP OM ==.作线段FN 的垂直平分线也必经过FP 的中点O ,……10分 ∴OM OP OF ON ===.又∵MN FP ⊥,∴90OKM OKN ∠=∠=︒.∵OK OK =,∴Rt Rt OKM OKN ≌△△,∴MK NK =,∴FKM FKN ≌△△,∴MFK NFK ∠=∠,即FP 平分HFG ∠.……13分。
八年级上册数学12月月考试题含答案
XXXX 市XXX 中学20XX 年八年级(上)12月月考数学试卷班级 姓名 得分一. 选择题(每小题2分,共20分.每小题都有四个选项,其中有且只有一个选项是正确的) 1、下列说法正确的是…………………………………………… ( )A .1的立方根是1±;B .24±=;C 、81的平方根是3±;D 、0没有平方根;2、下列说法:①有理数和数轴上点一一对应;②不带根号的数一定是有理数;③负数没有立方根; ④17-是17的平方根,其中正确的有( ) A .0个B .1个C .2个 D .3个3、 下列计算结果正确的是…………………( )A.. 336x x x +=B. 34b b b ⋅=C. 326428a a a ⋅=D. 22532a a -=. 4、已知a 、b 、c 为一个三角形的三边长,则22)(c b a --的值( )A .一定是负数B .一定是正数C .可能为零D .可能为正数,也可能为负数5、如m x +与3+x 的乘积中不含..x 的一次项....,则m 的值为…………………( ) A .3- B .3 C . 0 D . 16、下列式子从左到右的变形中,属于因式分解的是 …………………( )A 、2(1)(1)1x x x +-=-B 、221(2)1x x x x -+=-+C 、22()()a b a b a b -=+- D 、()()mx my nx ny m x y n x y +++=+++ 7.由下列条件不能判断△ABC 是直角三角形的是( ) A .∠A :∠B :∠C=3:4:5 B .a :b :c=2:3:5 C .∠A -∠C =∠B D .222AC BC AB =-8、如图,在△ABC 与△DEF 中,给出以下六个条件:(1)AB =DE ,(2)BC =EF ,(3)AC =DF ,(4)∠A =∠D ,(5)∠B =∠E ,(6)∠C =∠F ,以其中三个作为已知条件,不能..判断△ABC 与 △DEF 全等的是( )A .(1)(5)(2) B .(1)(2)(3) C .(2)(3)(4) D .(4)(6)(1)FEDC BA第9题 第10题9. 如图,DEF ABC ∆∆≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为( )A. 1cm B. 2cm C. 3cm D. 4cm10、如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE .下列说法: ① △ABD 和△ACD 面积相等; ② ∠BAD=∠CAD ③ △BDF ≌△CDE ;④ BF ∥CE ;⑤ CE =AE 。
2022_2023学年江苏省苏州市太仓市第一中学八年级上学期月考数学试卷(12月)(含解析)
2022~2023学年江苏省苏州市太仓市第一中学八年级上学期月考数学试卷(12月)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在实数−2,0,2,π,38,0.11中,无理数有3( )A. 1个B. 2个C. 3个D. 4个2.已知点P在第三象限内,点P到x轴的距离是2,到y轴的距离是1,那么点P的坐标为( )A. (−1,2)B. (−2,1)C. (−1,−2)D. (−2,−1)3.在平面直角坐标系中,点(1,−3)关于x轴对称的点的坐标为( )A. (−1,3)B. (1,3)C. (−1,−3)D. (−3,1)4.若a=37,b=5,c=2,则a,b,c的大小关系为( )A. b<c<aB. b<a<cC. a<c<bD. a<b<c5.已知一次函数y=(m+1)x+m2−1 (m为常数),若图象过原点,则m( )A. m=−1B. m=±1C. m=0D. m=16.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为( )A. 5B. 0.8C. 3−5D. 137.如图,在矩形MNPQ中,动点R从点N出发,沿着N−P−Q−M方向移动至M停止,设R移动路程为x,ΔMNR面积为y,那么y与x的关系如图②,下列说法不正确的是( )A. 当x=2时,y=5B. 矩形MNPQ周长18C. 当x=6时,y=10D. 当y=8时,x=108.如图,在Rt△ABC中,∠BAC=90°,AB=5,AC=12,P为边BC上一动点(P不与B、C重合),PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的取值范围是( )A. 3013≤AM<6 B. 5≤AM<12 C. 125≤AM<12 D. 125≤AM<69.如图,等边▵ABC的顶点A(1,1),B(3,1),规定把等边▵ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,▵ABC顶点C的坐标为( )A. (−2020,1+3)B. (−2020,−1−3)C. (−2019,1+3)D. (−2019,−1−3)10.如图,在平面直角坐标系xOy中,已知直线AB与y轴交于点A(0,6),与x轴的负半轴交于点B,且∠BAO=30°,M、N是该直线上的两个动点,且MN=2,连接OM、ON,则△MON周长的最小值为( )A. 2+32B. 2+210C. 2+213D. 5+13二、填空题:本题共8小题,每小题3分,共24分。
八年级(上)月考数学试卷(12月份)附答案
八年级(上)月考数学试卷(12月份)一、选择题(每小题3分,共30分)1.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线2.下列长度的三条线段,能组成三角形的是()A.1、2、3 B.3、4、5 C.1、4、6 D.2、3、73.下列计算正确的是()A.2a3+a2=3a5 B.(3a)2=6a2 C.(a+b)2=a2+b2 D.2a2•a3=2a54.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3﹣2a2b+ab2=a(a﹣b)2C.x2﹣2x+4=x(x﹣2)+4 D.ax2﹣9=a(x+3)(x﹣3)5.下列四个图案中,轴对称图形的个数是()A.1 B. 2 C. 3 D. 46.多项式x2﹣3x+a可分解为(x﹣5)(x﹣b),则a、b的值分别是()A.10和﹣2 B.﹣10和2 C.10和2 D.﹣10和﹣27.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,BC=3,则AD的长为()A.2 B. 1.5 C. 1 D.8.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()A.5cm B.10cm C.15cm D.20cm9.若(a+b)2=9,(a﹣b)2=49,则ab=()A.﹣10 B.﹣40 C.10 D.4010.已知实数x、y满足x+y=4,xy=1,则x2+y2的值是()A.6 B.10 C.14 D.16二、填空(每小题3分,共18分)11.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC 边上,且ED∥BC,则∠CEF的度数为.12.分解因式:a3﹣a=.13.计算:(2a)3•a2=.14.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.15.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.16.当白色小正方形个数n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形的个数是和黑色小正方形的个数是(用n表示,n是正整数).三、解答题17.分解因式:(1)4a2﹣4a+1;(2)a(a+1)+a2(a+1).18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.19.如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(﹣2,5),B(﹣4,3),C(﹣1,﹣1).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC关于y轴对称的△A2B2C2,并写出A2的坐标;(3)在边AC上有一点P(a、b),直接写出以上两次图形变换后的对称点P1、P2的坐标.20.已知a2+2a+1+|b﹣2|=0,求﹣2a2+4b﹣3的值.21.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.22.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据以上规律,可得(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)计算:210+29+28+27+26+25+24+23+22+2+1.23.大学生小李毕业后回乡自主创业投资办养猪场,分成成猪和仔猪两个互不相邻的正方形猪场,已知成猪场的面积比仔猪场的面积大40m2,两个猪场围墙总长80m,求仔猪场的面积.24.如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G.(1)求证:BG=CF;(2)DE⊥GF交AB于点E,连接EF,试判断BE+CF与EF的大小,并证明你的结论.参考答案与试题解析一、选择题(每小题3分,共30分)1.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线考点:三角形的角平分线、中线和高;三角形中位线定理.专题:计算题.分析:根据三角形的高、中线、角平分线的性质解答.解答:解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故选C.点评:本题考查了三角形的高、中线和角平分线,要熟悉它们的性质方可解答.2.下列长度的三条线段,能组成三角形的是()A.1、2、3 B.3、4、5 C.1、4、6 D.2、3、7考点:三角形三边关系.分析:根据三角形的三边满足两边之和大于第三边来进行判断.解答:解:A、1+2=3,不能构成三角形,故此选项错误;B、3+4>5,能构成三角形,故此选项正确;C、1+4<6,不能构成三角形,故此选项错误;D、3+2<7,不能构成三角形,故此选项错误.故选B.点评:此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.下列计算正确的是()A.2a3+a2=3a5 B.(3a)2=6a2 C.(a+b)2=a2+b2 D.2a2•a3=2a5考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.解答:解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.点评:本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3﹣2a2b+ab2=a(a﹣b)2C.x2﹣2x+4=x(x﹣2)+4 D.ax2﹣9=a(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式各项分解得到结果,即可做出判断.解答:解:A、原式=x(x﹣y+1),错误;B、原式=a(a﹣b)2,正确;C、原式不能分解,错误;D、原式不能分解,错误,故选B点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5.下列四个图案中,轴对称图形的个数是()A.1 B. 2 C. 3 D. 4考点:轴对称图形.分析:根据轴对称图形的定义1得出,图形沿一条直线对着,分成的两部分完全重合及是轴对称图形,分别判断得出即可.解答:解:根据图象,以及轴对称图形的定义可得,第1,2,4个图形是轴对称图形,第3个是中心对称图形,故选:C.点评:此题主要考查了轴对称图形的定义,根据定义判断出图形形状是解决问题的关键.6.多项式x2﹣3x+a可分解为(x﹣5)(x﹣b),则a、b的值分别是()A.10和﹣2 B.﹣10和2 C.10和2 D.﹣10和﹣2考点:因式分解-十字相乘法等.分析:利用多项式乘法整理多项式进而得出a,b的值.解答:解:∵多项式x2﹣3x+a可分解为(x﹣5)(x﹣b),∴x2﹣3x+a=(x﹣5)(x﹣b)=x2﹣(b+5)x+5b,故b+5=3,5b=a,解得:b=﹣2,a=﹣10.故选:B.点评:此题主要考查了整式的混合运算,得出同类项系数相等是解题关键.7.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,BC=3,则AD的长为()A.2 B. 1.5 C. 1 D.考点:含30度角的直角三角形;等腰直角三角形.分析:先利用直角三角形30°角所对的直角边等于斜边的一半可得CD=BC=1.5,再判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质求出AD=CD=1.5.解答:解:∵CD⊥AB,∠B=30°,∴CD=BC=1.5.∵CD⊥AB,∠A=45°,∴△ACD是等腰直角三角形,∴AD=CD=1.5.故选B.点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰直角三角形的判定与性质,熟记性质并准确识图是解题的关键.8.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()A.5cm B.10cm C.15cm D.20cm考点:翻折变换(折叠问题);矩形的性质.专题:计算题.分析:设AB=xcm.根据轴对称图形的性质,得BE=DF=35﹣x(cm),从而再根据AB与CD间的距离为60cm,列方程求解.解答:解:设AB=xcm.根据轴对称图形的性质,得BE=DF=35﹣x(cm).则有2(35﹣x)+x=60,x=10.故选B.点评:此题主要能够根据轴对称图形的性质,用同一个未知数表示出有关线段的长.9.若(a+b)2=9,(a﹣b)2=49,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:已知两式利用完全平方公式展开,相减即可求出ab的值.解答:解:∵(a+b)2=a2+b2+2ab=9①,(a﹣b)2=a2+b2﹣2ab=49②,∴①﹣②得:4ab=﹣40,解得:ab=﹣10,故选A点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.10.已知实数x、y满足x+y=4,xy=1,则x2+y2的值是()A.6 B.10 C.14 D.16考点:完全平方公式.分析:先根据完全平方公式进行变形,再整体代入求出即可.解答:解:∵x+y=4,xy=1,∴x2+y2=(x+y)2﹣2xy=42﹣2×1=14,故选C.点评:本题考查了完全平方公式的应用,能根据完全平方公式正确变形是解此题的关键,用了整体代入思想.二、填空(每小题3分,共18分)11.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC 边上,且ED∥BC,则∠CEF的度数为15°.考点:平行线的性质.分析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°﹣∠2计算即可得解.解答:解:∵∠A=60°,∠F=45°,∴∠1=90°﹣60°=30°,∠DEF=90°﹣45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF﹣∠2=45°﹣30°=15°.故答案为:15°.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.12.分解因式:a3﹣a=a(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13.计算:(2a)3•a2=8a5.考点:单项式乘单项式.分析:首先利用积的乘方运算化简,再利用同底数幂的乘法计算得出即可.解答:解:(2a)3•a2=8a3×a2=8a5.故答案为:8a5.点评:此题主要考查了单项式乘以单项式,正确掌握积的乘方的计算法则是解题关键.14.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.考点:概率公式;轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为63°或27°.考点:等腰三角形的性质.专题:分类讨论.分析:分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.解答:解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故答案为:63°或27°.点评:此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.16.当白色小正方形个数n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白色小正方形的个数是n2和黑色小正方形的个数是4n(用n表示,n是正整数).考点:规律型:图形的变化类.分析:观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.解答:解:第1个图形:白色正方形1个,黑色正方形4×1=4个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个;…,第n个图形:白色正方形n2个,黑色正方形4n个.故答案为:n2,4n.点评:本题考查图形的变化规律,把小正方形分成黑、白两个部分求出变化规律是解题的关键,要注意个数与序数的关系.三、解答题17.分解因式:(1)4a2﹣4a+1;(2)a(a+1)+a2(a+1).考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:(1)原式利用完全平方公式分解即可;(2)原式提取a(a+1)即可.解答:解:(1)原式=(2a﹣1)2;(2)原式=(a+1)(a+a2)=a(a+1)2.点评:此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.考点:整式的混合运算—化简求值.专题:计算题.分析:所求式子第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并得到最简结果,将已知方程变形后代入计算即可求出值.解答:解:原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x+3),∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=12.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.19.如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(﹣2,5),B(﹣4,3),C(﹣1,﹣1).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC关于y轴对称的△A2B2C2,并写出A2的坐标;(3)在边AC上有一点P(a、b),直接写出以上两次图形变换后的对称点P1、P2的坐标.考点:作图-轴对称变换.分析:(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接,写出点A1的坐标;(2)分别作出点A、B、C关于y轴对称的点,然后顺次连接,写出点A2的坐标;(3)根据图形可得,点P1的坐标为(a,﹣b),P2的坐标为(﹣a,b).解答:解:(1)所作图形如图所示:A1(﹣2,﹣5);(2)所作图形如图所示:A2(2,5);(3)P1(a,﹣b),P2(﹣a,b).点评:本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构找出A、B、C各点关于x轴和y轴对称的点,然后顺次连接.20.已知a2+2a+1+|b﹣2|=0,求﹣2a2+4b﹣3的值.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出a与b的值,代入原式计算即可得到结果.解答:解:∵a2+2a+1+|b﹣2|=(a+1)2+|b﹣2|=0,∴a=﹣1,b=2,则原式=﹣2+8﹣3=3.点评:此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.21.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.考点:全等三角形的判定与性质;等腰三角形的判定.专题:开放型.分析:(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.解答:解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.点评:本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.22.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1…(1)根据以上规律,可得(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)计算:210+29+28+27+26+25+24+23+22+2+1.考点:多项式乘多项式.专题:规律型.分析:(1)根据已知等式得出一般性规律,即可得到结果;(2)原式变形后,利用得出的规律计算即可得到结果.解答:解:(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;故答案为:x7﹣1;(2)原式=(2﹣1)•(210+29+…+22+2+1)=211﹣1=2047.点评:此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.23.大学生小李毕业后回乡自主创业投资办养猪场,分成成猪和仔猪两个互不相邻的正方形猪场,已知成猪场的面积比仔猪场的面积大40m2,两个猪场围墙总长80m,求仔猪场的面积.考点:平方差公式.专题:应用题.分析:设小猪场的边长为xm,则大猪场的边长为ym,于是小猪场的面积为x2,大猪场的面积为y2,根据题意,得y2﹣x2=40,解此方程组即可.解答:解:设小猪场的边长为xm,则大猪场的边长为ym,可得:由①得(x+y)(x﹣y)=40由②得x+y=20∴x﹣y=2∴∴112=121,92=81∴成猪场的面积为121m2,仔猪场的面积为81m2.点评:此题是一道一元二次方程的应用题,考查了正方形的周长、面积公式以及平方差公式等知识点.24.如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G.(1)求证:BG=CF;(2)DE⊥GF交AB于点E,连接EF,试判断BE+CF与EF的大小,并证明你的结论.考点:全等三角形的判定与性质;三角形三边关系;线段垂直平分线的性质.分析:(1)先利用ASA判定△BGD≌△CFD,从而得出BG=CF;(2)再利用全等的性质可得GD=FD,再有DE⊥GF,从而得出EG=EF,两边和大于第三边从而得出BE+CF>EF.解答:(1)证明:∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD在△BGD与△CFD中,∴△BGD≌△CFD(ASA).∴BG=CF.(2)解:BE+CF>EF.连接EG,∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
山东省聊城八年级上学期12月月考数学试卷有答案
山东省聊城市八年级上学期12月月考数学试卷一、选择:1、下列关于分式的判断,正确的是 ( )A.当x=2时,21-+x x 的值为零.B.无论x 为何值,132+x 的值正数 C.无论x 为何值,13+x 的值不可能是正数 D.当x ≠3时,xx 3-有意义 2、下列语言是命题的是( )A.等于同一个角的两个角相等吗?B.延长线段AO 到C ,使OC =OAC.内错角不相等,两直线不平行D.过两点有且只有一条直线3、已知等腰三角形的两边长分别为5cm 、2cm ,则等腰三角形的周长是( )A .7㎝B .9㎝C .12㎝或者9㎝D .12㎝4、在△ABC 中,AB=AC ,BC=5cm ,作AB 的中垂线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为 ( )A 、12cmB 、6 cmC 、 7 cmD 、5 cm5、把分式22y x xy -中的x 、y 的值都扩大到原来的2倍,则分式的值( )。
A 、不变 B 、扩大到原来的2倍 C 、扩大到原来的4倍 D 、缩小到原来的21 6、下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确...的个数是( )A 、1个B 、2个C 、3个D 、4个7、到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边中垂线的交点 (8题图)8、已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:①∠C=72°;②BD是∠ABC的平分线;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正确的有( )A.1个 B.2个 C.3个 D.4个 9、关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A.1 B.3 C.-1 D.-3 (第10题图)10、一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别是( )A .9与8B .8与9C .8与8.5D .8.5与911、已知113a b -= ,则5a 5ab b a ab b+---的值为( ) A.72 B.72- C.27 D.27- 12、某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A 、x +48720─548720=B 、x +=+48720548720C 、 572048720=-xD 、-48720x +48720=5 二、填空题13、 不改变分式的值,使分子、分母的第一项系数都是正数,则yx y x --+-= ; 14、关于x 的方程3-x x +1=3-x m 有增根,则m 的值为 ; 环数10987次数321第16题15、若31532=++b a b a ,则b a = ,若2x=3y ,则2232yx = ; 16、如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_____cm . 17、等腰三角形的一个外角是80°,则其底角是三、解答题 18、计算:(1) (2)19、先化简再求值:2222222)(x y x xy y xy x x xy -⋅+-÷-其中x=1,y=-2 20、解分式方程:(1)1613122-=-++x x x (2)x x x -=+--23123 21、已知,如图,AD ⊥BC ,EF ⊥BC ,∠4=∠C. 求证:∠1=∠2. 22、如图,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB .∠MON =50o ,∠OPC =30o ,求∠PCA 的大小.23、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB .24、学校对李老师和刘老师的工作态度、教学成绩、业务素质三个方面作了一个初步评估,成绩如下表:(1)如果三项成绩的比例依次为20%,60%,20%,你认为谁会被评为优秀?(2)如果你作为学校领导,比较看重三项中的哪一项或两项,谁又会被评为优秀. 23题图O N M P C B A 22题图 21题图25、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?。
扬州市江都区丁沟中学2022-2023学年八年级上学期12月月考数学试题(含解析)
扬州市江都区丁沟中学2022-2023学年八年级上学期12月月考数学试题一、选择题(每题3分,共24分)1. 下列图形中,轴对称图形的个数为( )A. 1个B. 2 个C. 3个D. 4个2. 在平面直角坐标系中,点A (﹣4,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 点P (3,-1)关于x 轴对称的点的坐标是( )A. (-3,1)B. (-3,-1)C. (1,-3)D. (3,1) 4. 下列说法正确的是( )A. 8的立方根是2B. 2=±C. 4的平方根是2D. 2=- 5. 如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm6. 下列命题: a ,a ,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.正确的有( )A. 1个B. 2个C. 3个D. 4个7. 在同一平面直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为1l ,2l ,则下列图象中可能正确的是( )A. B. C. D.8. 如图,∠MON =90°,OB =4,点A 是直线OM 上的一个动点,连结AB ,作∠MAB 与∠ABN 的角平分线AF 与BF ,两条角平分线所在的直线相交于点F ,则点A 在运动过程中线段BF 的最小值为( )A. 4B.C. 8二、填空题(每题3分,共30分)9. 在π,-,130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有____个.10. 由四舍五入得到的近似数3.17×104精确到______位.11. 直角三角形两直角边长为a ,b 20b -=,则第三边长为_____.12. 已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.14. 3,则实数a 的范围______.15. 已知3y -与x 成正比例,且2x =-时,y 的值为7,求y 与x 的函数关系式_____.16. 如图,将ABC 绕点()02C ,旋转180︒得到A B C ''',设点A 的坐标为()a b ,,则点A '的坐标可表示为_____.17. 已知正比例函数2y x =的图像过点()11,x y 、()22,x y ,若215x x -=,则21y y -=_____.18. 如图,△ ABC 中,∠BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____三.简答题(共66分)19. 计算(1)()20133|3π-⎛⎫--+- ⎪⎝⎭(2)解方程:24(1)90--=x20. 如图,在平面直角坐标系xOy 中,点()0,8A ,点()6,8B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到,A B 两点的距离相等;②点P 到两条坐标轴的距离相等.(2)写出(1)中作出的点P 的坐标.21. 已知一次函数()371y m x m =-+-.(1)当m 为何值时,函数图象经过原点?(2)若图象不经过第三象限,求m 的取值范围.(3)不论m 取何值,直线恒过一定点P ,求定点P 坐标.22. 在直角坐标系内,一次函数y kx b =+的图象经过三点()()()4,0,0,2,3A B C m -.(1)求这个一次函数解析式(2)求m 的值.(3)若点P 在直线y kx b =+上且到y 轴的距离是3,求点P 的坐标.23. 在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长的数值与面积的数值相等,则点P 是和谐点.(1)判断点()1,2M ,()4,4N 是否为和谐点,并说明理由;(2)若和谐点()(),30P a a >在直线y x b =-+(b 为常数)上,求,a b 的值.24. 如图,ABC 中,AD 是ABC 的边BC 上的高,E 、F 分别是AB AC 、的中点,132021AC AB BC ===、、(1)求四边形AEDF 的周长;(2)求ABC 的面积.25. 如图,一次函数的图像与x 轴、y 轴分别交于A 、B 两点,且A 、B 的坐标分别为(4,0),(0,3). (1)求一次函数的表达式.(2)点C 在线段OA 上,沿BC 将△OBC 翻折,O 点恰好落在AB 上的D 处,求直线BC 的表达式.26. 在一平直的河岸l 同侧有两A B 、村,A 村位于河流/正南4,km B 村位于A 村东8km 南7km 处,现要在河岸边建一水厂C 为两村供水,要求管道长度最少,请你确定选址方案,并求出所需最短管道长度.27. 如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?△如图(1)放置,其中小三角形的斜边与大三角形的一直角边重合.28. 两个等腰直角ABC、MNP△绕AB中点D旋转,使两直角边分别与AC、BC交于点E、F,求证:(1)如图(2)将小MNP222+=;AE BF EF△绕直角顶点C旋转,使它的斜边CM与直角边CP延长线分别与AB交于点(2)如图(3)将小MNP与E、F,求证:222+=;AE BF EF△的周长等于正方形周长的一(3)在正方形ABCD中,E、F分别是边BC、CD上的点,满足CEF半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的边长?若能,指出三角形状,并证明;若不能,请说明理由.答案与解析一、选择题(每题3分,共24分)1. 下列图形中,轴对称图形的个数为()A. 1个B. 2 个C. 3个D. 4个【答案】B【解析】【分析】轴对称图形沿图上的某条直线对折后能够完全重合;根据所给图形试着寻找对称轴,并判断对称轴两边的部分折叠后能否重合,据此即可解答.【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;故选B.【点睛】此题考查轴对称图形的辨识,解题关键在于识别图形.2. 在平面直角坐标系中,点A(﹣4,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】点A(﹣4,2)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.3. 点P(3,-1)关于x轴对称的点的坐标是( )A. (-3,1)B. (-3,-1)C. (1,-3)D. (3,1)【答案】D【解析】【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【详解】解:点P(3,-1)关于x轴对称的点的坐标是:(3,1).故选:D.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.4. 下列说法正确的是()A. 8的立方根是2B. 2=± C. 4的平方根是2 D. 2=-【答案】A【解析】【分析】根据平方根和立方根的概念即可求出答案.【详解】解:A. 8的立方根是2,故正确;B. 2=,故错误;C. 4的平方根是±2,故错误;D. 2=,故错误;故选A.【点睛】本题考查平方根、立方根的概念,解题的关键是根据相关定义解答问题.5. 如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm【答案】A【解析】【分析】根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.故选:A.【点睛】主要考查了勾股定理解直角三角形.6. 下列命题:a,a,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】(1),(2)根据平方根和立方根的性质即可判断;(3)根据无限不循环小数是无理数即可判定;(4)根据有理数的定义即可判定;(5)根据实数分为正实数,负实数和0即可判定.【详解】(1)a ,故说法正确;(2)|a |,故说法错误;(3)无限不循环小数是无理数,故说法错误;(4)有限小数都是有理数,故说法正确;(5)0既不是正数,也不是负数,此题漏掉了0,故说法错误.故选B.【点睛】本题考查实数,解题的关键是熟练掌握平方根和立方根、无理数、有理数的定义,实数的分类. 7. 在同一平面直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为1l ,2l ,则下列图象中可能正确的是( )A. B. C. D.【答案】A【解析】【分析】由y kx b =+中k ,b 的符号以及直线的倾斜程度逐一分析各选项,结合排除法可得答案.【详解】解:因为2k k <,所以直线1l 比直线2l 的倾斜度小,当0k >时,20k >,b 与b -恰好符号相反,故A 符合,∵k 与2k 符号相同,可排除选项B ,∵b 与b -恰好符号相反,可排除选项D ,选项C 中,直线1l 比直线2l 的倾斜度更大,可排除选项C ,故选:A .【点睛】本题考查一次函数图象的知识,注意掌握k 的大小表示倾斜度的大小,由此可比较k 的大小. 8. 如图,∠MON =90°,OB =4,点A 是直线OM 上的一个动点,连结AB ,作∠MAB 与∠ABN 的角平分线AF 与BF ,两条角平分线所在的直线相交于点F ,则点A 在运动过程中线段BF 的最小值为( )A. 4B.C. 8【答案】D【解析】【分析】分情况讨论:当点A在射线OM上时,过F作FE⊥ON于E,FH⊥OM于H,FG⊥AB于G,由角平分线的性质得出FH=FG,FG=FE,得出FH=FE,证出点F在∠MON的角平分线上;当点A在射线OM的反向延长线上时,同理得出点F在∠MON的角平分线上;当BF⊥OF时,BF取最小值,证出△BOF 是等腰直角三角形,即可得出答案.【详解】解:当点A在射线OM上时,过F作FE⊥ON于E,FH⊥OM于H,FG⊥AB于G,如图1所示:∵AF与BF分别是∠MAB与∠ABN的角平分线,∴FH=FG,FG=FE,∴FH=FE,∴点F在∠MON的角平分线上;当点A在射线OM的反向延长线上时,过F作FE⊥ON于E,FH⊥OM于H,FG⊥AB交AB的延长线于G,如图2所示:∵AF与BF分别是∠MAB与∠ABN的角平分线,∴FH=FG,FG=FE,∴FH=FE,∴点F在∠MON的角平分线上;综上所述,点F在∠MON的角平分线上,∴当BF⊥OF时,BF取最小值,∵∠MON=90°,OB=4,∴∠FON =12∠MON =45°,∴△BOF 是等腰直角三角形,∴BF =2OB = 故选D .【点睛】本题考查了角平分线的判定与性质、等腰直角三角形的判定与性质、以及勾股定理等知识;熟练掌握角平分线的判定与性质是解题的关键.二、填空题(每题3分,共30分)9. 在π,-130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有____个.【答案】3.【解析】【详解】试题解析:在π,,130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有π,,0.5757757775…(相邻两个5之间的7的个数逐次加1)共3个,考点:无理数.10. 由四舍五入得到的近似数3.17×104精确到______位.【答案】百【解析】【分析】根据用科学记数法表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数解答.【详解】解:3.17×104=31700,∴近似数3.17×104精确到百位,故答案为:百.【点睛】本题考查的是科学记数法与有效数字,用科学记数法表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.11. 直角三角形两直角边长为a ,b 20b -=,则第三边长为_____.【解析】【分析】根据非负数的和为0,每个非负数均为0,求出,a b ,再利用勾股定理进行计算即可得解.【详解】解:20b -=,∴10,20a b -=-=,解得,1,2a b ==,由勾股定理得,斜边==【点睛】本题考查勾股定理.熟练掌握非负数的和为0,每个非负数均为0,是解题的关键.12. 已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.【答案】13【解析】【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P (2m ,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13. 故答案为:13. 【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】【分析】设ADC α∠=,然后根据AC AD DB ==,102BAC ∠=︒,表示出B ∠和BAD ∠的度数,最后根据三角形的内角和定理求出ADC ∠的度数.【详解】解:AC AD DB ==,B BAD ∴∠=∠,ADC C ∠=∠, 设ADC α∠=,2B BAD α∴∠=∠=,102BAC ∠=︒,1022DAC α∴∠=︒-,在ADC ∆中,180ADC C DAC ∠+∠+∠=︒,21021802αα∴+︒-=︒,解得:52︒=α.故答案为:52.【点睛】本题考查了等腰三角形的性质,解题的关键是掌握①等腰三角形的两腰相等;②等腰三角形的两个底角相等.14. 3,则实数a 的范围______.【答案】916a ≤<【解析】【分析】根据无理数的大小估计解答即可.3,所以,34,所以实数a 的范围9≤a <16.故答案为:9≤a <16.【点睛】本题考查了无理数问题,关键根据无理数的大小估计.15. 已知3y -与x 成正比例,且2x =-时,y 的值为7,求y 与x 的函数关系式_____.【答案】23y x =-+【解析】【分析】设函数关系式为3y kx -=,将2x =-时,y 值为7代入求出k 即可得到答案.【详解】解:∵3y -与x 成正比例,∴3y kx -=,∵当2x =-时,7y =,∴2k =-,∴32y x -=-,∴y 与x 的函数关系式是:23y x =-+.故答案为:23y x =-+.【点睛】此题考查求函数关系式,设函数解析式后将x 与y 的对应值代入解答.16. 如图,将ABC 绕点()02C ,旋转180︒得到A B C ''',设点A 的坐标为()a b ,,则点A '的坐标可表示为_____.【答案】(),4a b --【解析】【分析】设A '的坐标为()m n ,,由于A A '、关于C 点对称,则02m a += ,22n b += . 【详解】设A '的坐标为()m n ,, A 和A '关于点()0,2C 对称,∴ 02m a += ,22n b +=, 解得m a =-,4n b =-∴点A '的坐标(),4a b --.【点睛】本题考查旋转的性质,解题的关键是明确对称点的性质.17. 已知正比例函数2y x =的图像过点()11,x y 、()22,x y ,若215x x -=,则21y y -=_____. 【答案】10【解析】【分析】把点的坐标代入函数解析式,再变形即可得到答案.【详解】解:正比例函数2y x =的图像过点()11,x y 、()22,x y ,112y x ∴=,222y x =, 215x x -=,()2121212222510y y x x x x ∴-=-=-=⨯=,故答案为:10.【点睛】本题考查了一次函数图像上点的坐标特征,利用整体代入思想解题是关键.18. 如图,△ ABC 中,∠BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____【答案】75【解析】 【详解】如图,过点A 作AH ⊥BC 于点H ,连接BE 交AD 于点O ,∵△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,∴BC 5=,AD =BD =2.5, ∴12BC ·AH =12AC ·AB ,即2.5AH =6,∴AH =2.4,由折叠的性质可知,AE =AB ,DE =DB =DC ,∴AD 是BE 的垂直平分线,△BCE 是直角三角形,∴S △ADB =12AD ·OB =12BD ·AH ,∴OB =AH =2.4,∴BE =4.8,∴CE 75=. 故答案为:75. 【点睛】本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH ⊥BC 于点H ,连接BE 交AD 于点O ,利用面积法求出AH 和OB 的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.三.简答题(共66分)19. 计算(1)()20133|3π-⎛⎫--+- ⎪⎝⎭ (2)解方程:24(1)90--=x【答案】(1)7 (2)122.50.5x x ==-,【解析】【分析】(1)根据零指数幂、绝对值、负指数幂以及二次根式的有关运算法则求解即可;(2)利用直接开平方法解一元二次方程即可.【小问1详解】解:()20133|3π-⎛⎫--+- ⎪⎝⎭139=-+7=;【小问2详解】解:方程整理得:()2914x -=, 开方得:312x -=±, 解得:122.50.5x x ==-,.【点睛】此题考查了实数的有关运算以及解一元二次方程,解题的关键是掌握实数的有关运算法则以及一元二次方程的求解方法.20. 如图,在平面直角坐标系xOy 中,点()0,8A ,点()6,8B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到,A B 两点的距离相等;②点P 到两条坐标轴的距离相等.(2)写出(1)中作出的点P 的坐标.【答案】(1)见解析;(2)(3,3),(3,-3)【解析】【分析】(1)点P 到A ,B 两点的距离相等,即作AB 的垂直平分线,点P 到两条坐标轴的距离相等,即作角的平分线,两线的交点就是点P 的位置.(2)根据坐标系读出点P 的坐标.【详解】解:(1)作图如图,点P 即为所求作的点.(2)设AB 的中垂线交AB 于E ,交x 轴于F ,由作图可得,EF ⊥AB ,EF ⊥x 轴,且OF=3,∵OP 是坐标轴的角平分线,∴P (3,3),同理可得:P (3,-3),综上所述:符合题意的点的坐标为:(3,3),(3,-3).【点睛】本题主要考查了线段垂直平分线上的点到线段两端的距离相等和角平分线上的点到角两边的距离相等.21. 已知一次函数()371y m x m =-+-.(1)当m 为何值时,函数图象经过原点?(2)若图象不经过第三象限,求m 的取值范围.(3)不论m 取何值,直线恒过一定点P ,求定点P 坐标.【答案】(1)1m =(2)713m ≤<(3)14,33⎛⎫- ⎪⎝⎭【解析】【分析】(1)根据一次函数的图象与系数的关系列式求解即可;(2)根据一次函数的图象与系数的关系列式求解即可;(3)对一次函数解析式进行变形,然后根据恒过一定点P ,得出310x +=,求出此时x ,y 的值,进而可得定点P 的坐标.【小问1详解】解:∵函数图象经过原点,∴10m -=,解得:1m =;【小问2详解】解:∵函数图象不经过第三象限,∴370m -<,10m -≥, 解得:713m ≤<; 【小问3详解】解:()()3713713171y m x m mx x m x m x =-+-=-+-=+--,∵不论m 取何值,直线恒过一定点P ,∴310x +=, 解得:13x , 此时147133y ⎛⎫=-⨯--= ⎪⎝⎭, 即不论m 取何值,直线恒过一定点P ,定点P 的坐标为14,33⎛⎫- ⎪⎝⎭. 【点睛】本题考查了一次函数的图象和性质,解答本题时注意:0k >时,直线必经过一、三象限;0k <时,直线必经过二、四象限;0b >时,直线与y 轴正半轴相交;0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.22. 在直角坐标系内,一次函数y kx b =+的图象经过三点()()()4,0,0,2,3A B C m -.(1)求这个一次函数解析式(2)求m 的值.(3)若点P 在直线y kx b =+上且到y 轴的距离是3,求点P 的坐标.【答案】(1)122y x =-+ (2)10m = (3)13,2⎛⎫ ⎪⎝⎭或73,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)待定系数法求解解析式即可;(2)将点C 代入解析式,进行求解即可;(3)根据点P 到y 轴的距离是3,得到P 点的横坐标为3或3-,代入解析式进行求解即可.【小问1详解】解:∵一次函数y kx b =+的图象经过三点()()4,0,0,2A B ,则:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴这个一次函数解析式为:122y x =-+; 【小问2详解】解:把(),3C m -代入:122y x =-+中得:1322m -=-+,解得:10m =; 【小问3详解】设(),P x y ,∵点P 在直线122y x =-+上且到y 轴的距离是3, ∴3x =±,当3x =时,113222y =-⨯+=, 当3x =-时,17(3)222y =-⨯-+=, ∴点P 的坐标是13,2⎛⎫ ⎪⎝⎭或73,2⎛⎫- ⎪⎝⎭. 【点睛】本题考查一次函数图象上的点.熟练掌握直线上的点,满足一次函数的解析式,是解题的关键. 23. 在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长的数值与面积的数值相等,则点P 是和谐点.(1)判断点()1,2M ,()4,4N 是否为和谐点,并说明理由;(2)若和谐点()(),30P a a >在直线y x b =-+(b 为常数)上,求,a b 的值.【答案】(1)点M 不是和谐点,点N 是和谐点;(2),a b 的值分别是6,9【解析】【分析】(1)根据和谐点的定义。
八年级上月考数学试卷(12月)含解析
八年级(上)月考数学试卷(12月份)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.在下列“回收”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各组数据,能作为直角三角形三边长的是()A.11,15,13 B.1,4,5 C.8,15,17 D.4,5,64.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm5.一次函数y=2012x﹣2012的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.数3.949×105精确到万位,用科学记数法可以表示为()A.39×104 B.3.9×105 C.3.95×105 D.4.0×1057.(3分)如果=2a﹣1,那么a的取值范围()A.a>B.a<C.a≥D.a≤8.(3分)如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A.B.C.D.9.(3分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是()A.3 B.C.5 D.10.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)二、填空题(每空2分,共20分)11.(4分)计算=;27的平方根是.12.(4分)函数y=中,自变量x的取值范围是;实数2﹣的倒数是.13.(2分)直角三角形两条直角边的长分别为5、12,则斜边为.14.(2分)点P(3,﹣4)关于y轴对称点的坐标是.15.(2分)将直线y=2x﹣1向上平移5个单位长度后再向左平移3个单位后所得的直线解析式是.16.(2分)如图:已知两直线l1和l2相交于点A(4,3),且OA=OB,则点B的坐标为.17.(2分)如图,在Rt△ABC中,∠C=90°,D为AC上的一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是.18.(2分)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),不等式2x<kx+b<0的解集为.三、解答题(本大题共小题,共50分,解答应写出必要的文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣1)2﹣+(﹣2)0(2)×÷(﹣)20.(6分)解方程:①8x3+125=0②5(x+1)2﹣100=0.21.(5分)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A、B两点的距离相等;②点P到∠xOy的两边距离相等.(2)若在x轴上有点M,则能使△ABM的周长最短的点M的坐标为.22.(5分)已知如图所示,四边形ABCD中,AB=6cm,AD=8cm,BC=26cm,CD=24cm,求四边形ABCD的面积.23.(5分)如图,在△ABC和△DAE中,∠DAE=∠BAC,AB=AE,AD=AC,连接BD、CE.求证:BD=CE.24.(5分)在直角坐标系xOy中,直线l过(1,3)和(2,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.25.(8分)已知:如图1,射线MN⊥AB,AM=1cm,MB=4cm.点C从M出发以2cm/s的速度沿射线MN运动,设点C的运动时间为t(s)(1)当△ABC为等腰三角形时,求t的值;(2)当△ABC为直角三角形时,求t的值;(3)当t满足条件:时,△ABC为钝角三角形;当时,△ABC为锐角三角形.26.(8分)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC 交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q 分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.2016-2017学年江苏省无锡市惠山区八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.(3分)(2016秋•江阴市校级期中)在下列“回收”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2.(3分)(2016•临沭县二模)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)(2016秋•宜兴市期末)下列各组数据,能作为直角三角形三边长的是()A.11,15,13 B.1,4,5 C.8,15,17 D.4,5,6【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.【解答】解:A、112+132≠152,不符合勾股定理的逆定理,故此选项不合题意;B、12+42≠52,不符合勾股定理的逆定理,故此选项不合题意;C、82+152=172,符合勾股定理的逆定理,故此选项符合题意;D、42+52≠62,不符合勾股定理的逆定理,故此选项不合题意.故选C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.(3分)(2011•呼和浩特)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.根据三角形三边关系定理列出不等式,确定是否符合题意.【解答】解:当6为腰,3为底时,6﹣3<6<6+3,能构成等腰三角形,周长为6+6+3=15;当3为腰,6为底时,3+3=6,不能构成三角形.故选D.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.5.(3分)(2016秋•惠山区校级月考)一次函数y=2012x﹣2012的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k,b的符号判断一次函数y=2012x﹣2012的图象所经过的象限.【解答】解:由题意,得:k>0,b<0,故直线经过第一、三、四象限.即不经过第二象限.故选B.【点评】本题考查了一次函数的图象与系数的关系,能够根据k,b的符号正确判断直线所经过的象限是解题的关键.6.(3分)(2016秋•江阴市校级期中)数3.949×105精确到万位,用科学记数法可以表示为()A.39×104 B.3.9×105 C.3.95×105 D.4.0×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,再根据近似数精确到哪一位,应当看末位数字实际在哪一位进而得出答案.【解答】解:3.949×105精确到万位为3.9×105,故答案为:3.9×105.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.(3分)(2016秋•惠山区校级月考)如果=2a﹣1,那么a的取值范围()A.a>B.a<C.a≥D.a≤【分析】根据二次根式的性质得到2a﹣1≥0,解不等式即可.【解答】解:∵=2a﹣1,∴2a﹣1≥0,解得,a≥,故选:C.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.8.(3分)(2017•乐亭县一模)如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A.B.C.D.【分析】首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的dx一定,高都等于BC的长度,所以△ABP 的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y 与点P运动的路程x之间的函数图象大致是哪一个即可.【解答】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:B.【点评】此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.9.(3分)(2016秋•工业园区期中)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是()A.3 B.C.5 D.【分析】根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=NG,CF=DG=NF,再根据S1=(CG+DG)2,S2=GF2,S3=(NG﹣NF)2,S1+S2+S3=15得出3GF2=15,求出GF2的值即可.【解答】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=15,∴GF2=5,∴S2=5.故选C.【点评】此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出3GF2=15是解决问题的关键.10.(3分)(2013•德州)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选:D.【点评】本题考查了对点的坐标的规律变化的认识,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(每空2分,共20分)11.(4分)(2016秋•惠山区校级月考)计算=﹣4;27的平方根是±3.【分析】依据平方根和立方根的性质求解即可.【解答】解:=﹣4,27的平方根=±=±3.故答案为:﹣4;±3.【点评】本题主要考查的是立方根、平方根的性质,熟练掌握平方根、立方根的定义是解题的关键.12.(4分)(2016秋•惠山区校级月考)函数y=中,自变量x的取值范围是x≥2;实数2﹣的倒数是2+.【分析】根据被开方数是非负数,倒数的定义,可得答案.【解答】解:y=中,自变量x的取值范围是x≥2;实数2﹣的倒数是2+,故答案为:x≥2,2+.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数得出不等式是解题关键.13.(2分)(2010秋•南长区期末)直角三角形两条直角边的长分别为5、12,则斜边为13.【分析】直接根据勾股定理进行计算.【解答】解:根据勾股定理,得斜边==13.【点评】此题考查了勾股定理.熟记勾股数:5、12、13.14.(2分)(2012秋•南平期末)点P(3,﹣4)关于y轴对称点的坐标是(﹣3,﹣4).【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:已知P的坐标为(3,﹣4),根据平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点P关于y轴的对称点的坐标是(﹣3,﹣4),故答案为:(﹣3,﹣4).【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.(2分)(2016秋•惠山区校级月考)将直线y=2x﹣1向上平移5个单位长度后再向左平移3个单位后所得的直线解析式是y=2x+10.【分析】直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.【解答】解:将直线y=2x﹣1向上平移5个单位长度后再向左平移3个单位后所得的直线解析式是y=2(x+3)﹣1+5=2x+10;故答案为:y=2x+10【点评】本题考查一次函数与几何变换问题,关键是注意利用一次函数平移的特点,上加下减解答.16.(2分)(2016秋•惠山区校级月考)如图:已知两直线l1和l2相交于点A(4,3),且OA=OB,则点B的坐标为(0,﹣5).【分析】先用勾股定理求出OA的长,再根据OA=OB可求出B的坐标.【解答】解:∵A(4,3),∴OA==5.∵OA=OB,∴B(0,﹣5).故答案为:(0,﹣5).【点评】本题考查的是两条直线相交问题,熟知勾股定理是解答此题的关键.17.(2分)(2014秋•沛县期末)如图,在Rt△ABC中,∠C=90°,D为AC上的一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是3.【分析】根据Rt△ABC中,∠C=90°可知BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故答案为:3.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.(2分)(2016秋•惠山区校级月考)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),不等式2x<kx+b<0的解集为﹣2<x<﹣1.【分析】首先利用待定系数法求出一次函数解析式,进而可得不等式组2x<﹣2x﹣4<0,再解不等式组即可.【解答】解:∵直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),∴,解得,∴一次函数解析式为y=﹣2x﹣4,∴不等式2x<kx+b<0变为2x<﹣2x﹣4<0,解得﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】此题主要考查了一次函数与一元一次不等式组,关键是计算出一次函数解析式.三、解答题(本大题共小题,共50分,解答应写出必要的文字说明、证明过程或演算步骤)19.(8分)(2016秋•惠山区校级月考)计算:(1)(﹣1)2﹣+(﹣2)0(2)×÷(﹣)【分析】(1)原式利用乘方的意义,算术平方根定义,以及零指数幂法则计算即可得到结果;(2)原式利用二次根式乘除法则计算即可得到结果.【解答】解:(1)原式=1﹣4+1=﹣2;(2)原式=﹣×=﹣9.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2016秋•惠山区校级月考)解方程:①8x3+125=0②5(x+1)2﹣100=0.【分析】①移项、开方、即可求出方程的解;②移项,系数化成1,开方,即可求出答案.【解答】解:①8x3+125=0,8x3=﹣125,3x=﹣5,x=﹣;②5(x+1)2﹣100=0,(x+1)2=20,x+1=±2,x=﹣1±2.【点评】本题考查了平方根和立方根的应用,能理解平方根和立方根的定义是解此题的关键.21.(5分)(2016秋•惠山区校级月考)如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A、B两点的距离相等;②点P到∠xOy的两边距离相等.(2)若在x轴上有点M,则能使△ABM的周长最短的点M的坐标为(3,0).【分析】(1)作AB的中垂线,作∠XOY的角平分线,交点即为点P;(2)作出点A关于x轴的对称点C,连接BC,交x轴于点M,根据勾股定理计算可得出点M的坐标(3,0).【解答】解:(1)作AB的中垂线EF,作∠XOY的角平分线OH,交于点P,如图;(2)作出点A关于x轴的对称点C,连接BC,交x轴于点M,∵OA=OC,点A(0,8),点B(6,8),∴OM=AB=3,∴点M的坐标(3,0).【点评】本题考查了作图题,以及涉及的知识点:线段的垂直平分线、角平分线、轴对称﹣最短路线问题,是中考的常见题型.22.(5分)(2016秋•惠山区校级月考)已知如图所示,四边形ABCD中,AB=6cm,AD=8cm,BC=26cm,CD=24cm,求四边形ABCD的面积.【分析】连接BD,根据已知条件运用勾股定理逆定理可证△BCD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.【解答】解:连接BD,∵∠A=90°,∴△ABD为直角三角形,∵BD2=AB2+BD2=82+62=102,∵AC>0,∴BD=10,在△BCD中,∵DC2+BD2=100+576=676,BC2=262=676,∴DC2+BD2=BC2,∴△BCD为直角三角形,且∠BDC=90°,∴S四边形ABCD=S△ABD+S△BCD=×6×8+×10×24=144.【点评】本题考查勾股定理、勾股定理等逆定理等知识,通过作辅助线可将一般的四边形转化为两个直角三角形是解题的关键.23.(5分)(2016秋•惠山区校级月考)如图,在△ABC和△DAE中,∠DAE=∠BAC,AB=AE,AD=AC,连接BD、CE.求证:BD=CE.【分析】先求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△AEC全等,根据全等三角形对应边相等证明即可.【解答】证明:∵∠DAE=∠BAC,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,即∠BAD=∠CAE,在△ABD和△AEC中,,∴△ABD≌△AEC(SAS),∴BD=CE.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并求出∠BAD=∠CAE 是解题的关键.24.(5分)(2014秋•锡山区期末)在直角坐标系xOy中,直线l过(1,3)和(2,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.【分析】(1)利用待定系数法求得即可;(2)根据解析式求得A、B的坐标,进而求得OA、OB的长,根据三角形的面积公式求得即可.【解答】解:(1)设直线l的函数关系式为y=kx+b(k≠0),把(1,3),(2,1)代入得解方程组得…(3分)∴直线l的函数关系式为y=﹣2x+5;(2)在y=﹣2x+5中,令x=0,得y=5,∴B(0,5),令y=0,得x=,∴,∴S△AOB=AO•BO=××5=.【点评】本题考查了待定系数法求一次函数的解析式和直角三角形的面积,熟练掌握待定系数法是本题的关键.25.(8分)(2015秋•滨湖区期中)已知:如图1,射线MN⊥AB,AM=1cm,MB=4cm.点C从M 出发以2cm/s的速度沿射线MN运动,设点C的运动时间为t(s)(1)当△ABC为等腰三角形时,求t的值;(2)当△ABC为直角三角形时,求t的值;(3)当t满足条件:0<t<1时,△ABC为钝角三角形;当t>1时,△ABC为锐角三角形.【分析】(1)分CB=AB、AB=AC和AC=BC三种情况,根据等腰三角形的性质和勾股定理计算即可;(2)根据勾股定理列式计算;(3)由(2)的结论结合图形解答.【解答】解:(1)当CB=AB时,在Rt△MCB,BC=5,BM=4,由勾股定理得:MC=3,则t=,当AB=AC时,在Rt△MCA,AM=1,AC=5,由勾股定理得:MC=2,则t=,当AC=BC时,C在AB的垂直平分线上,与条件不合;∴当t=或时,△ABC为等腰三角形;(2)由题意∠ACB=90°时,∴AC2+BC2=AB2,设CM=x,在Rt△MCB中由勾股定理得:BC2=x2+42,在Rt△MCA中,由勾股定理得:AC2=x2+12,∴x2+42+x2+12=52x=2,则t=1;(3)∵当t=1时,△ABC为直角三角形,∴0<t<1时,△ABC为钝角三角形;t>1时,△ABC为锐角三角形.故答案为:0<t<1;t>1.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2,注意分情况讨论思想的运用.26.(8分)(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y 轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q 分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.【分析】(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO ≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.【解答】解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)【点评】本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.。
福建省福州第十五中学2022-2023学年八年级上学期数学12月月考试题(含答案解析)
福建省福州第十五中学2022-2023学年八年级上学期数学12月月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第______块去()A .1B .2C .3D .43.下列各式中,不能用...平方差公式计算的是()A .()()x y x y ---B .()()x y x y -+--C .()()x y x y +-+D .()()x y x y --+4.如图,在ABC 中,B C ∠=∠,BF CD =,BD CE =,50FDE ∠= ,则B ∠的度数是()A .50︒B .60︒C .70︒D .80︒5.若x m +与3x -的乘积中不含常数项,则m 的值为()A .3-B .3C .0D .16.如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为()A .135°B .120°C .90°D .60°7.计算:()2023202220.5⨯-=()A .1-B .1C .0.5D .0.5-8.如图,在ABC 中,18,30,AC C BAD AD BC ∠∠===⊥ ,垂足为D ,BE 平分ABC ∠交AD 于点E ,则DE 的长为()AB .3C .D .69.如图,点D 在线段BC 上,若BC =DE ,AC =DC ,AB =EC ,且∠ACE =180°—∠ABC—2x°,则下列角中,大小为x°的角是A .∠EFCB .∠ABC C .∠FDCD .∠DFC10.如图,等边△ABC 中,BD ⊥AC 于D ,QD =15,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =20,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为()A .35B .40C .50D .60二、填空题11.已知点()2,M b -和点(),1N a 关于x 轴对称,则=a ______.12.如图,已知ABC DBE ≌,点D 在AC 上,BC 与DE 交于点P .若160ABE ∠=︒,30DBC ∠=︒,则ABD ∠=______.13.当23m =时,则8m =______.14.如图,在ABC 中,AB AC =,36A ∠=︒,AB 的垂直平分线MN 交AC 于点D ,则DBC ∠=______.15.已知ABC 中,AB AC =,40A ∠=︒,BD AC ⊥,重足为D ,点E 在直线BC 上,若CD CE =,则BDE ∠的度数为______.16.如图所示,在ABC ∆中,70A ∠=︒,90B Ð=°,点A 关于BC 的对称点是A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',若ABC ∆的面积是2,则A B C '''∆的面积是________.三、解答题17.计算:(1)()()2323743a a a a a -+⋅-÷-(2)()()231231x y x y +--+18.先化简,再求值:()()231a b ab ab a -÷--,其中2a =-.19.如图,已知ABC 的三个顶点坐标分别为()1,2A -,()1,4B --,()2,3C -.(1)画出ABC 关于y 轴对称的图形111A B C △,则坐标1C 为______;(2)若ABD △与ABC 全等,则点D 的坐标为______(点C 与点D 不重合)20.如阁,点E ,F 在线段BC 上,A D ∠=∠,B C ∠=∠,BE CF =,AF 与DE 交于点M .求证:ME MF =.21.尺规作图(不写作法,保留作图痕迹).如图,Rt ABC △中,90C ∠=︒,30B ∠=︒.(1)作出AB 边上的高CD ;(2)若CE 是ABC 的一条角平分线,求ECD ∠的度数.22.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形(请画出图形,写出已知、求证、证明的过程).23.如图,在ABC 中,ABC ∠的平分线与AC 的垂直平分线相交于点P ,过点P 作PF BC ⊥于点F ,PE AB ⊥交BA 的延长线于点E .(1)求证:AE CF =;(2)若7cm AB =,15cm BC =,求AE 的长.24.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)若要拼出一个面积为()()23a b a b ++的矩形,则需要A 号卡片______张,B 号卡片______张,C 号卡片_____张.(2)观察图2,请你写出下列三个代数式:()2a b +,22a b +,ab 之间的等量关系______;根据得出的等量关系,解决如下问题:已知()()22202120232022x x -+-=,求()22022x -的值.(3)两个正方形ABCD ,AEFG 如图3摆放,边长分别为x ,y .若22x y 34+=,2BE =,求图中阴影部分面积和.25.在三角形ABC 中,90ABC ∠=︒.(1)将ABC 沿着AC 翻折得到ADC △,求证:AC 平分BAD ∠;(2)过B 作BE AC ⊥于点E ,在BE 的延长线上取一点D ,使得DE BE >,连接AD 、CD ,过点C 作CG AB ∥,分别与BD ,AD 交于点F ,G ,点M 在边AB 上,连接MC 并延长,交BD 于点N ,过D 作DH MC ⊥于H ,2BCG DCG ∠=∠,且45BMC BDC ∠=∠+︒.①求证:BMN 是等腰三角形;②若BD AE CH =+,探究AB 与BC 的数量关系.参考答案:1.B【分析】根据轴对称图形的定义∶如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,判断即可.【详解】解:A 、选项不是轴对称图形,故此选项不符合题意;B 、选项是轴对称图形,故此选项符合题意;C 、选项不是轴对称图形,故此选项不符合题意;D 、选项不是轴对称图形,故此选项不符合题意;故选:B .【点睛】此题考查的是轴对称图形的判定,利用轴对称图形的定义判断一个图形是否为轴对称图形是解决此题的关键.2.D【分析】根据全等三角形的判定方法解答即可.【详解】解:由图可知,带第4块去,满足全等三角形的判定ASA ,可以配一块与原来大小一样的三角形玻璃,故选:D .【点睛】本题考查全等三角形判定方法的应用,熟练掌握三角形的判定方法是解答的关键.3.D【分析】利用平方差公式的结构特征进行判断即可.【详解】解:A.()()=()()x y x y x y x y ----+-=y 2-x 2,∴不符合题意;B.2222()()()x y x y x y x y -+--=--=-,∴不符合题意;C.22()()()()x y x y y x y x y x +-+=+-=-∴不符合题意;D.2()()()()()x y x y x y x y x y --+=---=--,不能用平方差公式进行计算,∴符合题意;故选:D .【点睛】本题主要考查了平方差公式,掌握运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.4.A【分析】证明BFD CDE △≌△得到BFD CDE ∠=∠,再利用三角形的外角性质证得50B FDE ∠=∠=︒即可求解.【详解】解:在BFD △和CDE 中,BF CD B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()BFD CDE SAS ≌,∴BFD CDE ∠=∠,∵CDF B BFD FDE CDE ∠=∠+∠=∠+∠,∴50B FDE ∠=∠=︒,故选:A .【点睛】本题考查全等三角形的判定与性质、三角形的外角性质,会利用三角形外角性质证得B FDE ∠=∠是解答的关键.5.C【分析】先利用多项式乘以多项式运算法则求出积,再令常数项为0求解即可.【详解】解:()()3x m x +-233x x mx m=-+-()233x m x m =+--,∵乘积中不含常数项,∴30m -=,∴0m =.故选:C .【点睛】本题考查多项式乘以多项式,解答的关键是熟练掌握运算法则,注意不含某一项就是说此项的系数等于0.6.B【分析】由条件可知O 为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°-∠A ),在△BOC 中利用三角形的内角和定理可求得∠BOC .【详解】∵O 到三边的距离相等∴BO 平分∠ABC ,CO 平分∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.7.D【分析】利用积的乘方的逆运算法则和有理数的乘方运算法则求解即可.【详解】解:()2023202220.5⨯-()2023202220.5=-⨯()202220.50.5=-⨯⨯10.5=-⨯0.5=-,故选:D .【点睛】本题考查积的乘方的逆运算、有理数的乘方,掌握积的乘方公式是解答的关键.8.B【分析】根据30°角所对直角边等于斜边一半,求出AD ,再根据角平分线,得到AE =2ED 即可.【详解】解:∵18,30,AC C BAD AD BC ∠∠===⊥ ,∴192AD AC ==,60ABC ∠=︒,∵BE 平分ABC ∠,∴30ABE DBE BAD ∠=∠=∠=︒,∴1,2BE AE DE BE ==,∴133DE AD ==,故选:B .【点睛】本题考查了直角三角形的性质和等腰三角形的判定,解题关键是熟练运用30°角所对直角边等于斜边的一半这一性质,推导线段之间的关系.9.C【分析】根据三组边相等,先证明△ABC≌△CED,得到∠ABC=∠E,∠ACB=∠CDE,再推出∠EFC=2x°,由此得到∠FDC=x°【详解】∵BC=DE,AC=DC,AB=EC,∴△ABC≌△CED,∴∠ABC=∠E,∠ACB=∠CDE,∵∠ACE+∠E+∠EFC=180°,∴∠ACE=180°-∠E-∠EFC=180°-∠ABC-∠EFC,∵∠ACE=180°—∠ABC—2x°,∴∠EFC=2x°,∵∠EFC=∠FDC+∠ACB,且∠ACB=∠FDC,∴∠FDC=x°,故选:C.【点睛】此题考查三角形全等的判定及性质定理,根据全等得到对应角相等,根据等角之间的代换得到结果.10.C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=20+15=35cm,∴AB =AC =2AD =70,作点Q 关于BD 的对称点Q ′,连接PQ ′交BD 于E ,连接QE ,此时PE +EQ 的值最小.最小值为PE +PQ =PE +EQ ′=PQ ′,∴QD =DQ ′=15(cm ),∴AQ ′=AD +DQ ′=35+15=50(cm)∵BP =20(cm ),∴AP =AB -BP =70-20=50(cm )∴AP =AQ ′=50(cm ),∵∠A =60°,∴△APQ ′是等边三角形,∴PQ ′=PA =50(cm ),∴PE +QE 的最小值为50cm .故选:C .【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.11.2-【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:∵点()2,M b -和点(),1N a 关于x 轴对称,∴2a =-,1b =-,故答案为:2-.【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标的变化规律.12.65︒##65度【分析】根据ABC DBE ≌可求出ABD CBE ∠=∠,由题意可知()12ABD CBE ABE DBC ∠=∠=∠-∠,由此即可求解.【详解】解:∵ABC DBE ≌,∴ABC DBC ∠=∠,即ABD DBC DBC CBE ∠+∠=∠+∠,∴ABD CBE ∠=∠,∵160ABE ∠=︒,30DBC ∠=︒,∴160ABD DBC CBE ABE ∠+∠+∠=∠=︒,∴()()11160306522ABD CBE ABE DBC ∠=∠=∠-∠=⨯︒-︒=︒.故答案为:65︒【点睛】本题主要考查的全等三角形中对应角的关系,理解全等三角形中对应角相等,找出角与角的和差关系是解题的关键.13.27【分析】利用幂的乘方的逆运算法则和整体代入求解即可.【详解】解:当23m =时,()()333822327m m m ====,故答案为:27.【点睛】本题考查幂的乘方、代数式求值,熟练掌握幂的乘方的逆运算,能将8m 化为()32m 是解答的关键.14.36︒##36度【分析】先根据线段垂直平分线的性质得到AD BD =,再根据等腰三角形的性质求解即可.【详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴AD BD =,∴36ABD A ∠=∠=︒,∵在ABC 中,AB AC =,36A ∠=︒,∴()1180722ABC A ∠=︒-∠=︒,∴723636DBC ABC ABD ∠=∠-∠=︒-︒=︒,故答案为:36︒.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质,熟练掌握线段垂直平分线的性质和等腰三角形的性质是解答的关键.15.35°或125°【分析】根据题意分当E 在C 点左侧和当E 在C 点右侧两种情况进行讨论,并结合等腰三角形等腰等角的性质进行分析求解即可.【详解】解:当E 在C 点左侧如图,∵AB AC =,40A ∠=︒,∴70,C ABC ︒∠=∠=∵CD CE =,∴55CDE CED ︒∠=∠=,∵BD AC ⊥,∴BDE BDC CDE 905535︒︒︒∠=∠-∠=-=;当E 在C 点右侧如图,∵AB AC =,40A ∠=︒,∴70,C ABC ︒∠=∠=∵CD CE =,∴70352CDE CED ︒︒∠=∠==,∵BD AC ⊥,∴9035125BDE BDC CDE ︒︒︒∠=∠+∠=+=.故答案为:35°或125°.【点睛】本题考查等腰三角形的性质,熟练掌握等腰三角形等腰等角的性质以及结合分类讨论的思维进行分析是解题的关键.16.6【分析】连接BB '并延长交A C ''于D ,交AC 于E ,连接BA '、BC ',先证ABC A BC ''∆∆≌,然后证明BD BE EB '==,则13A BC ABC S S '''''∆∆=,得3A B C ABC S S '''∆∆=,从而得解.【详解】解:如图所示,连接BB '并延长交A C ''于D ,交AC 于E ,连接BA '、BC ', 点A 关于BC 的对称点A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',,,AB A B BC BC ABC A BC ''''∴==∠=∠,AC 垂直平分BB ',(SAS)ABC A BC ''∴∆∆≌,ABC A BC S S ''∆∆∴=,A AA C ''∠=∠,AC A C ''∴∥,BD A C ''∴⊥,根据全等三角形对应边上的高相等,BD BE EB '∴==,13A BC ABC S S '''''∆∆∴=,13ABC A B C S S '''∆∆∴=,3326A B C ABC S S '''∆∆∴==⨯=.【点睛】此题考查了轴对称的性质、三角形全等的判定与性质、平行线的判定与性质、三角形的面积等知识,熟练掌握轴对称的性质与三角形全等的判定与性质是解答此题的关键.17.(1)6519a a +(2)224961x y y -+-【分析】(1)利用积的乘方、同底数幂的乘法、单项式除以单项式的运算法则求解即可;(2)利用平方差公式和完全平方公式求解即可.【详解】(1)解:()()2323743a a a a a -+⋅-÷-656163a a a =++6519a a =+;(2)解:()()231231x y x y +--+()()231231x y x y ⎡⎤⎡⎤=+---⎣⎦⎣⎦()()22231x y =--()224961x y y =--+224961x y y =-+-.【点睛】本题考查了整式的混合运算,涉及积的乘方、同底数幂的乘法、单项式除以单项式、合并同类项、乘法公式,熟记完全平方公式和平方差公式,掌握相关的运算法则并正确求解是解答的关键.18.22a -,6-【分析】先利用多项式除以单项式的运算法则和完全平方公式去括号,再合并化简原式,再代值求解即可.【详解】解:()()231a b ab ab a -÷--()3221a b ab ab ab a a =÷-÷--+22121a a a =--+-22a =-,当2a =-时,原式()222=⨯--6=-.【点睛】本题考查整式的混合运算及其求值,熟练掌握整式混合运算法则并正确求解是解答的关键.19.(1)图见解析,()2,3--(2)()4,3--,()4,1-,()2,1【分析】(1)先描出A 、B 、C 关于y 轴对称的对应点1A 、1B 、1C ,然后顺次连接即可画出图形和点1C 坐标;(2)根据全等三角形的性质即可确定点D 的坐标.【详解】(1)解:如图,111A B C △即为所求作,点1C 坐标为()2,3--,故答案为()2,3--;(2)解:如图,根据网格特点,1ABD 、2ABD △、3ABD 均与ABC 全等,故点D 坐标为()4,3--,()4,1-,()2,1故答案为:()4,3--,()4,1-,()2,1.【点睛】本题考查作图-轴对称变换、全等三角形的性质,熟练掌握相关知识并正确画出图形是解答的关键.20.见解析【分析】证明ABF DCE ≌△△得到AFB DEC ∠=∠,根据等腰三角形的判定即可证得结论.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在ABF △和DCE △中,A DBC BF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABF DCE AAS ≌,∴AFB DEC ∠=∠,∴ME MF =.【点睛】本题考查等腰三角形的判定、全等三角形的判定与性质,会利用等角对等边证明边相等是解答的关键.21.(1)见解析(2)15︒【分析】(1)根据尺规作图-作垂线的方法步骤作图即可;(2)根据角平分线的定义求得45BCE ∠=︒,再根据直角三角形的两个锐角互余求得60BCD ∠=︒,再进而可求解.【详解】(1)解:如图,线段CD即为所求作;(2)解:如图,线段CE 是ACB ∠的平分线,则1452BCE ACE ACB ∠=∠=∠=︒∵CD 是AB 边上的高,∴90CDB ∠=︒,又30B ∠=︒,∴9060BCD B ∠=︒-∠=︒,∴604515ECD BCD BCE ∠=∠-∠=︒-︒=︒.【点睛】本题考查尺规作图-作垂线、作角平分线、直角三角形的两个锐角互余、角平分线的定义以及角度的运算,解答的关键是熟悉基本尺规作图的方法以及角之间的运算.22.见解析.【分析】根据题意画出图形,即可写出已知、求证,根据平行线的判定和性质、三角形的外角性质即可证明.【详解】已知:如图:∠DAC 是△ABC 的外角,AE 平分∠DAC ,AE ∥BC .求证:△ABC 为等腰三角形.证明:∵AE ∥BC ,∴∠EAD =∠B ,∠EAC =∠C ,∵AE 平分∠DAC ,∴∠EAD =∠EAC ,∴∠B =∠C ,∴AB =AC ,∴△ABC 为等腰三角形.【点睛】本题考查了等腰三角形的判定、平行线的判定和性质、三角形的外角性质,解决本题的关键是准确画出图形及会进行角的等量代换23.(1)见解析(2)4AE =【分析】(1)先根据线段垂直平分线的性质和角平分线的性质得到PA PC =,PE PF =,再利用HL 定理证明Rt PEA Rt PFC ≌,利用全等三角形的性质可得结论;(2)证明Rt PEB Rt PFB ≌得到BE BF =,进而可求解.【详解】(1)证明:如图,连接PA ,PC ,∵ABC ∠的平分线与AC 的垂直平分线相交于点P ,PE AB ⊥,PF BC ⊥,∴PA PC =,PE PF =,90°PEA PFC ∠=∠=,在Rt PEA 和Rt PFC ,PA PC PE PF =⎧⎨=⎩,∴()Rt PEA Rt PFC HL ≌,∴AE CF =;(2)解:在Rt PEB 和Rt PFB 中,PB PB PE PF=⎧⎨=⎩,∴()Rt PEB Rt PFB HL ≌,∴BE BF =,∴AE F B C A BC +=-,∵7cm AB =,15cm BC =,∴715AE AE +=-,∴4AE =.【点睛】本题考查角平分线的性质、线段垂直平分线的性质、全等三角形的判定与性质,熟练掌握角平分线的性质、线段垂直平分线的性质,利用全等三角形的性质证明边相等是解答的关键.24.(1)3,2,7(2)()2222a b a b ab +=++,1010(3)8【分析】(1)计算()()23a b a b ++,再根据三个纸片的面积可求解;(2)用两种方法表示出大正方形的面积,即可得出三者的关系;设2021a x =-,2023b x =-,则2b a -=,()4044222022a b x x +=-=-,222022a b +=,利用等量关系求出ab 即可求解;(3)根据图形得到2x y -=,2DG BE ==,利用完全平方公式分别求得xy 和x y +即可求解.【详解】(1)解:()()23a b a b ++22362a ab ab b =+++22372a ab b =++,又A 种纸片的面积为2a ,B 种纸片的面积为2b ,C 种纸片的面积为ab ,∴需A 种纸片3张,B 种纸片2张,C 种纸片7张,故答案为:3,2,7;(2)解:由图2知,大正方形的面积为()2a b +,又可以为222a b ab ++,∴()2222a b a b ab +=++,故答案为:()2222a b a b ab +=++;设2021a x =-,2023b x =-,则2b a -=,222022a b +=,()4044222022a b x x +=-=-,∵()2222b a a b ab -=+-,∴420222ab =-,则1009ab =,∵()2222a b a b ab +=++,∴()242022202221009x -=+⨯,∴()220221010x -=;(3)解:由题意和图形知,2x y -=,2DG BE ==,则()22242x y x y xy -==+-,则15xy =,∴()222264x y x y xy +=++=,∴8x y +=或8x y +=-(舍去),阴影部分的面积和为112222S x y =⨯+⨯⨯x y =+8=.【点睛】本题考查多项式乘多项式与图形面积、完全平方公式的几何背景及其应用,理解题意,看懂图形,会利用不同方法表示面积,并灵活运用所得结论是解答的关键.25.(1)见解析(2)①见解析;②2AB BC=【分析】(1)根据折叠性质得到BAC DAC ∠=∠即可得到结论;(2)①根据题意画出图形,先根据平行线的性质和三角形的外角性质证得45BFC MBF BDC ∠=∠=∠+︒,结合已知和等腰三角形的判定可证得结论;②过D 作DQ BC ⊥交BC 延长线于Q ,先证QCD 是等腰直角三角形,得CQ DQ =,再证DCH DCE ≌ ,得CH CE =,则BD AE CH AE CE AC =+=+=,然后证明ABC BQD ≌,得BC QD QC ==,AB BQ =,进而得出结论.【详解】(1)解:∵ABC 沿着AC 翻折得到ADC △,∴BAC DAC ∠=∠,∴AC 平分BAD ∠;(2)解:①如图,∵CG AB ∥,∴180BCG ABC ∠+∠=︒,BMC MCF ∠=∠,MBF BFC ∠=∠,∵2BCG DCG ∠=∠,90ABC ∠=︒,∴902BCG DCG ∠=︒=∠,则45DCG ∠=,∵BFC ∠是CDF 的一个外角,∴45BFC BDC DCG BDC ∠=∠+∠=∠+︒,∴45MBF BDC ∠=∠+︒,∵45BMC BDC ∠=∠+︒,∴BMC MBF ∠=∠,∴BMN 是等腰三角形;②2AB BC =,理由:过D 作DQ BC ⊥交BC 延长线于Q ,由①知,BMC MBF ∠=∠,∵90BMC BCM ∠+∠=︒,90MBF CBN ∠+∠=︒,∴BCM CBN ∠=∠,∴22DNC BCM CBN BCM CBN ∠=∠+∠=∠=∠,∵BE AC ⊥,∴90MBF BAC ∠+∠=︒,∴BAC CBN BCM ACG ∠=∠=∠=∠,∵90BCG QCG ∠=∠=︒,45DCG ∠=︒,∴45QCD ∠=︒,∴QCD 是等腰直角三角形,∴CQ DQ =,∵45BDC QCD CBN CBN ∠=∠-∠=︒-∠,∴45245DCH BDC DNC CBN CBN CBN ∠=∠+∠=︒-∠+∠=︒+∠,∵4545DCE DCG ACG ACG CBN ∠=∠+∠=︒+∠=︒+∠,∴DCH DCE ∠=∠,∵DH MC ⊥,∴90H DEC ∠=∠=︒,又CD CD =,∴()DCH DCE AAS ≌,∴CH CE =,∵BD AE CH AE CE =+=+,∴BD AC =,又∵90ABC Q ∠=∠=︒,BAC QBD ∠=∠,∴()ABC BQD AAS ≌,∴BC QD QC ==,AB BQ =,∵2BQ BC QC BC =+=,∴2AB BC =.【点睛】本题考查了翻折性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、直角三角形的性质、平行线的性质以及三角形的外角性质等知识;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
八年级上数学月考试卷(12月)含答案
八年级上数学月考试卷(12月份)班级 姓名一、选择题1.在下列各数中是无理数的有( )﹣0.333…,,,﹣π,3.1415,2.010010001…(相邻两个1之间0的个数逐渐增加) A .1个 B .2个 C .3个 D .4个2.已知点A (2x ﹣4,x+2)在y 轴上,则x 的值等于( ) A .2 B .﹣2 C .2或﹣2 D .非上述答案 3.在一次课外社会实践中,王强想知道学校旗杆的高,但不能爬上旗杆也不能把绳子解下来,可是他发现旗杆上的绳子垂到地面上还多2m ,当他把绳子的下端拉开6m 后,发现下端刚好接触地面,则旗杆的高为( ) A .8 B .12 C .6 D .104.下列条件中,不能判断△ABC 为直角三角形的是( ) A .a=1,b=2, B .a :b :c=3:4:5 C .∠A+∠B=∠C D .∠A :∠B :∠C=3:4:55.如图,在平面直角坐标系中,点P 坐标为(﹣2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A .﹣4和﹣3之间B .3和4之间C .﹣5和﹣4之间D .4和5之间6.在同一平面直角坐标中,关于下列函数:①y=x+1;②y=2x+1;③y=2x ﹣1;④y=﹣2x+1的图象,说法不正确的是( )A .②和③的图象相互平行B .②的图象可由③的图象平移得到C .①和④的图象关于y 轴对称D .③和④的图象关于x 轴对称7.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10; B .7; C .5; D .4;8. 如图,透明的圆柱形容器(容器厚度忽略 不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是…………………( ) A .13㎝;B.㎝;C㎝; D.㎝;二、填空题1.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为 . 2.若|x ﹣2|+=0,则(x+y )2013的值为.3.在平面直角坐标系中,若点M (﹣1,3)与点N (x ,3)之间的距离是5,则x 的值是 . 4.如图1l 的解析式为11y k x b =+,2l 的解析式为22y k x b =+,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解为 .第8题图 第7题图5.若a b <<,且a 、b 为连续正整数,则22b a -= .6.如图,在△ABC 中,∠BAC =90º,AB =15,AC =20,AD ⊥BC ,垂足为D ,则AD 的长为 . 7.将一次函数y =2x 的图像沿y 轴向上平移3个单位,得到的图像对应的函数关系式为 . 8.如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线交AC 于点E ,垂足为D ,连接BE ,则∠EBC = °. 9.写出同时具备下列两个条件的一次函数关系式 .(写出一个即可)(1)y 随x 的增大而减小;(2)图像经过点(1,-2).10.如图,正比例函数y =kx (k ≠0)的图像经过点A (2,4),AB ⊥x 轴于点B ,将△ABO 绕点A 逆时针旋转90°得到△ADC ,则直线AC 的函数表达式为 . 三、解答或证明题:1.求下列各式中的x 的值或计算:(1)(x+1)2=16; (2)(﹣2)3×+(﹣1)2013﹣.2.若+|y ﹣2|=0,求x+5y 的平方根. 3.(6分)如图,点P 是∠AOB 平分线上一点,PC ⊥OA ,PD ⊥OB ,垂足分别为C 、D ,(1)∠PCD =∠PDC 吗?为什么?(2)OP 是线段CD 的垂直平分线吗?为什么?4.在△ABC 中,AB =AC ,点E 、F 分别在AB 、AC 上,AE =AF ,BF 与CE 相交于点P .(1)求证:PB =PC ;(2)直接写出图中其他3组相等的线段. APE FA O C DP B(第3题) A B C D(第6题) (第8题)5.已知函数y =(2-2m )x +m ,(1)当m 为何值时,该函数图像经过原点;(2)若该函数图像与y 轴交点在x 轴上方,求m 的取值范围; (3)若该函数图像经过一、二、四象限,求m 的取值范围.6.如图,在Rt △ABC 中,∠C =90°.(1)作∠ABC 的角平分线BD 交AC 于点D ;(要求:尺规作图,保留作图痕迹,不写作法)(2)若CD =3,AD =5,求AB 的长.7.某村为绿化村道,在村道两旁种植了A 、B 两种树木共1000棵.绿化村道的总费用由树苗费及其它费用组成,(1)写出y (元)与x (棵)之间的函数关系式;(2)若种植的两种树苗共活了920棵,则绿化村道的总费用为多少元?8. 如图,已知A (-2,3)、B (4,3)、C (-1,-3) (1)求点C 到x 轴的距离; (2)求△ABC 的面积;(第6题)A B C(3)点P 在y 轴上,当△ABP 的面积为6时,请直接写出点P 的坐标.9. 如图,直线483y x =-+与x 轴、y 轴分别相交于点A 、B ,设M 是OB 上一点,若将△ABM 沿AM 折叠,使点B 恰好落在x 轴上的点B′处.求: (1)点B′的坐标;(2)直线AM 所对应的函数关系式.10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y 与x 之间的函数关系.根据图像提供的信息,解答下列问题: (1)求线段AB 所在直线的函数关系式和甲、乙两地的距离; (2)求两车的速度;(3)求点C 的坐标,并写出点C 的实际意义.11.(1)问题背景:如图①:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E 、F 分别是BC 、CD 上的点.且∠EAF =60°.探究图中线段BE 、EF 、FD 之间的数量关系.小明同学探究此问题的方法是:延长(第10题)FD 到点G ,使DG =BE .连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(2)探索延伸:如图②,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E 、F 分别是BC 、CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立?说明理由;(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.2小时后,甲、乙两舰艇分别到达E 、F 处,此时在指挥中心观测到两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.12. 某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若要求总利润不低于17560元,有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A ,B 型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?参考答案 一、选择题1-5 CAADA 6-8 CCA 二、填空题1.20. 2.﹣1. 3.﹣6或4. 4. 22x y =⎧⎨=⎩; 5. 7 6.127.y =2x +3 8.36° 9.y =-2x (答案不唯一) 10.y =-12x +5 三、解答或证明题 1.解:(1)开方得:x+1=4或x+1=﹣4, 解得:x 1=3,x 2=﹣5; (2)原式=﹣8×﹣1﹣3=﹣44﹣4=﹣48.2.解:根据题意得:x+1=0,y ﹣2=0, 则x=﹣1,y=2. 则x+5y=﹣1+10=9, 平方根是3和﹣3.3.解:(1)∵OP 平分∠AOB 且PC ⊥OA 、PD ⊥OB ,∴PC =PD .……………………………………………………………… ∴∠PCD =∠PDC .…………………………………………….…………(2)∵PC ⊥OA ,PD ⊥OB ,∴∠PCO =∠PDO = 90°.又∵∠PCD =∠PDC ,∴∠PCO -∠PCD =∠PDO -∠PDC .即∠OCD =∠ODC .………………………………………………………∴OC =OD .∴点O 在线段CD 垂直平分线上.……………………………………… 又∵PC =PD ,∴点P 在线段CD 垂直平分线上. …………………………………… 即OP 是线段CD 的垂直平分线.……………………………………… (其它解法参照给分.)4.解:(1)在△ABF 和△ACE 中,⎩⎪⎨⎪⎧AB =AC∠BAF =∠CAE ,AF =AE∴△ABF ≌△ACE (SAS), ……………………………………………∴∠ABF =∠ACE (全等三角形的对应角相等), ∵AB =AC , ∴∠ABC =∠ACB ,∴∠ABC -∠ABF =∠ACB -∠ACE . 即∠PBC =∠PCB .∴PB =PC . ………………………… ……………………………… (2)图中相等的线段为PE =PF ,BE =CF ,CE =BF .……………………5.解:(1)由函数图像经过原点,得0=(2-2m )·0+m .解得 m =0. ……………………………………………………………(2)把x =0代入y =(2-2m )x +m 中,得y =m .根据题意,得y >0,即m >0.…… ……………….….…………...……(3)根据题意,得 ⎩⎨⎧2-2m <0m >0.………………………………………………解这个不等式组,得m >1.……………………………………....………6.解:(1)画图正确.…………………………………………………………..……(2)过点D 作DE ⊥AB 于点E , 又∵DC ⊥BC ,BD 平分∠ABC ,∴DE =DC =3,BC =BE ,…………………………… 在Rt △ADE 中,由勾股定理得AE =4, ∵BE =BC ,设BC =x ,则AB =x +4, ∴在Rt △ABC 中,由勾股定理得: BC 2+AC 2=AB 2,∴x 2+82=(x +4)2,………………………………… 解得:x =6,∴BC =6,AB =10.…………………………………7.解:(1)y=24x+36(1000﹣x )=﹣12x+36000;(2)根据题意得:90%x+95%(1000﹣x )=920 解得:x=600 ∴y=﹣12×600+36000=28800元 8.(1)3;(2)18;(3)(0,5)或(0,1); 9.(-4,0);(2)132y x =-+; 10.解:(1)设直线AB 的函数关系式为y =kx +b , 由题意知直线AB 过(2,150)和(3,0),⎩⎪⎨⎪⎧150=2k +b , 0=3k +b 解得⎩⎪⎨⎪⎧k =-150, b =450∴直线AB 的函数关系式为y =-150x +450;当x =0时,y =450,∴甲乙两地的距离为450千米.………………....(2)设轿车和货车的速度分别为V 1千米/小时,V 2千米/小时. 根据题意得3V 1+3V 2=450.3V 1-3V 2=90.解得:V 1=90,V 2=60, ∴轿车和货车速度分别为90千米/小时,60千米/小时.………… (3)轿车到达乙地的时间为450÷90=5小时,此时两车间的距离为(90+60)×(5-3)=300千米,∴点C 的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.…………………………………………………………………………AB DE11.解:(1)EF =BE +DF ; …………………………………………(2)EF =BE +DF 仍然成立.证明:如图,延长FD 到G ,使DG =BE ,连接AG ,………………… ∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG , 在△ABE 和△ADG 中,⎩⎪⎨⎪⎧DG =BE∠B =∠ADG ,AB =AD∴△ABE ≌△ADG (SAS ), ………………………………….. ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF , ∴∠EAF =∠GAF , …………………………….…… 在△AEF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG∠EAF =∠GAF ,AF =AF ∴△AEF ≌△GAF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°-70°)=140°,∠EOF =70°, ∴∠EOF =12∠AOB ,又∵OA =OB ,∠OAC +∠OBC =(90°-30°)+(70°+50°)=180°, ∴符合探索延伸中的条件, ………………………......…… ∴结论EF =AE +BF 成立,即EF =2×(60+80)=280海里. ……………………………...… 答:此时两舰艇之间的距离是280海里.12. 解:依题意,分配给甲店A 型产品x 件,则甲店B 型产品有(70-x )件,乙店A 型有(40-x )件,B 型有{30-(40-x )}件,则(1)W=200x+170(70-x )+160(40-x )+150(x-10)=20x+16800.由0700400100x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≤⎩,解得10≤x≤40. (2)由W=20x+16800≥17560,∴x≥38. ∴38≤x≤40,x=38,39,40.ABCDE FG图②∴有三种不同的分配方案.方案一:x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件;方案二:x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;方案三:x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件.(3)依题意:200-a>170,即a<30,W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800,(10≤x≤40).①当0<a<20时,20-a>0,W随x增大而增大,∴x=40,W有最大值,即甲店A型40件,B型30件,乙店A 型0件,B型30件,能使总利润达到最大;②当a=20时,10≤x≤40,W=16800,符合题意的各种方案,使总利润都一样;③当20<a<30时,20-a<0,W随x增大而减小,∴x=10,W有最大值,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.。
湖北省孝感市八校联考2023-2024学年八年级上学期12月月考数学试卷(含答案)
孝感市八校联谊2023年联考八年级数学试卷(本试卷共4页。
全卷满分120分。
考试用时120分钟)注意事项:1.答题前,先将自己的学校、姓名、准考证号填写在答题卡上,并将准考证条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡对应题目答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将答题卡上交。
一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的.请在答题卡上把正确答案的代号涂黑)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.以下列各线段长为边,能组成三角形的是()A.1cm,2cm,3cm B.3cm,3cm,6cmC.5cm,6cm,12cm D.4cm,6cm,8cm3.下列运算正确的是()A.B.C.D.4.用直尺和圆规作两个全等三角形,如图,能得到的依据是()A.SAA B.SSS C.ASA D.AAS5.下列因式分解结果正确的是()A.B.C.D.6.若等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.40°或80°D.50°或80°7.具备下列条件的两个三角形一定是全等三角形的是()A.有三个角对应相等的两个三角形B.两边及其中一边的对角对应相等的两个三角形C.两边分别相等,并且第三条边上的中线也对应相等的两个三角形D.有两边及其第三边上的高分别对应相等的两个三角形8.如图,在直角三角形ABC中,,,,.D,E分别是边BC,AB上的动点,则的最小值是()8题A.B.4C.D.3二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9.六边形一共有________条对角线.10.若有意义,则m的取值范围是________.11.已知,,则________.12.如图,的值是________.12题13.若多项式是一个完全平方式,则________.14.如图,在△ABC中,AB,CB的垂直平分线与AC边分别交于E、D两点,,则△ABC的度数是________.14题15.如图,在△ABC中,.点D为△ABC外一点,于E.,,,则BE的长为________.15题16.四边形ABCD中,连接对角线AC、BD,满足,,,,则________°.第16题三、专心解一解(本大题共8小题,满分72分.请认真读题,请把解题过程写在答题卡相应题号的位置)17.(本小题满分8分=4分+4分)计算:(1)(2)18.(本小题满分8分=4分+4分)分解因式.(1)(2)19.(本小题满分8分)如图,点E、F在线段AB上,,,,求证:.20.(本小题满分8分=4分+4分)已知,.(1)求的值;(2)求的值.21.(本小题满分8分=4分+4分)如图,△ABC的角平分线AD、BE、CF交于点O,,,.(1)求∠AOC的度数;(2)若,,求AB的长.22.(本小题满分10分=4分+6分)阅读下列材料,然后解答问题.问题:分解因式:.解答:把代入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出m,n的值,再代入,就容易分解多项式.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:.23.(本小题满分10分=3分+3分+4分)已知等边△ABC,D为平面内一点,连接AD、BD、CD.图1 图2 图3(1)如图1,若,求∠BDC的度数;(2)如图2,若点D在△ABC外,,求证:;(3)如图3,若点D在△ABC内,,,求证:.24.(本小题满分12分=3分+4分+5分)如图1,平面直角坐标系中,点在第二象限,m、n满足.以A为顶点作直角∠CAB,交x轴负半轴于点B,交y轴正半轴于点C.图1 图2(1)求点A的坐标;(2)求的值;(3)如图2,点D在第一象限,连接DC,把DC绕点D逆时针旋转90°得到DE,连接BE,取线段BE的中点F,连接AF、DF,求证:,.数学试卷参考答案一.选择题1——4 DDAB5——8 CDCA二.填空题9.910.11.12.360°13.3或-5 14.70°15.516.27°17.计算(8分=4+4)(1)(2)18.分解因式(8分=4+4)(1)(2)19.(8分)证明:∵∴∴在△AFC和△BED中∴∴20.(8分=4+4)(1)∵,∴(2)21.(8分=4+4)(1)∵AD平分∠BAC ∴∵∴∴∴∵AD平分∠BAC,CF平分∠ACB∴∴(2)在AB上截,连接DG.在△ADC和△ADG中∴∴∵∴∴∴22.(10分=4+6)(1)∴,,∴,(2)当时,,设∴,,∴,∴23.(8分=3+3+4)(1)∵△ABC是等边三角形∴,∵∴∴,∵∴∴图1(2)延长BD至E,使,连接CE.∵∴∴△DCE是等边三角形∴∵△ABC是等边三角形∴∴∴在△ADC和△BEC中∴∴∴图2(3)延长BD至E,使,连接CE,AE.∵∴∴△DCE是等边三角形∴∵∴在△BCD和△ACE中∴∴,∴∵∴∴∴图324.(12分=3+4+5)(1)∵∴∴,∴,∴(2)过点A作于N,于M.∵∴∵∴∴在△AMB和△ANC中∴∴∴图1(3)倍长AF至G,连接GE并延长交AC于H,连接DA、DG.在△ABF和△GEF中∴∴,∴∴∵∴∵∴图2由(2)可知∴在△ADC和△GDE中∴∴,∴∴△ADG是等腰直角三角形∵∴∴△ADF也是等腰直角三角形∴,。
12月八年级上月考数学试卷含答案解析
八年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题4分,满分40分)1.下列各式中,分式的个数为(),,,,,.A.5 B.4 C.3 D.22.下列运算中,计算结果正确的是()A.a2•a3=a6 B.(a2)3=a5C.(a2b)2=a2b2 D.(﹣a)6÷a=a53.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣34.下列各式是完全平方式的是()A.x2﹣x+B.1+x2 C.x+xy+1 D.x2+2x﹣15.如果=,那么的值是()A.B.C.D.6.为了应用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是()A.[x﹣(2y+1)]2B.[x+(2y+1)]2C.[x﹣(2y﹣1)][x+(2y﹣1)] D.[(x﹣2y)+1][(x﹣2y)﹣1]7.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.缩小2倍C.扩大2倍D.扩大4倍8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)29.若分式的值为0,则x的值为()A.0 B.C.﹣D.10.多项式5x2﹣4xy+4y2+12x+25的最小值为()A.4 B.5 C.16 D.25二、填空题(共8小题,每小题3分,满分24分)11.计算:①x2•x3=;②(﹣2y2)3=;③=.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是.13.多项式4a2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是.(填上一个你认为正确的即可)14.甲、乙两班学生参加植树造林,一直甲班每天比乙班多植树5棵,甲班植80棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出的方程是.15.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ a3b+ a2b2+ ab3+b4.16.观察下列各等式:,,,…根据你发现的规律,计算:=(n为正整数).17.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=,ab.18.已知关于x的分式方程=1的解是非正数,则a的取值范围是.三、解答题(共7小题,满分86分)19.因式分解:(1)3x﹣12x3(2)(x2﹣y2)a2﹣(x2﹣y2)b2.20.计算:(1)(﹣)÷(2)[(x+y2)﹣(x﹣y)2]÷(﹣2xy)(3)92×88(用简便方法计算)(4)(﹣8)2014×(0.125)2014(用简便方法计算)21.解方程:(1)=3(2).22.先化简,再求值:,其中x=﹣1.23.有这样一道题:“计算:的值,其中x=2012.”甲同学把“x=2012”错抄成“x=2017”,但他计算结果也是正确的.请解释这是怎么回事.24.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?25.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.2016-2017学年江苏省南通市启东市长江中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列各式中,分式的个数为(),,,,,.A.5 B.4 C.3 D.2【考点】分式的定义.【分析】根据如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【解答】解:,,是分式,共3个,故选:C.2.下列运算中,计算结果正确的是()A.a2•a3=a6 B.(a2)3=a5C.(a2b)2=a2b2 D.(﹣a)6÷a=a5【考点】幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.【分析】根据幂的乘方和积的乘方以及同底数幂的除法法则求解.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a2)3=a6,原式计算错误,故本选项错误;C、(a2b)2=a4b2,原式计算错误,故本选项错误;D、(﹣a)6÷a=a5,原式计算正确,故本选项正确.故选D.3.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣3【考点】分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣3≠0,即x≠3时,分式有意义.故选A.4.下列各式是完全平方式的是()A.x2﹣x+B.1+x2 C.x+xy+1 D.x2+2x﹣1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.【解答】解:A、x2﹣x+是完全平方式;B、缺少中间项±2x,不是完全平方式;C、不符合完全平方式的特点,不是完全平方式;D、不符合完全平方式的特点,不是完全平方式.故选A.5.如果=,那么的值是()A.B.C.D.【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:=,由分比性质,得=,由反比性质,得=,故选:C.6.为了应用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是()A.[x﹣(2y+1)]2B.[x+(2y+1)]2C.[x﹣(2y﹣1)][x+(2y﹣1)] D.[(x﹣2y)+1][(x﹣2y)﹣1]【考点】平方差公式.【分析】根据平方差公式(a+b)(a﹣b)=a2﹣b2的特点进行计算即可.【解答】解:(x+2y﹣1)(x﹣2y+1)=[x﹣(2y﹣1)][x+(2y﹣1)],故选C.7.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.缩小2倍C.扩大2倍D.扩大4倍【考点】分式的基本性质.【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选A.8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a﹣b)2【考点】平方差公式的几何背景.【分析】(1)中的面积=a2﹣b2,(2)中梯形的面积=(2a+2b)(a﹣b)÷2=(a+b)(a﹣b),两图形阴影面积相等,据此即可解答.【解答】解:由题可得:a2﹣b2=(a+b)(a﹣b).故选A.9.若分式的值为0,则x的值为()A.0 B.C.﹣D.【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:若分式的值为0,则4x2﹣1=0且2x﹣1≠0.开方得x1=,x2=﹣.当x=时,分母为0,不合题意,舍去.故x的值为﹣.故选C.10.多项式5x2﹣4xy+4y2+12x+25的最小值为()A.4 B.5 C.16 D.25【考点】完全平方公式;非负数的性质:偶次方.【分析】根据配方法将原式写成完全平方公式的形式,再利用完全平方公式最值得出答案.【解答】解:∵5x2﹣4xy+4y2+12x+25,=x2﹣4xy+4y2+4x2+12x+25,=(x﹣2y)2+4(x+1.5)2+16,∴当(x﹣2y)2=0,4(x+1.5)2=0时,原式最小,∴多项式5x2﹣4xy+4y2+12x+25的最小值为16,故选:C.二、填空题(共8小题,每小题3分,满分24分)11.计算:①x2•x3=x5;②(﹣2y2)3=﹣8y6;③=﹣.【考点】约分;同底数幂的乘法;幂的乘方与积的乘方.【分析】①根据同底数幂的乘法法则进行计算;②根据幂的乘方与积的乘方法则进行计算;③约分即可.【解答】解::①x2•x3=x2+3=x5;②(﹣2y2)3=(﹣2)3•y2×3=﹣8y6;③=﹣.故答案是:①x5;②﹣8y6;③﹣.12.如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【考点】平方差公式.【分析】由题目可发现x2﹣y2=(x+y)(x﹣y),然后用整体代入法进行求解.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.13.多项式4a2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是4a或﹣4a或4a4.(填上一个你认为正确的即可)【考点】完全平方式.【分析】分①4a2是平方项,②4a2是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:①4a2是平方项时,4a2±4a+1=(2a±1)2,可加上的单项式可以是4a或﹣4a,②当4a2是乘积二倍项时,4a4+4a2+1=(2a2+1)2,可加上的单项式可以是4a4,综上所述,可以加上的单项式可以是4a或﹣4a或4a4.14.甲、乙两班学生参加植树造林,一直甲班每天比乙班多植树5棵,甲班植80棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出的方程是=.【考点】由实际问题抽象出分式方程.【分析】设甲班每天植树x棵,根据甲班每天比乙班多植树5棵,甲班植80棵树所用天数与乙班植70棵树所用天数相等列出方程.【解答】解:设甲班每天植树x棵,=.故答案为:=.15.如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ 4a3b+ 6a2b2+ 4ab3+b4.【考点】完全平方公式.【分析】观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.【解答】解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.16.观察下列各等式:,,,…根据你发现的规律,计算:=(n为正整数).【考点】分式的加减法.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.17.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=﹣31,ab=56.【考点】因式分解-提公因式法.【分析】首先提取公因式,进而合并同类项得出a,b的值,进而得出答案.【解答】解:∵(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)=(3x﹣7)(2x﹣21﹣x+13)=(3x﹣7)(x﹣8),=(3x+a)(x+b),∴a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,ab=56.故答案为:﹣31,56.18.已知关于x的分式方程=1的解是非正数,则a的取值范围是a≤﹣1且a≠﹣2.【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a的取值范围.【解答】解:去分母,得a+2=x+1,解得:x=a+1,∵x≤0,x+1≠0,∴a+1≤0,x≠﹣1,∴a≤﹣1,a+1≠﹣1,∴a≠﹣2,∴a≤﹣1且a≠﹣2.故答案为:a≤﹣1且a≠﹣2.三、解答题(共7小题,满分86分)19.因式分解:(1)3x﹣12x3(2)(x2﹣y2)a2﹣(x2﹣y2)b2.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣3x(x2﹣1)=﹣3x(x+1)(x﹣1);(2)原式=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b).20.计算:(1)(﹣)÷(2)[(x+y2)﹣(x﹣y)2]÷(﹣2xy)(3)92×88(用简便方法计算)(4)(﹣8)2014×(0.125)2014(用简便方法计算)【考点】分式的混合运算;整式的加减;平方差公式;整式的除法.【分析】(1)先计算括号内的算式,然后化除法为乘法进行计算;(2)利用平方差公式计算中括号内的式子,然后计算除法;(3)根据平方差公式计算解答即可;(4)原式利用积的乘方与幂的乘方运算法则变形,计算即可得到结果.【解答】解:(1)原式=×=x﹣1;(2)原式=[(x+y+x﹣y)(x+y﹣x+y)]÷(﹣2xy)=4xy÷(﹣2xy)=﹣2;(3)92×88=(90+2)(90﹣2)=902﹣4=8100﹣4=8096;(4)原式=[(﹣8)×(﹣0.125)]2014×(﹣0.125)=12014×(﹣0.125)=﹣0.125.21.解方程:(1)=3(2).【考点】解分式方程.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,经检验x=是分式方程的解.22.先化简,再求值:,其中x=﹣1.【考点】分式的化简求值.【分析】首先把括号里面通分,再把除法变成乘法,然后把分式的分子分母分别分解因式,再约分化简即可.【解答】解:原式=•,=•,=x﹣2,把x=﹣1代入得:原式=﹣1﹣2=﹣3.23.有这样一道题:“计算:的值,其中x=2012.”甲同学把“x=2012”错抄成“x=2017”,但他计算结果也是正确的.请解释这是怎么回事.【考点】分式的化简求值.【分析】首先把分式化简,可得分式的值等于0,所以x=2012或x=2017时,算式的值都是0,所以甲同学把“x=2012”错抄成“x=2017”,但他计算结果也是正确的,据此解答即可.【解答】解:=×﹣x=x﹣x=0,∴x=2012或x=2017时,算式的值都是0,∴甲同学把“x=2012”错抄成“x=2017”,但他计算结果也是正确的.24.某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x天,根据甲、乙两队合作完成该项目共需72天建立方程求出其解即可;(2)设乙工程队平均每天的施工费用为a万元,由施工的总费用不能超过甲工程队的费用建立方程求出其解即可.【解答】解:(1)设乙单独完成建校工程需x天,则甲单独完成建校工程需1.5x 天,由题意,得解得:x=120经检验,x=120是原方程的解∴甲单独完成建校工程需时间为:1.5×120=180天.答:甲单独完成建校工程需180天,乙单独完成建校工程需120天;(2)设乙工程队平均每天的施工费用为a万元,由题意,得120a≤0.8×180a≤1.2∵a取最大值∴a=1.2答:乙工程队平均每天的施工费用最多1.2万元.25.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【考点】提公因式法与公式法的综合运用.【分析】(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2﹣4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.【解答】解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还可以分解,分解不彻底;(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.2017年1月19日。
辽宁省大连市瓦房店市2023-2024学年八年级上学期12月月考数学试题
辽宁省大连市瓦房店市2023-2024学年八年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下面的四个实验器材中,不是轴对称图形的是()A .B .C .D .2.下列运算中,正确的是()A .336x x x +=B .232x x x -=C .236()x x =D .2224()x y x y +=+3.点(1,2)关于y 轴对称的点的坐标为()A .(2,1)B .(-1,2)C .(1,-2)D .(-1,-2)4.如图,90C D ∠=∠=︒,若要用“HL ”证明Rt Rt ABC ABD ≌,则还需补充条件()A .BAC BAD ∠=∠B . AC AD =或BC BD =C .ABC ADB∠=∠D .以上都不正确5.下列各式由等号左边到等号右边的变形中,是因式分解的是()A .(x y)ax ay a +=+B .244(4)4x x x x -+=-+C .21055(21)m m m m -=-D .2163(4)(4)3m m m m m m-+=-++6.如图,ABC 中,45C ∠=︒,120B ∠=︒,BC 、AB 的中垂线DE 、FH 分别交BC 、CA 、AB 于D 、E 、F 、H .若4CE =,则AH 的长度是()A .4B .6C .77.2022年2月4日,北京冬奥会开幕式为世界奉献了一场精彩,简约,唯美,浪漫的中国文化盛宴,其中主火炬台的雪花状创意令人惊叹如图是一个正六边形雪花状饰品,则它的每一个内角是()A .60︒B .105︒C .120︒8.若x 、y 的值均扩大为原来的3倍,则下列分式的值保持不变的是(A .1x y +B .1x y x ++C .xy x y+9.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC AB 、于点M 、N ,再分别以点M 、N 为圆心,大于MN 点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则A .15B .3010.若()22816x m x x +=++.则m A .4B .4±二、填空题11.计算:25a a =g .12.分式2239m mm --化简后的结果为13.如图,池塘边有一块长为2a ,宽为的小路,中间余下的长方形部分做菜地,则菜地的面积为三、解答题16.计算(1)222(4)x y xy ⋅(2)(2)(2)m n m n +-17.因式分解(1)34a a -(2)22369xy x y y --18.已知,如图,在ABC 中,点D 为线段BC 上一点,BD AC =,过点D 作∥DE AC 且DBE A ∠=∠,求证:DE BC =.19.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E .(1)若35B ∠=︒,25E ∠=︒,求(2)证明:2BAC B ∠=∠+∠20.化简求值:()(22a ++21.如图,在四边形ABCD 接AC ,EF ,AC 平分∠ECF (1)求证:∠B =∠D ;(2)若∠B =60°,∠BCD =140°22.【发现问题】《几何原本》是古希腊数学家欧几里得的一部不朽著作,该书的第2卷“几何与代数23.【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,ABC 中,AB AC =,点D 是上一点,延长AC 到点G ,使BGC BDC ∠=∠,求证:BG CD =.①如图2,小鹏同学从已知条件入手,AB AC =,A A ∠=∠,利用等腰三角形的对称性,考虑在AC 上取点F ,使AF AD =,连接BF ,将线段BG 与CD 之间的数量关系转化为BG 与BF 之间的数量关系.②如图3,小亮同学给出另一种解题思路:分别过点B 和点C 作AC 和AB 的垂线,分别为N 和M 两点,证明两次全等,从而使问题得到解决.请你选择一名同学的解题思路,写出证明过程.【类比分析】(2)李老师发现两名同学都运用等腰对称的性质,来构造全等三角形,为了帮助学生更好地感悟这一基本解题思路,李老师提出了下面问题,请你解答.如图4,在ABC 中,点D 猜想A ∠与CED ∠的数量关系,并证明你的猜想.【学以致用】(3)如图5,等边ABC 中,点2CAD DBE ∠=∠,BE 交①求证:AC AE =;②若1CF =,3DE =,求线段CD 的长度,并说明理由.。
八年级(上)月考数学试卷(12月份)附答案
八年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列运算正确的是()A.a3•a2=a6 B.y3÷y=y3 C.(m2n)3=m6n3 D.(x2)3=x52.剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是轴对称图形的是()A.B.C.D.3.下列式子的变形,不是因式分解的有()①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y.A.1个B.2个C.3个D.4个4.光年是一种长度单位,它表示光在一年中所通过的距离,已知光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为()A.3×1012千米B.9×1015千米C.9×1035千米D.9×1012千米5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°6.如果单项式﹣x2a﹣3y2与x3y a+2b﹣7的和仍为单项式,那么它们的乘积为()A.﹣x6y4 B.﹣x3y2 C.﹣x6y4 D.x6y47.若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为()A. a B.﹣3 C.9a3b2 D.3a8.对于任意整数n,多项式(n+7)2﹣(n﹣3)2的值都能()A.被20整除B.被7整除C.被21整除D.被n+4整除9.如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度均为acm,竖彩条的宽度均为bcm,则空白区域的面积是()A.(6xy﹣6xa﹣4by+4ab)cm2 B.(6xy+6xa+4by﹣4ab)cm2C.(6xy﹣6xb﹣4ay+4ab)cm2 D.(6xy+6xb+4ay﹣4ab10.计算(2+1)(22+1)(24+1)…(232+1)的结果为()A.235+2 B.264+1 C.264﹣1 D.232﹣1二、填空题(共8小题,每小题3分,计24分)11.若□×6xy=3x3y2,则□内应填的单项式是.12.计算(15y3﹣9y2﹣3y)÷(﹣3y)=.13.已知2a+3b+4=0,则﹣4a﹣6b的值为.14.若4x2+mx+9是一个完全平方式,则实数m的值是.15.如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则m的值是.16.一个等腰三角形的周长为16,一边长是6,则它的腰长为.17.若3x=m,9y=n,x,y为正整数,则32x+6y等于.18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:(写出一个即可).三、解答题(共5小题,计46分.解答应写出过程)19.把下列各式分解因式:(1)x2﹣(y+2)2;(2)﹣20x3y+x4+100x2y2.20.如图,在Rt△ABC中,∠ABC=90°,在边AB上取一点D,使得DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F,求证:FC=AB+DB.21.先化简,再求值:(1)b(a+b)+(a+2b)(2a﹣b)﹣4ab,其中a=﹣3,b=4;(2)[(x+3y)(x﹣3y)+(x+3y)2]÷(﹣4x),其中x=1,y=.22.已知“两点之间,线段最短”,我们经常利用它来解决两线段和的最小值问题.(1)实践运用唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由.(2)拓展延伸如图2,点P,Q是△ABC的边AB、AC上的两个定点,请同学们在BC上找一点R,使得△PQR的周长最短(要求:尺规作图,不写作图过程保留作图痕迹).23.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)直接写出图2中所表示的数学等式;(2)写出图3中所表示的数学等式,并利用所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图4中给出了若干个边长为a和边长为b的小正方形纸片,若干个长为a、宽为b的长方形纸片,请先写出数学等式:(2a+b)(a+2b)=,再利用所给的纸片拼出一个几何图形,验证该公式.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列运算正确的是()A.a3•a2=a6 B.y3÷y=y3 C.(m2n)3=m6n3 D.(x2)3=x5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据幂的乘方,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、底数不变指数相减,故B错误;C、积的乘方等每个因式分别乘方,再把所得的幂相乘,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.点评:本题考查了同底数幂的除法,利用法则计算是解题关键.2.剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义直接判断得出即可.解答:解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了轴对称图形的性质,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.下列式子的变形,不是因式分解的有()①(x+1)(x﹣2)=x2﹣x﹣2;②x2﹣2x+1=x(x﹣2)+1;③x2﹣9y2=(x+3y)(x﹣3y);④x2y﹣2xy+y=(x2﹣2x+1)y.A.1个B.2个C.3个D.4个考点:因式分解的意义.分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.解答:解:①右边不是整式积的形式,不是因式分解;②右边不是整式积的形式,不是因式分解;③是因式分解;④右边的式子还有可以分解的多项式,不是因式分解;综上可得不是因式分解的是:①②④,共3个.故选C.点评:本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.4.光年是一种长度单位,它表示光在一年中所通过的距离,已知光每秒的速度为3×105千米,一年以3×107秒计算,一光年约为()A.3×1012千米B.9×1015千米C.9×1035千米D.9×1012千米考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3×105×3×107用科学记数法表示为:9×1012.故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°考点:三角形内角和定理.分析:先根据∠A=50°,∠ABC=70°得出∠C的度数,再由BD平分∠ABC求出∠ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.解答:解:∵∠ABC=70°,BD平分∠ABC,∴∠ABD=70°×=35°,∴∠BDC=50°+35°=85°,故选:A.点评:本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如果单项式﹣x2a﹣3y2与x3y a+2b﹣7的和仍为单项式,那么它们的乘积为()A.﹣x6y4 B.﹣x3y2 C.﹣x6y4 D.x6y4考点:单项式乘单项式;合并同类项.分析:根据合并同类项法则得出a,b的值,进而利用单项式乘以单项式运算法则求出即可.解答:解:∵单项式﹣x2a﹣3y2与x3y a+2b﹣7的和仍为单项式,∴,解得:,故单项式﹣x3y2与x3y2的乘积为:﹣x6y4.故选:C.点评:此题主要考查了单项式乘以单项式以及合并同类项法则,得出a,b的值是解题关键.7.若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,则A﹣B的值与﹣9a3b2的公因式为()A.a B.﹣3 C.9a3b2 D.3a考点:公因式;整式的加减.分析:根据合并同类项,可化简整式,根据公因式是每項都含有的因式,可得答案.解答:解:A﹣B=9a2+3a,A﹣B的值与﹣9a3b2的公因式为3a,故选:D.点评:本题考查了公因式,先合并同类项,再判断公因式.8.对于任意整数n,多项式(n+7)2﹣(n﹣3)2的值都能()A.被20整除B.被7整除C.被21整除D.被n+4整除考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:(n+7)2﹣(n﹣3)2=[(n+7)﹣(n﹣3)][(n+7)+(n﹣3)]=10(2n+4)=20(n+2),故多项式(n+7)2﹣(n﹣3)2的值都能被20整除.故选:A.点评:此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.9.如图,要设计一幅长为3xcm,宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度均为acm,竖彩条的宽度均为bcm,则空白区域的面积是()A.(6xy﹣6xa﹣4by+4ab)cm2 B.(6xy+6xa+4by﹣4ab)cm2C.(6xy﹣6xb﹣4ay+4ab)cm2 D.(6xy+6xb+4ay﹣4ab考点:整式的混合运算.专题:应用题.分析::由长方形面积减去阴影部分面积求出空白区域面积即可.解答:解:根据题意得:3x•2y﹣(3x﹣2a)(2y﹣2a)=(6xy﹣6xa﹣4by+4ab)cm2.故选A点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.计算(2+1)(22+1)(24+1)…(232+1)的结果为()A.235+2 B.264+1 C.264﹣1 D.232﹣1考点:平方差公式.分析:把前面的1变为(2﹣1),再依次运用平方差公式进行计算即可.解答:解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1),=(22﹣1)(22+1)(24+1)(28+1)(216+1)(232+1),=(24﹣1)(24+1)(28+1)(216+1)(232+1),=(28﹣1)(28+1)(216+1)(232+1),=(216﹣1)(216+1)(232+1),=(232﹣1)(232+1),=264﹣1故选:C.点评:本题考查了平方差公式的应用,注意:(a+b)(a﹣b)=a2﹣b2.二、填空题(共8小题,每小题3分,计24分)11.若□×6xy=3x3y2,则□内应填的单项式是x2y.考点:单项式乘单项式.分析:利用单项式的乘除运算法则,进而求出即可.解答:解:∵□×6xy=3x3y2,∴□=3x3y2÷6xy=x2y.故答案为:x2y.点评:此题主要考查了单项式的乘除运算,正确掌握运算法则是解题关键.12.计算(15y3﹣9y2﹣3y)÷(﹣3y)=﹣5y2+3y+1.考点:整式的除法.专题:计算题.分析:原式利用多项式除以单项式法则计算即可得到结果.解答:解:(15y3﹣9y2﹣3y)÷(﹣3y)=﹣5y2+3y+1,故答案为:﹣5y2+3y+1点评:此题考查了整式的除法,熟练掌握运算法则是解本题的关键.13.已知2a+3b+4=0,则﹣4a﹣6b的值为8.考点:代数式求值.专题:计算题.分析:由已知等式变形求出2a+3b的值,原式变形后代入计算即可求出值.解答:解:由题意得:2a+3b=﹣4,则原式=﹣2(2a+3b)=8,故答案为:8点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.若4x2+mx+9是一个完全平方式,则实数m的值是±12.考点:完全平方式.专题:常规题型.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.解答:解:∵4x2+mx+9=(2x)2+mx+32,∴mx=±2×2x×3,解得m=±12.故答案为:±12.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则m的值是.考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(x2﹣mx+3)(3x﹣2)=3x3﹣(3m+2)x2+(2m+9)x﹣6,再令x2项系数为0,计算即可.解答:解:(x2﹣mx+3)(3x﹣2)=3x3﹣(3m+2)x2+(2m+9)x﹣6,如果(x2﹣mx+3)(3x﹣2)的展开式中不含x2项,则有,3m+2=0解得,m=﹣.故答案为:﹣.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.16.一个等腰三角形的周长为16,一边长是6,则它的腰长为6或5.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有一边长为6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵等腰三角形的周长为16,∴当6为腰时,它的底长=16﹣6﹣6=3,3+6>6能构成等腰三角形,即它的腰长为6;当6为底时,它的腰长=(16﹣6)÷2=5,5+5>6能构成等腰三角形,即它的腰长也可以为5.故它的腰长为6或5.故填6或5.点评:本题考查了等腰三角形的性质和三角形的三边关系;本题从边的方面考查三角形,涉及分类讨论的思想方法.注意养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.17.若3x=m,9y=n,x,y为正整数,则32x+6y等于m2n3.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:先求出32y=n,先根据同底数幂的乘法进行计算,再根据幂的乘方变形,最后整体代入求出即可.解答:解:∵3x=m,9y=n,∴32y=n,∴32x+6y=32x•36y=(3x)2•(32y)3=m2n3,故答案为:m2n3.点评:本题考查了同底数幂的乘法,幂的乘方的应用,能灵活运用法则进行变形是解此题的关键,用了整体代入思想.18.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可).考点:因式分解的应用.专题:开放型.分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.解答:解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10;2x+y=30;2x﹣y=10,用上述方法产生的密码是:101030或103010或301010.故答案为:101030或103010或301010.点评:本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三、解答题(共5小题,计46分.解答应写出过程)19.把下列各式分解因式:(1)x2﹣(y+2)2;(2)﹣20x3y+x4+100x2y2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.解答:解:(1)原式=(x+y+2)(x﹣y﹣2);(2)原式=x2(﹣20xy+x2+100y2)=x2(x﹣10y)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.如图,在Rt△ABC中,∠ABC=90°,在边AB上取一点D,使得DB=BC,过点D作EF⊥AC,分别交AC于点E,交CB的延长线于点F,求证:FC=AB+DB.考点:全等三角形的判定与性质.专题:证明题.分析:先根据角的互余关系求出∠A=∠F,再根据AAS证明△ABC≌△FBD,得出对应边相等,即可得出结论.解答:解:∵∠ABC=90°,EF⊥AC,∴∠A=∠C=90°,∠F+∠C=90°,∴∠A=∠F,在△ABC和△FBD中,,∴△ABC≌△FBD(AAS),∴BF=AB,∴FC=BF+BC=AB+BD.点评:本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法证明三角形全等是解决问题的关键.21.先化简,再求值:(1)b(a+b)+(a+2b)(2a﹣b)﹣4ab,其中a=﹣3,b=4;(2)[(x+3y)(x﹣3y)+(x+3y)2]÷(﹣4x),其中x=1,y=.考点:整式的混合运算—化简求值.专题:计算题.分析:(1)原式利用单项式乘以多项式,平方差公式计算,合并得到最简结果,把a与b 的值代入计算即可求出值;(2)原式利用平方差公式及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值解答:解:(1)原式=ab+b2+2a2﹣ab+4ab﹣2b2﹣4ab=2a2﹣b2,当a=﹣3,b=4时,原式=18﹣16=2;(2)原式=(x2﹣9y2+x2+6xy+9y2)÷(﹣4x)=(2x2+6xy)÷(﹣4x)=﹣,当x=1,y=时,原式=﹣.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知“两点之间,线段最短”,我们经常利用它来解决两线段和的最小值问题.(1)实践运用唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题﹣﹣将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后,再到B点宿营,请问怎样走才能使总的路程最短?画出最短路径并说明理由.(2)拓展延伸如图2,点P,Q是△ABC的边AB、AC上的两个定点,请同学们在BC上找一点R,使得△PQR的周长最短(要求:尺规作图,不写作图过程保留作图痕迹).考点:轴对称-最短路线问题;作图—应用与设计作图.分析:(1)从点A出发向河岸引垂线,垂足为D,在AD的延长线上,取A′使得A′D=AD,连接A′B,与河岸相交y于C,则C点就是饮马的地方,此时AC+BC的值最小.(2)作P点关于BC的对称点P′,连接P′Q,交BC于R,此时△PQR的周长最短.解答:解:(1)如图1,从点A出发向河岸引垂线,垂足为D,在AD的延长线上,取A′使得A′D=AD,连接A′B,与河岸相交y于C,则C点就是饮马的地方;证明:如图1,如果将军在河边的另外任意点C′饮马,所走的路程就是AC′+C′B,因为AC′+C′B >A′B=AC+BC,所以在C点外任意一点饮马,所走的路程都要远些;(2)尺规作图,如图2:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.23.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式,例如由图1可以得到(a+b)2=a2+2ab+b2.请解答下列问题:(1)直接写出图2中所表示的数学等式(a+2b)(a+b)=a2+3ab+2b2;(2)写出图3中所表示的数学等式,并利用所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图4中给出了若干个边长为a和边长为b的小正方形纸片,若干个长为a、宽为b的长方形纸片,请先写出数学等式:(2a+b)(a+2b)=2a2+5ab+2b2,再利用所给的纸片拼出一个几何图形,验证该公式.考点:多项式乘多项式.分析:(1)根据数据表示出矩形的长与宽,再根据矩形的面积公式写出等式的左边,再表示出每一小部分的矩形的面积,然后根据面积相等即可写出等式.(2)根据利用(1)中所得到的结论,将a+b+c=11,ab+bc+ac=38作为整式代入即可求出.(3)找规律,根据公式画出图形,拼成一个长方形,使它满足所给的条件解答:解:(1)根据题意,大矩形的面积为:(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b)=a2+3ab+2b2.(2)根据题意,大矩形的面积为:(a+b+c)(a+b+c)=(a+b+c)2,各小矩形部分的面积之和=a2+2ab+b2+2bc+2ac+c2,∴等式为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故a2+b2+c2 =(a+b+c)2﹣2ab﹣2ac﹣2bc=112﹣2×38=45;(3)(2a+b)(a+2b)=2a2+5ab+2b2;如图所示:(答案不唯一).点评:本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.。
南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题(含解析)
南京市江宁区竹山中学2022-2023学年八年级上学期12月月考数学试题一.选择题(共9小题,满分27分)1. 用数学的眼光观察下面的网络图案,其中可以抽象成中心对称图形的是( )A. B. C. D. 2. 下列说法正确的是( )A. 1的平方根是1B. ﹣1平方根是﹣1C. 0的平方根是0D. 0.01是0.1的一个平方根3. 若点Р在一次函数4y x =+的图像上,则点Р一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4. 已知ABC 的三边分别为a ,b ,c ,下列条件不能判断ABC 是直角三角形的是( )A. 222a b c =-B. 6a =,8b =,10c =C. A B C =+∠∠∠D. ::3:4:5A B C ∠∠∠=5. 如图,在ABC 中,20,AB AC cm DE ==垂直平分AB ,垂足为E ,交AC 于D ,若15BC cm =,则DBC △的周长为( )A. 25cmB. 35cmC. 30cmD. 27.5cm 6. 如图,已知∠CAE =∠BAD ,AC =AD ,增加下列条件:①AB =AE ;②BC =ED ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A. 1个B. 2个C. 3个D. 4个7. 将两个含有30°角的直角三角形和一个等腰直角三角形按如图所示的方式放置.若37α∠=︒,则∠β的度数为( )A. 37°B. 45°C. 53°D. 60°8. 如图,已知直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.根据图象有下列四个结论:①a >0;②b <0;③方程ax +2=mx +b 的解是x =﹣2;④不等式ax ﹣b >mx ﹣2的解集是x >﹣2.其中正确的结论个数是( )A. 1B. 2C. 3D. 49. 如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2022的坐标为( )A. ()1011,1011B. ()505,504-C. ()504,505-D. ()1011,1011-二.填空题(共9小题,满分27分)10. 在平面直角坐标系中,若点()3,3P m m +-在y 轴上,则m 的值是____________.11. 11+=_________.12. 在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.13. 电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,则“5排16号”记作______. 14. 如图,△ABC 中,AC =BC ,点D ,E ,F 分别在边AC ,AB ,BC 上,且满足AD =BE ,AE =BF ,∠DEF =40°,则∠C 的度数是 ___.15. 在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0,k ,b 均为常数)与正比例函数y =﹣13x 的图象如图所示,则关于x 的不等式kx +b >﹣13x 的解集为______.16. ABC 中,13AB AC ==,10BC =,点P 为AB 上一个动点,则CP 的最小值为 _____. 17. 某复印店复印收费y (元)与复印面数x 面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费 _____元.18. 在正方形ABCD 中,4AB =,点P 为对角线BD 上一点,且PD =当点E 在边BC 上,AP PE =时,CE 的长为_____. 三.解答题(共9小题,满分66分)19. 计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭20. 求下列各式中x 的值:(1) 2490x -=;(2)()381270x -+=.21. 已知某正数的两个平方根分别是314a -和2a +,15b -的立方根为3-.(1)求a b +的值.(2)求5313a b -+的立方根.22. 如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.23. 如图,一架云梯AB 长25m ,斜靠在一面墙上,梯子靠墙的一端A 距地面24m .(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑的距离AD =4m ,求梯子的底部B 在水平方向滑动的距离BE 的长.24. 已知y +6与x +1成正比例,当x =3时,y =2.(1)求出y 与x 的函数关系式;(2)设点(m ,−2)在这个函数的图象上,求m 的值.(3)试判断点(1,−3)是否在此函数图像上,说明理由.25. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC 的三个顶点的坐标分别为()()()2,51,14,3A B C ,,.(1)画出ABC 关于y 对称的111A B C △;(2)求111A B C △的面积;(3)在x 轴上画出点P ,使得PB PC +最小,并求出此时P 点坐标.26. 某药店出售普通口罩和N95口罩.如表为两次销售记录:(1)求普通口罩和N95口罩的销售单价分别是多少?(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W 元;①求W关于x的函数关系式,并求出自变量x的取值范围;②该药店应如何进货才能使销售总利润最大?并求出最大利润.27. 如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P 是直线AB上方第一象限内的动点.(1)求直线AB的表达式和点A的坐标;(2)点P是直线x=2上一动点,当△ABP的面积与△ABO的面积相等时,求点P的坐标;(3)当△ABP为等腰直角三角形时,请直接写出点P的坐标.答案与解析一.选择题(共9小题,满分27分)1. 用数学的眼光观察下面的网络图案,其中可以抽象成中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心【详解】解:A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不合题意;C 、不是中心对称图形,故本选项不合题意;D 、不是中心对称图形,故本选项不合题意.故选:A .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2. 下列说法正确的是( )A. 1的平方根是1B. ﹣1平方根是﹣1C. 0的平方根是0D. 0.01是0.1的一个平方根【答案】C【解析】【分析】一个数的平方等于a,那么这个数叫做a 的平方根.即如果x 2=a ,那么 x 叫做a 的平方根.根据平方根的定义依次进行判断即可.【详解】解:A. 1的平方根是±1,故该选项错误,B. 负数没有平方根,故该选项错误,C. 0的平方根是0,故该选项正确,D. 0.1是0.01的一个平方根,故该选项错误,故选C.【点睛】本题考查了平方根的定义,熟练掌握相关定义是解题关键.3. 若点Р在一次函数4y x =+的图像上,则点Р一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】由k=1>0,b=4>0,利用一次函数图象与系数的关系可得出一次函数y=x+4的图象经过第一、二、三象限,结合点P 在一次函数y=x+4的图象上,即可得出结论.【详解】解:∵k=1>0,b=4>0,∴一次函数y=x+4的图象经过第一、二、三象限.又∵点P 在一次函数y=x+4的图象上,∴点P 一定不在第四象限.故选:D .【点睛】本题考查了一次函数图象与系数的关系,牢记“k >0,b >0⇔y=kx+b 的图象在一、二、三象限”是解题的关键.4. 已知ABC 的三边分别为a ,b ,c ,下列条件不能判断ABC 是直角三角形的是( )A. 222a b c =-B. 6a =,8b =,10c =C. A B C =+∠∠∠D. ::3:4:5A B C ∠∠∠=【答案】D【解析】【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A 、∵a 2=b 2−c 2,∴a 2+c 2=b 2,∴此三角形是直角三角形,故本选项不符合题意;B 、∵62+82=102,∴此三角形是直角三角形,故本选项不符合题意;C 、∵∠A +∠B +∠C =180°,∠A =∠B +∠C ,∴∠A =90°,∴此三角形是直角三角形,故本选项不符合题意;D 、设∠A =3x ,则∠B =4x ,∠C =5x ,∵∠A +∠B +∠C =180°,∴3x +4x +5x =180°,解得x =15°,∴∠C =5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;故选:D .【点睛】本题考查的是勾股定理的逆定理及三角形内角和定理,熟知以上知识是解答此题的关键. 5. 如图,在ABC 中,20,AB AC cm DE ==垂直平分AB ,垂足为E ,交AC 于D ,若15BC cm =,则DBC △的周长为( )A. 25cmB. 35cmC. 30cmD. 27.5cm【答案】B【解析】【分析】因为DE垂直平分线段AB,根据线段垂直平分线的性质得到AD=BD,由此得到△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,又因为AB=AC=20cm,BC=15cm,由此即可求出△DBC的周长.【详解】解:DE垂直平分AB,∴AD=BD,∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC又AB=AC=20cm,BC=15cm,△BCD的周长=20+15=35(cm).故△BCD的周长为35cm.故选B.【点睛】此题主要考查了等腰三角形的性质和线段的垂直平分线的性质等几何知识,线段的垂直平分线上的点到线段的两个端点的距离相等.6. 如图,已知∠CAE=∠BAD,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B =∠E.其中能使△ABC≌△AED的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】先由∠CAE=∠BAD得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.【详解】解:①由∠CAE=∠BAD,得∠CAB=∠DAE,增加AB=AE,那么AB=AE,∠CAB=∠DAE,AC=AD,根据“SAS”推出△ABC≌△AED,故①符合题意;②由∠CAE =∠BAD ,得∠CAB =∠DAE ,添加BC =ED ,△ABC 与△AED 不一定全等,故②不符合题意;③由∠CAE =∠BAD ,得∠CAB =∠DAE ,增加∠C =∠D ,那么∠C =∠D ,∠CAB =∠DAE ,AC =AD ,根据“ASA ”推出△ABC ≌△AED ,故③符合题意;④由∠CAE =∠BAD ,得∠CAB =∠DAE ,增加∠B =∠E ,那么∠B =∠E ,∠CAB =∠DAE ,AC =AD ,根据“AAS ”推出△ABC ≌△AED ,故④符合题意;综上分析可知:符合题意的有①③④,共3个,故C 正确.故选:C .【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.7. 将两个含有30°角的直角三角形和一个等腰直角三角形按如图所示的方式放置.若37α∠=︒,则∠β的度数为( )A. 37°B. 45°C. 53°D. 60°【答案】C【解析】 【详解】如图,作//EF AB∴1β∠=∠30ABD BDC ∠=∠=︒//AB CD ∴//EF CD ∴2α∴∠=∠1290∠+∠=︒1290αβ∴∠+∠=∠+∠=︒37α∠=︒53β∴∠=︒故选C【点睛】本题考查了平行线的性质与判定,三角尺中角度问题,掌握平行线的性质与判定是解题的关键. 8. 如图,已知直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.根据图象有下列四个结论:①a >0;②b <0;③方程ax +2=mx +b 的解是x =﹣2;④不等式ax ﹣b >mx ﹣2的解集是x >﹣2.其中正确的结论个数是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】根据图象得:直线y =ax +2的图像自左向右逐渐上升,直线y =mx +b 交y 轴于负半轴,从而得到a >0,b <0,故①②正确;再由直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.可得方程ax +2=mx +b 的解是x =﹣2,故③正确;然后观察图象可得当x >﹣2时,直线y =ax +2的图象位于直线y =mx +b 的图象得上方,可得不等式ax +2>mx +b 的解集为x >﹣2,故④正确,即可求解.【详解】解:根据图象得:直线y =ax +2的图像自左向右逐渐上升,直线y =mx +b 交y 轴于负半轴, ∴a >0,b <0,故①②正确;∵直线y =ax +2与直线y =mx +b 的交点的横坐标是﹣2.∴当x =﹣2时,ax +2=mx +b ,∴方程ax +2=mx +b 的解是x =﹣2,故③正确;∵ax ﹣b >mx ﹣2,∴ax +2>mx +b ,∵当x >﹣2时,直线y =ax +2的图象位于直线y =mx +b 的图象得上方,∴不等式ax +2>mx +b 的解集为x >﹣2,即不等式ax ﹣b >mx ﹣2的解集是x >﹣2.故④正确∴正确的结论为①②③④,共有4个.故选:D【点睛】本题主要考查了一次函数的交点问题,熟练掌握一次函数的图象和性质是解题的关键. 9. 如图,在平面直角坐标系中,设一质点M 自P 0(1,0)处向上运动1个单位P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…,如此继续运动下去,则P 2022的坐标为( )A. ()1011,1011B. ()505,504-C. ()504,505-D. ()1011,1011-【答案】D【解析】 【分析】根据第一象限中点的特征,探究规律,利用规律解决问题.【详解】解:由题意,第一象限的点P 1(1,1),P 5(3,3),P 9(5,5),…,P 2021(1011,1011), P 2022的纵坐标与P 2021的纵坐标相同,∴P 2022(-1011,1011),故选:D .【点睛】本题考查坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法.二.填空题(共9小题,满分27分)10. 在平面直角坐标系中,若点()3,3P m m +-在y 轴上,则m 的值是____________.【答案】-3【解析】【分析】根据y 轴上的点的特点为,横坐标=0求解即可.【详解】解:∵点()3,3P m m +-在y 轴上,∴30m +=3m ∴=-故答案为:3-【点睛】本题考查了y 轴上的点的特点,掌握y 轴上的点的特点是解题的关键.11. 11+-=_________.【解析】 【分析】根据数的符号去掉绝对值,然后计算即可.【详解】解:∵1<,∴10<,∴111111+=+=故答案为【点睛】此题主要考查了二次根式的计算,正确判断数的符号,去绝对值是解题的关键.12. 在平面直角坐标系中,点A 坐标为()4,3,点B 在x 轴上,若AOB 是直角三角形,则OB 的长为______.【答案】4或254 【解析】【分析】点B 在x 轴上,所以90AOB ∠≠︒ ,分别讨论,90∠=︒ABO 和90OAB ∠=︒两种情况,设(),0B x ,根据勾股定理求出x 的值,即可得到OB 的长.【详解】解:∵B 在x 轴上,∴设(),0B x ,∵()4,3A ,∴5OA == ,①当90∠=︒ABO 时,B 点横坐标与A 点横坐标相同,∴4x = ,∴()14,0B ,∴4OB = ,②当90OAB ∠=︒时,222OA AB OB += ,∵点A 坐标为()4,3,(),0B x ,∴()222243825AB x x x =-+=-+ ,∴2225825x x x +-+= , 解得:254x = , ∴225,04B ⎛⎫ ⎪⎝⎭, ∴254OB = , 故答案为:4或254. 【点睛】本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.13. 电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,则“5排16号”记作______.【答案】()5,16【解析】【分析】根据题中规定的意义写出一对有序实数对.【详解】解:∵电影票上“10排3号”,记作()10,3,“8排23号”,记作()8,23,∴“5排16号”记作(5,16).故答案为(5,16).【点睛】本题考查了坐标确定位置:平面直角坐标系中,有序实数对与点一一对应;记住平面直角坐标系中特殊位置的点的坐标特征.14. 如图,△ABC 中,AC =BC ,点D ,E ,F 分别在边AC ,AB ,BC 上,且满足AD =BE ,AE =BF ,∠DEF =40°,则∠C 的度数是 ___.【答案】100°【解析】【分析】先证明ADE BEF ≌,可得∠AED =∠BFE ,从而得∠BFE +∠BEF =140°,进而即可求解.【详解】解:∵△ABC 中,AC =BC ,∴∠A =∠B ,∵AD =BE ,AE =BF ,∴ADE BEF ≌,∴∠AED =∠BFE ,∵∠DEF =40°,∴∠AED +∠BEF =180°-40°=140°,∴∠BFE +∠BEF =140°,∴∠B =∠A =40°,∴∠C =180°-40°-40°=100°.故答案是:100°.【点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理以及等腰三角形的性质,证明ADE BEF ≌是解题的关键.15. 在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0,k ,b 均为常数)与正比例函数y =﹣13x 的图象如图所示,则关于x 的不等式kx +b >﹣13x 的解集为______.【答案】x <3【解析】【分析】把y =﹣1代入y =﹣13x ,得出x =3,进而利用图象可以知道,当x =3时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式kx +b >﹣13x 的解集. 【详解】解:把y =﹣1代入y =﹣13x , 解得:x =3, 由图象可以知道,当x =3时,两个函数的函数值是相等的,所以不等式kx +b >﹣13x 的解集为:x <3, 故答案为:x <3.【点睛】此题主要考查了一次函数与一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变. 16. ABC 中,13AB AC ==,10BC =,点P 为AB 上一个动点,则CP 的最小值为 _____. 【答案】12013##3913 【解析】【分析】作AF BC ⊥于F ,根据等腰三角形三线合一的性质得出152BF CF BC ===,然后根据勾股定理求得12AF =,再根据垂线段最短和三角形面积公式即可求解.【详解】解:根据垂线段最短,当CP AB ⊥时,CP 取得最小值,作AF BC ⊥于F ,∵AB AC =, ∴152BF CF BC ===,∴12AF ==. ∴1113101222CP ⨯⨯=⨯⨯, 解得12013CP =. 故答案为:12013. 【点睛】本题主要考查了等腰三角形的性质,三角形的面积,关键是理解“等腰三角形三线合一的性质”.17. 某复印店复印收费y (元)与复印面数x 面的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费 _____元.【答案】0.4##25【解析】 【分析】利用超过100面的部分的费用除以超出的页数,即可求解.【详解】解:根据题意得:复印超过100面的部分,每面收费为70500.4150100-=-元.故答案为:0.4【点睛】本题主要考查了函数的图象,解题的关键是仔细观察图象,并从图象中整理出进一步解题的有关信息.18. 在正方形ABCD 中,4AB =,点P 为对角线BD 上一点,且PD =当点E 在边BC 上,AP PE =时,CE 的长为_____.【答案】0或2【解析】【分析】作PM BC ⊥于M ,证明BMP 是等腰直角三角形,求得1CM BC BM =-=,证明()SAS ABP CBP ≌,推出AP CP =,据此即可求解.【详解】解:作PM BC ⊥于M ,如图所示:∵四边形ABCD 是正方形,∴4BC DC AB ===,90BCD ABC ∠=∠=︒,45ABD CBD ∠=∠=︒,∴BD ==∵PD =∴BP BD PD =-=∵PM BC ⊥,∴BMP 是等腰直角三角形,∴32BM PM BP ===, ∴1CM BC BM =-=,在△ABP 和△CBP 中,AB CB ABP CBP BP BP =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABP CBP ≌,∴AP CP =,∵AP PE =,∴PE CP =,∵PM BC ⊥,∴1EM CM ==,∴22CE CM ==;当点E 与C 重合时,0CE =;综上所述,CE 的长为0或2;故答案为:0或2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.三.解答题(共9小题,满分66分)19. 计算:(1)|2|--(2))1011|2|5-⎛⎫-++ ⎪⎝⎭【答案】(1)2+(2)2+【解析】【分析】(1)直接利用绝对值的性质、二次根式的性质分别化简,进而得出答案;(2)直接利用零指数幂的性质以及绝对值的性质、负整数指数幂的性质、立方根的性质分别化简,进而计算得出答案.【小问1详解】解:|2|-2=+2=【小问2详解】解:)1011|2|5-⎛⎫-++ ⎪⎝⎭1252=-+-2=【点睛】此题主要考查了实数的运算,正确化简各数是解题关键.20. 求下列各式中x 的值:(1) 2490x -=;(2)()381270x -+=.【答案】(1)32x =±(2)12x =-【解析】 【分析】(1)利用求平方根解方程;(2)利用求立方根解方程.【小问1详解】解:2490x -=,249x =,294x =, 32x =±; 【小问2详解】解:()381270x +﹣= ()3﹣127x =-,()32718x =-﹣ 312x -=-, 12x =-. 【点睛】本题考查平方根与立方根,熟练掌握利用求平方根与立方根解方程是解题的关键.21. 已知某正数的两个平方根分别是314a -和2a +,15b -的立方根为3-.(1)求a b +的值.(2)求5313a b -+的立方根.【答案】(1)9-(2)4【解析】【分析】(1)根据平方根和立方根的定义求出a ,b 的值即可得出答案;(2)求出代数式的值,再求它的立方根即可.【小问1详解】解:∵某正数的两个平方根分别是314a -和2a +,∴31420a a -++=,∴3a =,∵15b -的立方根为3-,∴()315327b -=-=-,∴12b =-,∴3129a b +=-=-;【小问2详解】当312a b ==-,时, 5313a b -+5331213=⨯+⨯+153613=++64=,∴5313a b -+的立方根为4.【点睛】本题考查了平方根和立方根,掌握一个正数的平方根有2个,它们互为相反数是解题的关键. 22. 如图,AB =AC ,AD =AE ,∠BAC =∠DAE .(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.【答案】(1)见解析;(2)∠3=55°.【解析】【分析】(1)先由∠BAC=∠DAE ,就可以得出∠1=∠EAC ,就可以得出△ABD ≌△ACE ;(2)由(1)得出∠ABD=∠2,就可以由三角形的外角与内角的关系求出结论.【详解】(1)证明:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠1=∠EAC ,在△ABD 和△ACE 中,1=AB AC EAC AD AE =⎧⎪∠∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)解:∵△ABD ≌△ACE ,∴∠ABD =∠2=30°,∵∠1=25°,∴∠3=∠1+∠ABD =25°+30°=55°.【点睛】此题考查全等三角形的判定与性质,三角形的外角和与内角和,解题关键在于掌握判定定理. 23. 如图,一架云梯AB 长25m ,斜靠在一面墙上,梯子靠墙的一端A 距地面24m .(1)这个梯子底端B 离墙有多少米?(2)如果梯子的顶端下滑的距离AD =4m ,求梯子的底部B 在水平方向滑动的距离BE 的长.【答案】(1)7米;(2)8m【解析】【分析】(1)由题意得25AB DE ==米,24AC =米,根据勾股定理AC 2+BC 2=AB 2,可求出梯子底端离墙有多远.(2)由题意得此时CD =20米,DE =25米,由勾股定理可得出此时的CE ,继而可求BE .【详解】(1)由题意知25AB DE ==米,24AC =米,4=AD 米,在直角△ABC 中,∠C =90°∴222BC AC AB +=∴7BC =米,∴这个梯子底端离墙有7米(2)∵4=AD 米,∴24420CD AC AD =-=-=(米),在直角△CDE 中,∠C =90°∴222BD CE DE +=∴15CE =(米),15BE =米7-米8=米.答:梯子的底部在水平方向滑动了8m .【点睛】本题考查勾股定理的应用,有一定难度,注意两问线段的变化.24. 已知y +6与x +1成正比例,当x =3时,y =2.(1)求出y 与x 的函数关系式;(2)设点(m ,−2)在这个函数的图象上,求m 的值.(3)试判断点(1,−3)是否在此函数图像上,说明理由.【答案】(1)y =2x -4;(2)m =1;(3)不在,理由见解析【解析】【分析】(1)可设y +6=k (x +1),将x 、y 值代入求出k 值即可求解;(2)将点(m ,﹣2)代入(1)中函数关系式中求解即可;(3)根据一次函数图象上定的坐标特征进行判断即可.【详解】解:(1)根据题意,可设y +6=k (x +1),∵当x =3时,y =2,∴()2631k +=+解得:k =2,∴y +6=2(x +1),即y =2x -4;,∴y 与x 的函数关系式为y =2x -4;(2)将点(m ,﹣2)代入y =2x -4得:224m -=-,解得:1m =;(3)当x =1时,2423y =-=-≠-,则点(1,−3)不在此函数的图象上.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上的点的坐标特征、解一元一次方程,熟练掌握相关知识的运用是解答的关键.25. 如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC 的三个顶点的坐标分别为()()()2,51,14,3A B C ,,.(1)画出ABC 关于y 对称的111A B C △;(2)求111A B C △的面积;(3)在x 轴上画出点P ,使得PB PC +最小,并求出此时P 点坐标.【答案】(1)见解析 (2)5(3)点P 见解析,7,04P ⎛⎫⎪⎝⎭【解析】 【分析】(1)根据()()()2,51,14,3A B C ,,找到其关于y 轴对称的对称点的坐标()()()1112,51,14,3A B C ---,,,一次连接即可;(2)采用割补法即可求解;(3)作B 点关于x 轴的对称点2B ,连接2B C 交x 轴于点P ,再求出直线2B C 的解析式为4733=-y x ,即可作答.【小问1详解】如图,111A B C △即为所求.【小问2详解】111A B C △的面积为:111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=;【小问3详解】作B 点关于x 轴的对称点2B ,连接2B C 交x 轴于点P ,如图,点P 即为所求.证明:根对称性可知:2B P BP =,即:2BP CP B P CP +=+,即当2B 、P 、C 三点共线时22B P CP B C +=,即点P 即为所求.∵()1,1B ,∴()21,1B -,∵()21,1B -,()4,3C ,设直线2B C 的解析式为:y kx b =+,即有:143k b k b +=-⎧⎨+=⎩, 解得:4373k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线2B C 的解析式为4733=-y x , 令0y =,得到47033x =-,解得:74x =, ∴7,04P ⎛⎫ ⎪⎝⎭.【点睛】此题考查了轴对称图形的性质和作图,三角形面积的求法,解题的关键是熟练掌握轴对称图形的性质和作图,三角形面积的求法.26. 某药店出售普通口罩和N95口罩.如表为两次销售记录:(2)该药店计划再次购进1000个口罩,根据市场实际需求,普通口罩的数量不低于N95口罩数量的4倍.已知普通口罩的进价为1元/个,N95口罩的进价为6元/个.设购买普通口罩x个,获得的利润为W元;①求W关于x的函数关系式,并求出自变量x的取值范围;②该药店应如何进货才能使销售总利润最大?并求出最大利润.【答案】(1)普通口罩和N95口罩的售价分别是2元/个,10元/个;(2)①W=-3x+4000,(x≥800);②购进普通口罩800个,N95口罩200个,最大利润是1600元.【解析】【分析】(1)根据题意和表格中的数据,可以列出二元一次方程组,从而可以求得普通口罩和N95口罩的销售单价;(2)①根据题意,可以得到利润与购进普通口罩数量的函数关系式,再根据普通口罩的数量不低于N95口罩数量的4倍,可以求得普通口罩数量的取值范围;②根据一次函数的性质,即可求出最大利润.【详解】解:(1)设普通口罩的销售单价为a元/个,N95口罩的销售单价为b元/个,则5004005000 6003004200a ba b+=⎧⎨+=⎩,解得,210 ab=⎧⎨=⎩,即普通口罩和N95口罩的销售单价分别是2元/个,10元/个;(2)①由题意可知,W=(2-1)x+(10-6)×(1000-x)=-3x+4000,∴W=-3x+4000,∵普通口罩的数量不低于N95口罩数量的4倍,∴x≥4×(1000-x),解得,x≥800,∴W=-3x+4000,(x≥800);②在W=-3x+4000,(x≥800)中,∵-3<0,∴W随x的增大而减小,∴当x=800时,W 取得最大值,此时W=-3×800+4000=1600,1000-x=200,因此为使该药店售完这1000个口罩后的总利润最大,该药店购进普通口罩800个,N95口罩200个,最大利润是1600元.【点睛】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.27. 如图,在平面直角坐标系中,直线AB :y =kx +1(k ≠0)交y 轴于点A ,交x 轴于点B (3,0),点P 是直线AB 上方第一象限内的动点.(1)求直线AB 的表达式和点A 的坐标;(2)点P 是直线x =2上一动点,当△ABP 的面积与△ABO 的面积相等时,求点P 的坐标;(3)当△ABP 为等腰直角三角形时,请直接写出点P 的坐标.【答案】(1)y =13-x +1,点A (0,1) (2)点P 的坐标是(2,43) (3)点P 的坐标是(4,3)或(1,4)或(2,2)【解析】【分析】(1)把B 的坐标代入直线AB 的解析式,即可求得k 的值,然后在解析式中,令0x =,求得y 的值,即可求得A 的坐标;(2)过点A 作AM PD ⊥,垂足为M ,求得AM 的长,即可求得BPD ∆和PAD ∆的面积,二者的和即可表示PAB S ∆,在根据ABP ∆的面积与ABO ∆的面积相等列方程即可得答案;(3)分三种情况:当P 为直角顶点时,过P 作PN y ⊥轴于N ,过B 作BM PN ⊥于M ,由()APN PBM AAS ∆≅∆,可得1AN PN +=①,3PN AN +=②,即得(2,2)P ;当A 为直角顶点时,过P 作PK y ⊥轴于K ,由APK BAO ∆≅∆,可得(1,4)P ,当B 为直角顶点时,过P 作PR x ⊥轴于R ,同理可得(4,3)P .【小问1详解】 解:直线:1(0)AB y kx k =+≠交y 轴于点A ,交x 轴于点(3,0)B ,13k ∴=-, ∴直线AB 的解析式是113y x =-+. 当0x =时,1y =,∴点(0,1)A ;【小问2详解】解:如图1,过点A 作AM PD ⊥,垂足为M ,则有2AM =,设(2,)P n ,2x =时,11133y x =-+=,1(2,)3D ∴, P 在点D 的上方,13PD n ∴=-, 11112()2233APD S AM PD n n ∆∴=⋅=⨯⨯-=-, 由点(3,0)B ,可知点B 到直线2x =的距离为1,即BDP ∆的边PD 上的高长为1,11111()()2323BPD S n n ∆∴=⨯⨯-=-, 3122PAB APD BPD S S S n ∆∆∆∴=+=-; ABP ∆的面积与ABO ∆的面积相等, ∴31113222n -=⨯⨯, 解得43n =,4(2,)3P ∴; 【小问3详解】解:当P 为直角顶点时,过P 作PN y ⊥轴于N ,过B 作BM PN ⊥于M ,如图2:ABP ∆为等腰直角三角形,AP BP ∴=,90NPA BPM PBM ∠=︒-∠=∠,90ANP BMP ∠=∠=︒,()APN PBM AAS ∴∆≅∆,BM PN ∴=,PM AN =,90NOB ONM OBM ∠=∠=∠=︒,∴四边形OBMN 是矩形,3MN OB ∴==,1BM ON AN PN ==+=①,3PN PM PN AN ∴+=+=②,由①②解得2PN =,1AN =,2ON OA AN ∴===,(2,2)P ∴;当A 为直角顶点时,过P 作PK y ⊥轴于K ,如图3:ABP ∆为等腰直角三角形,AP AB ∴=,90KAP OAB ABO ∠=︒-∠=∠,而90PKA AOB ∠=∠=︒,()APK BAO AAS ∴∆≅∆,3AK OB ∴==,1PK OA ==,4OK OA AK ∴=+=,(1,4)P ∴,当B 为直角顶点时,过P 作PR x ⊥轴于R ,如图4:同理可证()AOB BRP AAS ∆≅∆,1BR OA ∴==,3PR OB ==,(4,3)P ∴,综上所述,P 坐标为:(2,2)或(1,4)或(4,3).【点睛】本题考查一次函数综合应用,解题的关键是作辅助线,构造全等三角形,利用全等三角形对应边相等解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
部分学校八年级12月联考数学试题
第Ⅰ卷(选择题共30分)
一.选择题(共10小题,每小题3分,共30分)
1、下列图形是轴对称图形的有()
A、2个
B、3个
C、4个
D、5个
2、下列运算结果正确的是()
A、12
4
3a
a
a=
⋅B、4
2
2a
a
a=
+C、6
3
2)
(a
a-
=
-D、3
33
)
3(a
a=
3、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则
P2的坐标为()
A、(1,-2)
B、(-1,2)
C、(-1,-2)
D、(-2,-1)
4、下列条件中,能判定△ABC≌△DEF的是()
A、AB=DE,BC=EF,∠A=∠D
B、∠A=∠D,∠C=∠F,AC=EF
C、∠B=∠E,∠A=∠D,AC=EF
D、∠B=∠E,∠A=∠D,AB=DE
5. 下列多项式中,不能进行因式分解的是()
A. –a2+b2
B. –a2-b2
C. a3-3a2+2a
D. a2-2ab+b2-1
6如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列
说法错误的是()
A.△EBD是等腰三角形,EB=ED
B.折叠后∠ABE和∠CBD一定相等
C.折叠后得到的图形是轴对称图形
D.△EBA和△EDC一定是全等三角形
7、一个多边形的内角和是外角和的2倍,则这个多边形的边数为()
A、4
B、5
C、6
D、7
8、如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,
交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF
的大小关系().
(A)EF>BE+CF (B)EF=BE+CF
(C)EF<BE+CF (D)不能确定
9、如图所示的正方形网格中,网格线的交点称为格点。
已知A、B是两格点,
如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()
E
A
B
D
A .6
B .7
C .8
D .9
10.如图2,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,•则四个结论正确的是( ).
①点P 在∠A 的平分线上; ②AS=AR; ③QP ∥AR; ④△BRP ≌△QSP.
A .仅①②③正确;
B .仅①和②正确
C 全部正确;
D .仅①和③正确
第Ⅱ卷 (非选择题 共90分)
二.填空题(共6小题,每小题3分,共18分) 11. 已知a m ·a 3=a 10,则m =。
12. Rt △ABC 中,∠C=90°,∠B=2∠A ,BC=3cm ,AB=_________cm . 13 若1242+-kx x 是完全平方式,则k=__________。
14计算:20132012)2
1()2(⨯-等于
15、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=
16、边长分别为a 和a 2的两个正方形按如图(I)的样式摆放,则图中阴影部分的面积为
三、解答题
17、计算(8分)
(1))83()2(432a a a a a +- (2))52(3)1(2)1(--++-x x x x x x 18.分解因式:( 8分)
1 、234352x x x --
2 、22414y xy x +-- 19.(8分)已知1,5==+xy y x ,求 ①22y x +;②2)(y x -.
第15题
B
C
A
图7
F
E
D C
B A
x
y
C B A O x
y
E D A O P 图2
图1
20(8分) 如图7,已知在ABC △中,AB AC =,D 为BC 边的中点, 过点D 作DE AB DF AC ⊥,⊥,垂足分别为E F ,. (1)求证:DE=DF
(2)若60A ∠=°,BE =1,求ABC △的周长.
21(8分)已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形 △A 1B 1C 1 和△A 2B 2C 2 ; (2)求△ABC 的面积.
(3) 在x 轴上画出点P ,使△PAB 的周长最小.
22.(10分)如图1,OA=2,OB=4,以A 为顶点,AB 为腰在第三象限作等腰Rt △ABC. 求:(1)C 点的坐标
(2)如图2,P 为y 轴负半轴上的一个动点,当P 点向y 轴负半轴向下运动时,若以P 为直角顶点,PA 为腰作等腰Rt △APD,过D 作DE ⊥X 轴于E 点,求OP-DE 的值。
23、(本题10分)如图,点O 是等边△ABC 内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD . (1)求证:△COD 是等边三角形;
(2)当α=150°时,试判断△AOD 的形状,并说明理由; (3)探究:当α为多少度时,△AOD 是等腰三角形?
24(12分)如图1,△ACB 为等腰三角形,∠ABC=90度,点P 在线段BC 上(不与B,C 重合),以AP 为腰长作等腰直角△PAQ ,QE ⊥AB 于E. (1) 求证:△PAB ≌△AQE;
(2) 连接CQ 交AB 于M ,若PC=2PB,求BE/AE 的值; (3) 如图2,过Q 作QF ⊥AQ 交AB 的延长线于点F ,过P 点作DP ⊥AP 交AC 于D ,连接DF,当点P 在线段BC 上运动时(不与B,C 重合),式( Q F-PD)/DF 子的值会变化吗?若不变,求出该值:若变化,请说明理由。
参考答案
一、选择题
C C B
D B B C B C C 二、填空题
11、7 12、6 13、±2 14、 15、135。
16、2a 2 平方单位 三、解答题
17、(1)-3a 2 (2)-3x 2+16x
18、(1)x 2(x-7)(x+5) (2)(x-2y+1)(x-2y-1)
图Q 图
19、(1)23 (2)21
20、(1)略(2)CΔABC=12
21、(1)略(2)SΔABC=5 (3)略
22、(1)C(6,-2)(2)0P-DE=2
23、(1)CO=CD 又∠OCD=60。
∴ΔCOD为等边三角形
(2)ΔAOD为直角三角形
(3)当AO=AD时 a=125。
当OD=AD时a=140。
当OA=OD时a=110。
∴a为125。
或140。
或110。
24、(1)略
(2)由(1)可知BP=AE 再证ME=MB CP=BE ∴=2
(3)在QF上截取QH使QH=DP连AH
证ΔAQH≌ΔAPD ∴AH=AD ∠QAH=∠PAD
再证ΔAHF≌ΔADF ∴DF=HF
∴===1。