第三章多相流及其测量方法资料重点
多相流实验技术的使用方法
多相流实验技术的使用方法多相流实验技术是研究物质在多相条件下流动特性的重要手段之一。
在石油、化工、环境工程等领域广泛应用。
今天,我们将来探讨一下多相流实验技术的使用方法。
首先,多相流实验之前需要做好准备工作。
准备工作包括仪器设备的选择、实验样品的制备以及实验环境的控制等。
在仪器设备的选择方面,根据实验需求选择合适的设备,如流速计、压力传感器以及相态变化探测仪等。
对于实验样品的制备,需要注意样品的配比、混合方式以及液相、气相的性质等。
此外,为了保证实验结果的准确性,还需要对实验环境进行严格控制,如温度、湿度和压力等。
其次,多相流实验中常用的技术包括流型观测和流动参数测量。
流型观测可以通过高速摄影技术来实现,利用高速相机记录下不同流型下物质的运动轨迹和相互作用情况。
这种观测方法可以直观地展现多相流的流动特性,如气泡运动、液滴形变等。
而流动参数的测量可以通过选择合适的传感器和测量装置来实现,如流速计、压力传感器和浊度计等。
这些传感器可以帮助我们获取多相流的流速、压力、浓度等关键参数,进而分析多相流的流动规律。
另外,多相流实验技术的使用方法还包括模型的选择和实验设计。
在进行多相流实验时,我们可以选择合适的流动模型进行研究。
流动模型的选择应根据实际需求和研究领域来确定,如泡状流、液滴流、雾化流等。
不同的流动模型有不同的特点和研究对象,选择合适的模型可以更好地反映实际情况。
而实验设计是多相流实验中的另一个重要环节。
在设计实验时,我们需要考虑实验参数的选择、实验过程的控制以及数据的采集等。
合理的实验设计可以提高实验的可靠性和可重复性,确保实验结果的准确性。
此外,多相流实验技术的使用方法还需要注意实验过程的安全性和实验结果的分析。
在进行多相流实验时,我们需要遵守实验操作规程,佩戴个人防护用具,并确保实验环境的安全和稳定。
对于实验结果的分析,我们需要采用合适的数据处理方法,如平均值求取、回归分析和相关性分析等。
这些分析方法可以帮助我们从海量的实验数据中提取有用的信息和规律,为进一步的研究提供支持。
第三章 多相流流型及判别方法
体积与质量含气率:
x
多相混输技术的研究及其应用 2015-7-3 5
第三章 多相流流型及判别方法
对于截面含气率有:
1 1 1 w 1 Al wl g 1 s 1 A w w g g l
一、两相混合物密度 气液两相混合物密度有两种表示方法: (一)流动密度
(二)体积流量 单位时间内流过管路横截面的流体体积称为体积流量。对于气液两相混 输管路有:
Q Qg Ql
二、流速 (一)气相和液相速度 气相速度: 液相速度:
wg
Qg Ag
wl
Ql Al
(二)气相和液相的折算速度 气相折算速度:
多相混输技术的研究及其应用 2015-7-3 2
第三章 多相流流型及判别方法
y -0.6746608 x 4.2203391
x -1.028449 y 6.319154 y -0.2228661 x 3.361187
3)流型判别程序流程图
多相混输技术的研究及其应用 2015-7-3 24
第三章 多相流流型及判别方法
开始 输入已知数据 计算Bx,By,x,y P(x,y)在L1之下 吗? 否 P(x,y)在C4及L3 之右吗? 否 P(x,y)在L2之下 吗? 否 P(x,y)在C2之下 吗? 否 P(x,y)在C3之下 吗? 否 雾状流 按流型计算相关参数 输出流型 结束 是 环状流 是 冲击流 是 气团流 是 气泡流 是 波状流 否 P(x,y)在C1之下 吗? 是
散布流 不对称散 布流 移动床流
固定床流
图3-12 水平管液固两相流流型示意图
多相混输技术的研究及其应用 2015-7-3 18
多相流理论与计算第三章
1
i 1 R0 i 2
1
多相管流理论与计算
(4) 天然气析出和膨胀问题 当压力低于饱和压力时,有天然气析出。 析出气体需要热量,已析出气体不断膨胀, 又会吸收一部分热量,这两部分热量的计 算比较复杂。 T h 焦耳-汤普逊系数: p h
多相管流理论与计算
2 公式中各项参数取值
(1) 井底油温 t1s (2) 地温梯度
一般认为 =0.03℃/m (3) 距井底高度 h
取某一点至油层中部的距离
KDh GC GC 1 e t t1s h KD
井底油温也就是油层温度
多相管流理论与计算
(3) 总传热系数
井筒外部不同位置的岩层性质 亦不同,井筒内的流体流型又 有变化,所以严格地说,总传 热系数值应该是一个变量,认
为其变化与平均值之间的差值 不大,取实测平均值即可 [ 实测 在 21 ~ 25kJ / (m2· h· ℃) 左右 ] 。 因此,计算时可按常数考虑。
K—kJ/(m2.h. ℃) K—kcal/(m2.h. ℃)
油损失热量为
dq GCdt
C为原油 比热
C=2.1kJ/kg.℃ C=0.5kcal/kg.℃
根据热量守恒
K t ts Ddh GCdt
地层温度与深度的关系
ts t1s h
多相管流理论与计算
联立上述公式可得
K lh GC GC t t1s h 1 e K l
Kl—kcal/(m.h. ℃)
G — kg/h Kl —kcal/(m.h. ℃)
Kl
1 G 1.1573 5.4246exp( ) 1000
两相流、多相流上课讲义
两相流的概念及类型两相物质(至少一相为流体)所组成的流动系统。
若流动系统中物质的相态多于两个,则称为多相流,两相或多相流是化工生产中为完成相际传质和反应过程所涉及的最普遍的粘性流体流动。
通常根据构成系统的相态分为气液系、液液系、液固系、气固系等。
气相和液相可以以连续相形式出现,如气体-液膜系统;也可以以离散的形式出现,如气泡-液体系统,液滴-液体系统。
固相通常以颗粒或团块的形式处于两相流中。
两相流的流动形态有多种。
除了同单相流动那样区分为层流和湍流外,还可以依据两相相对含量(常称为相比)、相界面的分布特性、运动速度、流场几何条件(管内、多孔板上、沿壁面等)划分流动形态。
对于管内气液系统,随两相速度的变化,可产生气泡流、塞状流、层状流、波状流、冲击流、环状流、雾状流等形态;对于多孔板上气液系可以产生自由分散的气泡、蜂窝状泡沫、活动泡沫、喷雾等形态。
两相流研究的一个基本课题是判断流动形态及其相互转变。
流动形态不同,则热量传递和质量传递的机理和影响因素也不同。
例如多孔板上气液两相处于鼓泡状态时,正系统混合物(浓度增加时表面张力减低)的板效率(见级效率)高于负系统混合物(浓度增加时表面张力增加);而喷射状态下恰好相反。
两相流研究的另一个基本课题,是关于分散相在连续相中的运动规律及其对传递和反应过程的影响。
当分散相液滴或气泡时,有很多特点。
例如液滴和气泡在运动中会变形,在液滴或气泡内出现环流,界面上有波动,表面张力梯度会造成复杂的表面运动等。
这些都会影响传质通量,进而影响设备的性能。
两相流研究的课题,还有两相流系统的摩擦阻力,系统的振荡和稳定性等。
两相流研究模型两相流的理论分析比单相流困难得多,描述两相流的通用微分方程组至今尚未建立。
大量理论工作采用的是两类简化模型:①均相模型。
将两相介质看成是一种混合得非常均匀的混合物,假定处理单相流动的概念和方法仍然适用于两相流,但须对它的物理性质及传递性质作合理的假定;②分相模型。
第三章--多相流及其测量方法
解:取管道直径为流体系统的特征尺寸,则拟流体假设成立 的最小管道直径D为:
D=L/0.01=10-3/0.01=0.1m
第三章 多相流及其测量方法
9
3.2 常见的多相流的分类及特点
颗固粒相尺颗寸粒的尺统寸计、分形布状:及分布是颗粒 相按的粒重径要的物颗理粒特数性分参布数密度 颗按粒粒形径状的及颗尺粒寸质与量颗分粒布形密成度关系 颗颗密粒粒切相相:尺的结寸平晶呈均形正尺成态寸的分表颗布示粒方,式有:各种 结线晶性形平状均;粒粉径碎形成颗粒基本保 持表结面晶积形平状均;粒由径雾化产生的 1m体m积以表下面的积玻平璃均颗粒粒径及小液滴 由质于量表平面均张粒力径作用,基本呈球形; 当重力影响大时,悬浮液滴趋于 最小阻力形状。
(5)气液液、气液固和液液固多相流 。
第三章 多相流及其测量方法
4
3.2 常见的多相流的分类及特点
(1)气液两相流 气体和液体物质混合在一起共同流动称为气液两相流。它又分为 单组分工质(如水-水蒸气的汽液两相流):汽、液两相都具有相 同的化学成分,汽液两相流在流动时根据压力和温度的变化会发生 相变,即部分液体能汽化为蒸汽或部分蒸汽凝结成液体;
第三章 多相流及其测量方法
主要内容如下:
一、了解多相流的概念 二、熟悉工业中常见的两相及多相流的分类及特点 三、了解多相流的基本特性参数 四、熟悉水平管中两相流的主要流型 五、了解两相流的主要参数测量方法
第三章 多相流及其测量方法
1
3.1 多相流的概念
1、相的概念
物理学:自然界中物质的态,如固态、液态和气态; 热力学:物体中每一个均匀部分,可以有固相、液相和气相,统称单相物体;
(4) 液液两相流 两种互不相溶的液体混合在一起的流动称液液两相流。 (油5田)开气采液与液地、面气运液输固、和分液离液、固排多污相中流的油水两相流,化工过程中的乳 浊液流气动体、、物液质体提和纯固和体萃颗取粒过混程合中在大一量起的的液流液动混称合气物液流固动三均相是流液;液两 相流的气工体程与实两例种。不能均匀混合、互不相溶的液体混合物在一起的共同流
生产测井原理-第三章
222 第三章 流体密度及持水率测量流体密度及持水率测量主要用于确定多相流体中油、气、水的含量及沿井筒的分布规律。
流体密度仪包括放射性密度仪和压差式密度仪两种;持水率仪根据测量原理可分为电容持水率计、低能放射性持水率计、微波持水率计等。
本章主要介绍这些仪器的测量原理及资料处理方法。
第一节 放射性流体密度计放射性密度计结构如图3-1所示,由伽马源、采样道和计数器三部分组成。
当取样道图3-1 流体密度测井示意图内的流体密度发生变化时,计数器的响应就发生变化,地面设备测井曲线就记录了取样通道中的流体密度。
放射性密度计采用C s 137作伽马源,发射的光子能量为0.661百万电子伏特,在这一能量级下,不会发生电子对效应,同时将测量门槛值调到0.1~0.2百万电子伏特,避免光电效应的影响,只记录发生康谱顿散射的光子。
因此,伽马源发出的伽马射线经采样通道到达探测器的射线强度为:LeI I μρ-=0 (3-1)式中, 0I ——伽马源处的伽马射线强度; I ——计数器处的伽马射线强度;μ——康普顿吸收系数,厘米2/克; ρ——流体密度,克/厘米3; L ——取样室长度, 10~40cm 。
对上式两边取对数,经整理后得:LIK L I L I μμμρln ln ln 0-=-=(3-2)223取μ=0.152cm 2/g ,L =6.58cm ,则II 0ln=ρ。
式中K =lnLI μ0,L 为已知,0I 可以测出;μ主要与元素荷质比A/Z 有关(Z 为原子序数,A 为原子量),对于低原子序数元素,Z/A ≈0.5,即氢、氧、碳、钠等元素的康普顿吸收系数相差较小,即油、气、水和盐水的康普顿吸收系数基本相等。
因此在半对数坐标上ρ与I呈线性关系。
图3-2是在一口生产井中由放射性密度测井所得到的曲线,图中第二道中实线是密度测井结果,虚线是流量测井结果。
流体密度测井显示井底有底水存在,且密度值略大于 1.0g/cm 3,说明井底沉有微砂粒或其它较重的悬浮物,或者是地底水的矿化度较高。
【精选】多相流计量及多相流量计简介R1
【精选】多相流计量及多相流量计简介R1 多相计量技术Multiphase metering technology概述许多新开发的油田属于经济型边际油田,这种油田不能承担传统分离技术所引发的高昂的费用。
而多相流量计可以节省很多费用,因为使用它就不需要安装分离器,或者几个油田共用处理装置。
在油井管理方面:多相流量计可以提供持续的数据输出,给出油井动态的有价值信息,这样可以及时地发现油井产生的问题或变化,以便尽早地做出决定,而采用传统的处理技术却要慢一些。
中国船级社(CCS)要求参照《海上移动平台入级规范》第1篇第3章附录1 平台入级产品持证要求一览表:5.3:?级管系以及除5.1以外的阀和附件证件类型:制造厂证明(?级管系应提供工厂认可证书,除5.1以外的阀和附件应提供型式认可证书)认可模式:型式认可B(可选项:型式认可A)1. 在线多相流量计在线多相流量计依据对流体特性的一些测量得到油、气、水三相的各自流量。
现在有许多这样的计量技术,可大致分为两大类:速度或总流量测量和相分率测量。
速度或流量测量通常是通过压差计量或一个特殊信号的互相关,即压力或导电率来获得。
许多流量计也采用滑动模块,这说明了气体通常比液体流速快的事实。
在垂直管道上安装的一些在线多相流量计一般通过在其上游装一个盲三通来减少水的紊动,以此最大限度地减少滑动。
相分率可以通过测量三相混合物的物性来获得,据此推算出三相各自的流量。
伽马射线能量衰减法是一种常用的方法,它的原理是油、气、水不等同地削弱伽马射线的能量。
伽马射线能量在两个能量级放射高能量级对气/液比更敏感,而低能量级对液相中的水/油比较敏感。
可以用这两个能量衰减量来确定三相混合液的相分率。
第三个能量级也可以用来确定水相的含盐量。
电容和电导技术可以用来确定液相中的含水量。
电容传感器用于测量连续油流的介电常数并确定含水量,电导传感器用于连续水流的测量。
这种方法适于气体体积分数大环境,但缺点是:如果流体在水连续流和油连续流之间不停转换,那么流量计就很难跟踪到这个变化。
多相流基础 chapter 3-homogeneous flow
1
µh
=
x
µg
+
1− x
µl
Applicability of homogeneous flow model(均 ( 相流模型的适用性) 相流模型的适用性)
(1)In fact, the gas and liquid phase velocity are not equal, they are approximately equal at the conditions of high void fraction (gas flow entraining few liquid droplets)or very small void fraction (liquid flow entraining few gas bubbles ) (2)So actually homogeneous flow model is just applicable to bubbly flow and mist flow (3)In general, the system pressure is higher, the fluid velocity is faster, and the calculation result of homogeneous flow model is better, some investigators suggest the scope of homogeneous flow model is:
dp πd 2 d πd 2 πd 2 δz − δz − τδzπd − δzρg sin θ = Gu dz 4 4 dz 4
The equation can be arranged into:
dp 4τ d 4τ 2 d 1 − = + ρg sin θ + (Gu ) = + ρg sin θ + G dz d dz d dz ρ
第三章 流体密度及持水率测量
1.2 应 用
1.利用密度曲线读值计算井筒中的持水率值: o yw m w o
a. 密度测井曲线
b.放射性密度计校正
2.图b为密度特征响应曲线: 注意:密度计主要适用于气液两相流动。
第二节 压差密度计
2.1 仪器结构
波纹管 a)平膜片 b)波纹膜片 c)膜盒 d)膜盒组 压差密度计
第四节 微波持水率计
4.1 传导电流与位移电流
传导电流:由电子或离子相对于导体移动所形成的电流称为传导电
流
位移电流:等于电场中通过一定截面电位移通量的时间变化率。
把油水流体看作均匀介质,把电场强度看作是时间的正弦函 数,即: E E sin t
0
则传导电流可以表示为: i E E sin t m m 0 位移电流表示为: 位移电流与传导电流的 比值R为:
i n
泡计数率与电缆速度 交会图
第八节 应用实例
例题:
已知地表温度和压力下仪器在油相中的读值为 CPS10=11700Hz,在水中的读数 CPS1w=10500Hz,井底温度=250℉ ,井底压力=7100psi,测井读值为 11000Hz,试求该类仪 器在井底条件下油水频率响应,及计数率 CPS=11000Hz 时的持水率值。
Cd 109 1 e0 47 Ag109m Q 48
P1 1 e 0 0 n1 1
109 48
整个核转变过程来说,就是从 Cd 转 变为 109 , Ag109 并发射出能量分别为22.2Kev 47 Ag 47 和88Kev的两组辐射(见右图)。可以 利用能量较低的一组射线测定混合流体 中的持水率,用能量高的另一组射线测 量混合流体密度,有了这两个参数就可 以求持油率和持气率:
多相流检测技术110531
分相流模型(Separated flow model) 考虑两相是完全分离的两种流体,两相间存在不 同的速度和特性;适用于相间存在微弱耦合的 场合。例如气液两相流中的分层流和环状流。
自动化前沿
Zhejiang University
漂移通量模型(Drift-flux model) 基本上是分相流模型,其重点是研究相间的相对 运动。漂移通量与相间相对速度有关。适用于 弹状流等。
自动化前沿
Zhejiang University
射线法
自动化前沿
Zhejiang University
电导探针法
自动化前沿
Zhejiang University
光导探头
自动化前沿
Zhejiang University
流型的间接测量法
流型的直接测量,其结果的描述都带有主观性, 因此产生了流型的间接测量方法。流型间接测 量方法是通过对反映两相流波动特性的参数的 统计分析来获取流动状况的基本特征,从而确 定流型。(软测量技术)
水平管气固两相流的流型
自动化前沿
Zhejiang University
水平管液固两相流流型
悬浮流: 固体颗粒完全悬浮于液体中, 此时固体颗粒不与管壁接触。 管底流:固体颗粒在液体中的分布不 均称,管道上部呈悬浮状流动,管道 下半部具有更多的大颗粒,底部的颗 粒与管壁发生冲击并回弹于液流中。 动床流: 固体颗粒堆积于管底形成连 续的移动床层。 淤积流: 管道的底部存在固定的固体 颗粒床层。
自动化前沿
Zhejiang University
直接测量方法
在气液两相流试验段的二端安装二个同时动作的快关阀, 当两相混合物的流动达到稳定时,同时关闭这二个阀 门,通过气液分离便可求出二阀门间的体积平均空隙 率。这种方法准确、有效,目前主要用于实验室的两 相流研究以及对空隙率测量装置的标定。
多相流流量检测综述
1 多相流检测综述多相流是两个及以上的相组合在一起,且具有明显相间界面的流动体系。
这种现象在工业过程如能源、石油、化工、医药等中广泛存在,且起着重要的作用。
而为了对多相流进行科学研究,以及让多相流在工程实际中起到良好的作用,就需要对其过程机理和状态有清楚的描述,对其过程参数有准确的检测。
而在工业过程中,由于工程实际以及对过程监控的要求,多相流各相的实时流量检测是十分重要的,因此多相流流量也是多相流过程参数中,最为主要的需要检测与控制的参数。
多相流检测亦可根据其检测方式的不同分为直接法和间接法。
直接法可以通过直接测量检测到待测参数,而间接法需要在测量值与待测参数之间建立关系式,通过得到的测量值来计算待测参数。
而对于多相流流量的测量,既有直接测量的方法,也有间接法来测量。
2 多相流流量检测方法2.1 差压流量计差压流量计的原理是:让流体通过节流组件,在节流组件前后流体会有压力差,通过测出压力差,利用伯努利方程,就可以计算出流体的流量(流速)。
根据文丘里效应设计的文丘里流量计是多相流检测中最常见的一种。
将文丘里流量节与相含率检测装置一起使用,不但可以测得多相流的总流量,还可以得到各分相的流量。
差压流量计也有缺陷,节流组件介入了流体的流动,因此会对其流动产生干扰,进而会造成了额外的压降。
2.2 容积流量计让流体流经容积式流量计,随着流体的流动,容积式流量计会转动,而流量计每转一圈,计量室会排除体积固定的流体,记录计量室排出的流体体积及时间,通过这两者可以计算出流经流量计流体的体积流量,即流速。
从原理上看,容积式流量计的计量室转速越快,说明流体的流速越快,但在实际情况中,只有当流体流速处在一定范围内时,这种关系才存在。
容积流量计可以按照其测量组件的结构来进行分类,主要有以下几种:椭圆齿轮流量计、活塞式流量计、刮板式流量计等。
容积式测量技术有测量精度高、调节比大、输出的信号与流量成比例、不需要前置直管段的优点。
多相管流-第三章垂直气液两相管流计算1
第三章 垂直气液两相管流压力梯度计算模型及方法垂直气液两相管流压力梯度计算模型及方法•3.13.1流动模型流动模型•3.23.2压力分布计算方法压力分布计算方法•3.33.3垂直气液两相管流压力梯度计算模型及垂直气液两相管流压力梯度计算模型及方法•3.43.4水平或倾斜管中气液两相流动计算模型水平或倾斜管中气液两相流动计算模型及方法•3.53.5水平管中气体和非牛顿液体的两相流动水平管中气体和非牛顿液体的两相流动主要内容第一节流动型态流动型态的划分方法:两类第一类划分方法:根据两相介质分布的外形划分泡状流、弹状流或团状流、(层状流、波状流)、段塞流或冲击流、环状流、雾状流第二类划分方法:按流动的数学模型或流体的分散程度划分分散流、间歇流、分离流分散流、间歇流、分离流2010-3-263垂直气液两相流流型水平气液两相流流型两种分类方法比较第一类划分方法较为直观第二类划分方法便于进行数学处理第一类划分方法•泡状流•弹状流或团状流•层状流•波状流•段塞流或冲击流•环状流•雾状流第二类划分方法•分散流•间歇流•分离流•分离流•间歇流•分离流•分散流两类划分结果的对应关系2010-3-264垂直环空两相流型第二节 压力分布计算方法第二节•由于多相管流中每相流体影响流动的物理参数(密度、粘度等)及混合物密度和流速都随压力和温度而变,沿程压力梯度并不是常数。
因此,多相管流压降需要分段计算,并要预先求得相应段的流体性质参数。
然而,这些参数又是压力和温度的函数,压力却又是计算中需要求得的未知数。
所以,多相管流通常采用迭代法进行计算。
一、常用两相流压降计算方法•早期均匀流方法(总摩阻系数法)1952 Poettmann 1952 Poettmann——Carpenter 80 80’’s 陈家琅 λ'~(N Re )2•经验相关式1963 Duns--Ros 无因次化处理 N vL 、Nvg 、N D 、N L 1965 Hagedorm--Brow 现场实验 1967 Orkiiszewski 流型组合 1973 Beggs--Brill 倾斜管实验1985 Mukherijee--Brill 改进实验条件•现代机理模型SPE20630等考虑具体流型的物理现象第二节第二节压力分布计算方法段塞流示意图环状流示意图2010-3-2682010-3-26当 单相液流, H L 、ρm 、f m 随两相流流型变化b P P ≥二、两相管流压降计算根据地面条件应用关系式计算井底流压1 输入数据油管数据:管长L 、管径D 、井斜角θ、粗糙度e 油气井产量:油气水日产量Q O 、Q SC 、Q W或Q L 、f w 、GOR P (GLR P ) QQ W = f w Q L Q O = Q L - Q wQ SC = GOR P Q O 或 Q SC = GLR P Q L 边界条件:井口压力P wh 、井口温度T wh 、地温梯度g t 考虑井温线性分布 T(Z)=T wh +g t Z 油气水相对密度γo 、γg、γw第二节第二节压力分布计算方法2 输入数据单位处理常用单位 统一单位Q —m 3/d q —m 3/s μ—Pa.s P —MPap —Pa V Pa V——m/s D —mm d mm d——m T m T——℃ T T——K 第二节第二节压力分布计算方法3 输入流体物性资料气:拟临界压力、温度 Pc , Tc偏差系数 Zg(Pr, Tr)粘度μg油:μo , 溶解油气比 Rs体积系数 Bo , 油气界面张力σo水:μw ,σw ,B w第二节第二节压力分布计算方法),(223004hk p h z F k ++=第二节第二节压力分布计算方法龙格库塔数值解法•压力梯度函数F(Z,P)计算步骤(1) Z处流动温度 T(Z)=T0+g t Z(2) 计算T、P条件下的有关物性(3) 气液体积流量 q g,q L(4) 气液表观流速V sg、V sL和V m(5) 计算λL、μL、ρns、μns(6) 无因次量N Rens、N L、N gV、N LV、N gvsM(7) 计算H L、ρm(8) 判别流型,计算f m(9) 计算F(Z,P)•2、迭代计算第二节第二节压力分布计算方法误差又能提高计算速度。
多相渗流基本知识
4.相对渗透率
稳态实验方法首先将待实验的岩样烘干,烘干后用水饱 和。然后用泵将油和水按一定比例分别送入岩芯,当进 口与出口处油和水的流量分别相等时,表明岩芯中油、 水两相趋于稳定。由压力计测得岩芯两端的压差,并由 集液器测出油和水的流量,即可按Darcy公式算出油和水 的相对渗透率,同时算出相应的含水饱和度。
液体、气体或固体)相接触时,在他们之间
存在一种自由能,要想将接触面上的物质分
离,必须有外力做功。每分离出单位面积所
需做的功就定义为界面张力σ,其单位为N/m。
2.界面张力和湿润性
2.界面张力和湿润性
3.毛管力
3.毛管力
3.毛管力
3.毛管力
由于存在上述现象,用湿润流 体驱替非湿润流体与用非湿润 流体驱替湿润流体所得的毛管 力曲线不相重合。
4.相对渗透率
4.相对渗透率
4.相对渗透率
4.相对渗透率
4.相对渗透率
4.相对渗透率
相对渗透率曲线是多相渗流的一个重要特性,是油田开 发中的重要关系曲线,准确测定能代表油藏实际特性的 相对渗透率曲线对油田开发是必不可少的。
在实验室中测定相对渗透率曲线的方法可分为两类,即 稳态实验和非稳态实验。
4.相对渗 毛管力
相对渗透率
1.流体饱和度
1.流体饱和度
1.流体饱和度
在钻井过程中,根据演示研究资料以及返出 泥浆的荧光分析和测定资料,可以确定地层 中的含油饱和度,也可借助于矿场地球物理
资料研究确定。
2.界面张力和湿润性
一种流体w与另一种物质(与流体w不溶混的
多相流参数的测量技术
一、前言
对于交流 电器强 电流通断 试验 电路相 位角的 测 量, 文献[ 3] [ 4] 提出了采用单片微机利用相位前推原 理的智能 测量方法, 虽然大大提 高了测量准 确度, 但 是, 由于试验电压的接入相位角对过渡过程的影响, 使 得每一次的测量值都比较分散, 因此, 准确度和重复性 都受到不同程度的影响, 为了消除这些不利影响, 经过 深入研究, 本文提出了采用单片微机利用相位 前推原 理和无过渡过程接入试验电流的方法来进行功率因数 的智能化测量。采用该种测量方法消除了试验电路频 率变化和试验电流直流分量所造成的测量误差和测量 结果的分散性, 提高了测量准确度。
二、工作原理及硬件电路
智能型电器强电流通断试验功率因数的测量原理 为: 利用 MCS ) 51 单片机采用相位前推原理配合试验 电流零过渡过程接入法来测量通断试验的功率因数。
# 14 #
单片机在接通试验电流前对试验电压的频率进行
测量存贮, 并记下过零点的位置, 测量原理为
f=
1 K
f
0
( 1)
式中, K 为试验电压信号一周所计的时钟脉冲数。
的接通时间, 又要考虑直流分量的衰减, 所以当计到
K 5( 即试验电压以 K 值为周期后推五个周期) 时开始
计电压与电流的相位, 即第五个周期后的第一个电流
过零点取所计 K 1c, 第二个电流过零点取所计 K 2c, 以 此类推, 直到断开试验电流, 则相位角为
Ui =
Kci - ( i + K
4) K
测量与设备
由误差理论可知, 当
若测量数据 Ri 的分散度较大, 则表明所测弧段与
| $R i | E 3RR
( 8)
时, 可以认为 Ri 是一个有粗大误差的半径测量值, 可
多相流量计原理课件
其他多相流量计的优缺点
总结词
其他多相流量计如光学法多相流量计、电阻法多相流 量计等也具有各自的优缺点,需要根据实际应用需求 进行选择。
详细描述
除了上述几种常见的多相流量计外,还有光学法多相流 量计和电阻法多相流量计等其他类型。这些多相流量计 各有其优缺点,如光学法多相流量计具有非接触式测量、 测量精度高等优点,但同时也存在对流态敏感、易受光 学污染影响等缺点。电阻法多相流量计具有结构简单、 成本低等优点,但同时也存在测量精度低、稳定性差等 缺点。因此,在实际应用中需要根据具体需求进行选择。
智能化技术的应用
耐腐蚀材料的研发
针对不同介质和环境,研发具有耐腐 蚀性能的材料,提高多相流量计的使 用寿命。
结合人工智能和大数据分析,实现多 相流量计的远程监控和智能诊断。
应用领域的拓展
油气工业
多相流量计在油气工业中广泛应 用于油、气、水三相流量的测量,
提高了生产效率和管理水平。
化工领域
多相流量计在化工生产过程中对多 种流体进行精确测量,有助于实现 工艺流程的优化控制。
较高,这限制了其应用范围。
核磁共振多相流量计的优缺点
要点一
总结词
要点二
详细描述
核磁共振多相流量计具有测量精度高、无阻碍物影响等优 点,但同时也存在成本高、操作复杂等缺点。
核磁共振多相流量计利用核磁共振原理来测量多相流体的 流量。由于其测量精度高、无阻碍物影响等优点,核磁共 振多相流量计在石油、化工等领域得到广泛应用。然而, 核磁共振多相流量计成本较高,操作复杂,这限制了其应 用范围。
跨学科技术的融合
多相流量计的发展需要结合流体力学、化学、材料科学等多个学科 的前沿技术,实现跨学科的技术创新与融合。
第三章 多相流及其测量方法
2、多相流的引入
单相流与多相流: 在物理学中物质有固、液、气和等离子四态或四相,若不计电磁特性,也可把等 离子相并入气相类。 单相流:单相物质的流动称为单相流,两种混合均匀的气体或液体的流动也 属于单相流。 多相流:同时存在两种及两种以上相态的物质混合体流动就是两相或多相流。 在多相流动力学中,所谓的相不仅按物质的状态,而且按化学组成、尺寸和形 状等来区分,即不同的化学组成、不同尺寸和不同形状的物质都可能归属不同 的相。
第三章 多相流及其测量方法
9
3.2 常见的多相流的分类及特点
固相颗粒尺寸、形状及分布是颗粒 颗粒尺寸的统计分布: 相的重要物理特性参数 按粒径的颗粒数分布密度 按粒径的颗粒质量分布密度 颗粒形状及尺寸与颗粒形成关系 颗粒相尺寸呈正态分布 密切:结晶形成的颗粒,有各种 颗粒相的平均尺寸表示方式: 结晶形状;粉碎形成颗粒基本保 线性平均粒径 持结晶形状;由雾化产生的 表面积平均粒径 体积表面积平均粒径 1mm 以下的玻璃颗粒及小液滴 质量平均粒径 由于表面张力作用,基本呈球形; 当重力影响大时,悬浮液滴趋于 最小阻力形状。
单组分工质(如水-水蒸气的汽液两相流):汽、液两相都具有相
同的化学成分,汽液两相流在流动时根据压力和温度的变化会发生 相变,即部分液体能汽化为蒸汽或部分蒸汽凝结成液体; 双组分工质(如空气-水气液两相流):两 相各具有不同的化学成分,气液两相流一
般在流动中不会发生相变。
根据换热情况不同,可分为与外界无加 热或冷却等热量交换绝热多相流或有热量 交换的多相流。
第三章 多相流及其测量方法
3
3.2 常见的多相流的分类及特点
1、常见的两相及多相流
(1)气液两相流; (2)气固两相流 ; (3)液固两相流 ; (4)液液两相流 ; (5)气液液、气液固和液液固多相流 。
多相流测量
Dai C
Dai C
f j ( x0 , y0 , z j , t0 ) 0
ai pz ( x0 , y0 , t 0 )
pz
1 ( gradf j / z ) L j
f j
ait ( x0 , y0 , z0 ) 2 N t
1 1 Vij cos j
单位时间内,通过 (x0, y0, z0)的气泡数,2 表示气泡两个界面 稳态充分发展两相流的界面浓度的各态遍历假设 (Ergodic Theory) 界面移动速度
电阻抗法
A Al g 2 l A 2A l g l
液体的电导率 导纳数(阻抗的倒数)
I I 0 e z
ln I ln I l ln I g ln I l
射线在介质内 行进距离 衰减系数 缺点:安全操作, 在低空隙率下误差较大 纯液体时衰减系数
f 1 ( gradf j / tj ) j
1 1 1 1 l cos( ) Vij cos( j )
Dai C
Dai C
日本多相流学会 2002年会议论文部分题目
电导探针法测量界面浓度
ns 2
后端探头
超声波现象及其应用 利用超声波紫外线处理难分解的物质 高温排气中微粒在超声波处理时的现象机理,除NO的改善 气液、气液固多相流反应装置中的现象及其应用 采用气提泵使海水吸收CO2研究 蘑菇养殖时营养液中采用气泡柱时的气液固流动 流化床中管群周围的流动和传热 电解过程中的气液两相流动现象 前端探头 界面现象 液体降膜的3维波形结构和传热特性 垂直管内气液两相流动管经对空隙度的影响
Vskj
ait
S k t kj
多相流测量方法
前言:温馨小提示:本篇文档是通过查阅资料精心整理编制的,希望能帮助大家解决实际问题,文档内容不一定完美契合各位的需求,请各位根据需求进行下载。
文档下载后可自己根据实际情况对内容进行任意改写,确保能够帮助到大家。
除此之外,本店铺还提供各种文档材料,涉及多个领域例如活动文案、工作方案、读后感、读书笔记等,大家按需搜索查看!Warm tip:This document is prepared by consulting information carefully. Hope to help you solve practical problems. The content of the document is not necessarily perfect to match your needs. Please download according to your needs. Then you can rewrite the content according to the actualsituation to ensure that we can help. In addition, the store also provides a variety of documents and materials, covering areas such as copywriting for activities, work plans, reflections, reading notes, etc.正文如下:多相流测量方法多相流测量方法一、引言"多相流"这一术语描绘的是在一个流动系统中,存在并交互作用着多种形态各异的物质,如固态、液态和气态等同时存在的复杂流动过程。
在现实的工业制造与环境监控领域,多相流测量技术展现出了广泛的实用价值,其精确度的测量直接关系到提升生产效能和环境保护的关键性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 多相流及其测量方法
2
3.1 多相流及特性介绍
在两相流研究中,把物质分为连续介质和离散介质。 ▪连续相或流体相:气体和液体属于连续介质 ▪分散相或颗粒相:固体颗粒、液滴和气泡属于离散介质
流体相和颗粒相组成的流动叫做两相流动。 颗粒 有时也把这样的两相流称为多相流。
第三章 多相流及其测量方法
6
3.2 常见的多相流的分类及特点
引入拟流体假设后,气固两相流动就如同两种流体混合物的流动,可以用 流体力学、热力学的方法来处理的问题,使两相流动的研究大为简化。 但拟流体并不是真正的流体,颗粒与气体分子之间、两相流与连续介质流 之间存在许多差异,因此使用拟流体假设时要特别注意适用条件: (1)气体分子与悬浮颗粒主要差异在于气体分子之间有很强的相互作用, 而颗粒间的相互作用很弱; (2)气体的v,其T;v时,其T ,悬浮于气体中的颗粒只能在气体 粘性力作用才能运动,而颗粒T不随颗粒v变化; (3)气体分子热运动能贡献压强,但颗粒布朗运动所贡献压强非常微小; (4) 气体中扰动通过压强波(分子间相互作用)传播,而颗粒中扰动只 能沿着颗粒轨线传播; (5)气体能膨胀、压缩,其比热可分为定压比热和定容比热,但固体颗 粒只有一个比热; 处理颗粒相运动时,某些方面把其看作流体一样,但另一些方面则必须考 虑颗粒相本身的特点。
热力学:物体中每一个均匀部分,可以有固相、液相和气相,统称单相物体;
动力学:动力学性质相近的一群物体,一种物态可能单相,也可能多相,通 常是指具有相同成份和相同物理、化学性质的均匀物质部分,也应是物质的 单一状态,如固态、液态和气态,各部分均匀的气体或液体流动可称为单相 流;
在多相流动的研究中通常称为固相、液相和气相。一般而言,各相间有明显 可分的界面。多相流就是指必须同时考虑物质两相共存且具有明显可流动分 界面的混合物流动力学关系的特殊流动问题。
第三章 多相流及其测量方法
主要内容如下:
一、了解多相流的概念 二、熟悉工业中常见的两相及多相流的分类及特点 三、了解多相流的基本特性参数 四、熟悉水平管中两相流的主要流型 五、了解两相流的主要参数测量方法
第三章 多相流及其测量方法
1
3.1 多相流的概念
1、相的概念
物理学:自然界中物质的态,如固态、液态和气态;
2、多相流的引入
单相流与多相流: 在物理学中物质有固、液、气和等离子四态或四相,若不计电磁特性,也可把等
离子相并入气相类。 单相流:单相物质的流动称为单相流,两种混合均匀的气体或液体的流动也 属于单相流。 多相流:同时存在两种及两种以上相态的物质混合体流动就是两相或多相流。 在多相流动力学中,所谓的相不仅按物质的状态,而且按化学组成、尺寸和形 状等来区分,即不同的化学组成、不同尺寸和不同形状的物质都可能归属不同 的相。
8
3.2 常见的多相流的分类及特点
在气体动力学中,通常认为/S<0.01时,连续性假设才使用 (其中为气体分子平均自由行程,S为流动系统的特征尺寸, 在两相流动中,由于颗粒的布朗运动较弱,可以认为 L/S<0.01,其中L为颗粒质心间的距离。
对于两相流,以悬浮于空气中煤粉颗粒为例,气固比为1时包含104个颗粒
的立方体的边长与颗粒直径之比为102,如果煤粉颗粒直径为100um,则
立方体的边长为1cm,这个容积比标准状态下的气体极限容积大得多。但
如果流动系统特征尺寸远大于这个尺寸,仍可把该容积看成一个点,及把
颗粒视为连续介质。
第三章 多相流及其测量方法
双组分工质(如空气-水气液两相流):两 相各具有不同的化学成分,气液两相流一 般在流动中不会发生相变。
根据换热情况不同,可分为与外界无加 热或冷却等热量交换绝热多相流或有热量 交换的多相流。
第三章 多相流及其测量方法
5
3.2 常见的多相流的分类及特点
(2)气固两相流 气体和固体颗粒混合在一起共同流动称为气固两相流。 自然界和工业过程中气固两相流比比皆是:空气中夹带灰粒与尘土、 沙漠风沙、飞雪、冰雹,在动力、能源、冶金、建材、粮食加工和 化工工业中广泛应用的气力输送、气流干燥、煤粉燃烧、石油的催 化裂化、矿物的流态化焙烧、气力浮选、流态化等过程或技术。 拟流体假设: 严格地说,固体颗粒没有流动性,不能作流体处理。 但当流体中存在大量固体小粒子流时,如果流体的流动速度足够大, 这些固体粒子的特性与普通流体相类似,即可以认为这些固体颗粒 为拟流体,在适当的条件下当作流体流动来处理。 在流体力学中,尽管流体分子间有间隙,但人们总是把流体看着是 充满整个空间没有间隙的连续介质。由于两相流动研究的不是单个 颗粒的运动特性,而是大量颗粒的统计平均特性,虽然颗粒的数密 度 ( 单位混合物体积中的颗粒数 ) 比单位体积中流体分子数少得多 ( 在标准状态下,每cm3体积中气体分子数为 2.7×1019 个 ) ,但当 悬浮颗粒较多时,人们仍可设想离散分布于流体中颗粒是充满整个 空间而没有间隙的流体。
两相流流动可以是同一方向流动的“同向流动”,也可能在相反方向 的“反向流动”,及介乎两种流动之间的流动,如气液两相流中液相 平均流速为零,或液相的平均速度与气相速度垂直的流动。
第三章 多相流及其测量方法
3
3.2 常见的多相流的分类及特点
1、常见的两相及多相流
(1)气液两相流; (2)气固两相流 ; (3)液固两相流 ; (4)液液两相流 ;
第三章 多相流及其测量方法
7
3.2 常见的多相流的分类及特点
根据拟流体假设,颗粒相的密度可以和连续介质的密度一样定义:
对于气体,为了得到统计平均值波动小于1%,极限容积中应包含104个气 体分子。标准状态下包含104个气体分子的容积是0.1um3。对于实际工程 应用,这个尺寸比气体流动系统的特征尺寸小得多,可以把这个容积看成 一个点,因此气体可以看成是连续介质。
(5)气液液、气液固和液液固多相流 。
第三章 多相流及其测量方法
4
3.2 常见的多相流的分类及特点
(1)气液两相流 气体和液体物质混合在一起共同流动称为气液两相流。它又分为 单组分工质(如水-水蒸气的汽液两相流):汽、液两相都具有相 同的化学成分,汽液两相流在流动时根据压力和温度的变化会发生 相变,即部分液体能汽化为蒸汽或部分蒸汽凝结成液体;