一次函数追击问题课件培训资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)甲到达终点用了多长时间;
(3)两人何时相距最远,最远距离是多少?
解: (1)设甲路程随时间变化的函数关系式为y甲 k1x,图像过(1.5,15)代入解析式 有:1.5k=15 ,解得k=10,所以y甲=10x
乙:当0 x 1.5时,设乙路程随时间变化的函数关系式为y乙 k2x图像过(1.5,30) 代入解析式有:1.5k=30 解得:k=20,所以y乙=20x
(3)x 1.5时,此时相距15千米
中考链接:
2008年5月12日14时28分四川汶川发生里氏8.0级强力地震。某市接到上级 通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480 千米的灾区。乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲
组出发时开始计时)。图中的折线、线段分别表示甲、乙两组的所走路程 (千米)、(千米)与时间x(小时)之间的函数关系对应的图象。请根据 图象所提供的信息,解决下列问题:
o 1.25 3 4.9 6 7 7.25 x(小时)
一、一次函数图像的应用
1、读图: 读横轴与纵轴,来自百度文库点、终点及关键点
2、画图:
确定横轴与纵坐标轴表示的量 确定起点,终点及关键点
3、解图:
直接根据图象实际意义解决相关问题。 利用函数解析式解决相关问题。
二、数形结合的思想 分类讨论地思想
当1.5 x 7.5时,设乙函数关系式为y乙 k3x b图像过(1.5,30),(7.5,60)
代入解析式有:17..55kk
b b
30 60
解得:bk3252.5所以y乙 =5x 22.5
综上所述,乙的函数解析式为y乙
=
20 5x
x
22.5
0 x 1.5 1.5 x 7.5
(2)甲到达终点时,即y 60代入解析式y 10x, 解得x 6
例1:甲、乙两人相约从A地到B地游玩,甲骑自行车,乙骑摩托车 ,下图是他们离开A地的路程y(km)随时间x(h)变化的函数图象 ,据图像回答下列问题:
y(km)
60


y0
o
1 x0
4
6 x(h)
(1)A与B地相距多少千米?
(2)甲、乙二人的速度分别是多少? (3)甲与乙两人何时相遇?此时与A地距离是多少?
此时y 10x 10 2=20
解得x 2
所以甲、乙两人在甲出发后两小时相遇,此时距离A地20km
变式训练:甲乙两人同时去B地,甲骑自行车,乙骑摩托中途
乙的车出现问题改为步行,下图是他们路程随时间变化的图像。
y(km)
60

30

15
o
1.5
x0
7.5 x(h)
(1)求出甲、乙两人路程与时间的函数关系式;
读图小提示:读横轴与纵轴,读起点、终点及关键点
甲、乙两人相约从A地到B地游玩,由于乙早上睡懒觉,乙比 甲晚出发了1个小时,最后甲乙同时到达了B地。试画出甲、 乙两人路程y(km)随时间x(h)变化的大致的函数图像。(假设 两人均为匀速运动)
y(km)
B


(A)o 1
x(h)
画图小提示:确定横轴,纵轴表示的量; 确定起点,终点及关键点。
解:
(3)设甲、乙两人路程随时间变化的函数关系式分别为y甲 k1x和y乙 k2x b2
甲的图像经过(6,60)代入解析式有
60=6k1 k1 10
乙的图像经过(1,0),(4,60)
4k2k2b2b2060
bk22
20 20
所以,甲:y=10x,乙:y 20x 20
两人相遇,即10x 20x 20
(1)由于汽车发生故障,甲组在途中
停留了______小时;
480
y(千米)
DF


(2)甲组的汽车排除故障后,立即提
C
速赶往灾区。请问甲组的汽车在排除故
障时, 距出发点的路程是多少千米?
A B
(3)为了保证及时联络,甲、乙两组 在第一次相遇时约定此后两车之间的路 程不超过25千米,请通过计算说明,按 E 图象所表示的走法是否符合约定?
一次函数的综合应用 ———追及问题
两物体在同一直线或封闭图形上运动
所涉及的追及、相遇问题通常归为追及问 题。
甲乙两人一起参加马拉松比赛,下图是他们的 行程图,s表示行走的路程,t表示时间
s(km)
s(km)
10 甲
10 乙
乙 甲
o
3 图(一)
5 t(h) o
t1
t2 t3 5 t4 t(h)
图(二)
相关文档
最新文档