一元二次方程复习优秀课件

合集下载

一元二次方程复习课件

一元二次方程复习课件
32 x X 2
32 x X 2
X 32-2X
一元二次方程解法的复习
例6、有一堆砖能砌12米长的围墙,现要围一个20
平方米的鸡场,鸡场的一边靠墙(墙长7米),其余三
边用砖砌成,墙对面开一个1米宽的门,求鸡场的长
和宽各是多少米?
解:设鸡场的宽为x米,则长为(12+1-2x) =(13-2x)米,列方程得: X(13-2x)=20 解得:x1=4,x2=2.5 经检验:两根都符合题意 ∴13-2x=5或8 (舍去)
(4):主要用到的数学思想方法
分类讨论
知识聚焦
一元二次方程根的判别式
一元二次方程 ax 2
bx c 0a 0根的判式是:
b 4ac
2
一元二次方程
判别式的情况
ax bx c 0a 0
2
根的情况
定理与逆定理
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
一:回顾与总结
在解答下列各小题过程中,回顾用到了哪些知识点?
① 只含有一个未知数
1:下列方程中,属于一元二次方程的是( c ) 3 (1):一元二次方程的三要素 ② 未知数的最高次数是2次 2 A : 2 x y 1 0 B : x 2x 1 0 ③ 两边是整式
1 C : x 2 x 3 0 D : 2 3x 2 0 3x
当方程中有括号时,思考方法是:
1:应先用整体思想考虑有没有简单方法; 2:若看不出合适的方法时,则把它去括号并整理 为一般形式再选取合理的方法。
变式1: 2(x-2)2+5(2-x)-3=0 2-x 变式2:

初三数学 人教版九年级上册(新) 第21章 一元二次方程 复习课 课件(14张)

初三数学 人教版九年级上册(新) 第21章 一元二次方程 复习课 课件(14张)
▪ 2、用配方法解方程4x2-8x-5=0
右边开平方 后,根号前 取“±”。
两边加上相等项“1”。
3、用公式法解方程 3x2=4x+7
解:移项,得: 3x2-4x-7=0
先变为一般 形式,代入 时注意符号
a=3 b=-4 c=-7

∵b2-4ac=(-4)2-4×3×(-7)=100>0
x 4 100
②移常数项到右边;
③两边加上一次项系数一半的平方;
④化直接开平方形式;
⑤解方程。
▪公式法步骤:
① 先化为一般形式;
②确定a、b、c,求b2-4ac; ③ 当 b2-4ac≥ 0时,代入公式:
x
若b2-4ac<0,方程没有实数根。
▪分解因式法步骤:
①右边化为0,左边化成两个因式的积;
②分别令两个因式为0,求解。
( 公式 法)
▪ 6、 x2+6x-1=0
( 配方 法)
▪ 7、 3x2 -8x-3=0
(分解因式法)
▪ 8、 y2- 2 y-1=0
( 公式 法)
小结:选择方法的顺序是: 直接开平方法 →分解因式法 → 配方法 → 公式法
把握住:一个未知数,最高次数是2 一元二次方程的定义 , 整式方程
一般形式:ax²+bx+c=0(a0)
2 5∴
6
3
4 ∴x1=
x238 =
4、用分解因式法解方程:(y+2)2=3(y+2)
解:原方程化为 (y+2) 2﹣ 3(y+2)把y+2看作一个
=0
未知数,变成 (ax+b)(cx+d)=
(y+2)(y+2-3)=0

中考数学专题《一元二次方程》复习课件(共18张PPT)

中考数学专题《一元二次方程》复习课件(共18张PPT)

一元二次方程根的判别式 一元二次方程 ax 2
2
b 4ac
2
bx c 0a 0根的判别式是: ax bx c 0a 0
定理与逆定理
一元二次方程
判别式的情况
根的情况
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
a, b, c能构成等腰三角形。
综上所述,m 4或3。
活动五 相信我 我是最棒的
若a为方程
的解,则 x x 5 0 2 3a 3a 5 的值为( 20 )
2
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
m 3
且把m 3代入方程,
且把m 4代入方程, 得x 2 4 x 4 0
16 4m 0, m 4
得x 2 4x 3 0,x1 3, x2 1。
三边分别为3、3、1
x1 x2 2
即b cb, c能构成等腰三角形。
小结:选择方法的顺序是: 直接开平方法 →分解因式法 → 配方法 → 公式法
例2、已知m为非负整数,且关于x的一元二次方程
(m 2) x (2m 3) x m 2 0
2
有两个实数根,求m的值。
解:∵方程有两个实数根 2

[ ( 2 m 3 )] 4 ( m 2 )( m 2 ) 0
√ ×
1 3、x2+ =1 x

《一元二次方程》复习 ppt课件

《一元二次方程》复习 ppt课件

:(x+2)2=9
解:两边开平方,得: x+2= ±3
∴ x=-2±3
∴ x1=1, x2=-5
右边开平方 后,根号前 取“±”。
2021/3/26
《一元二次方程》复习 ppt课件
9
2、
:(y+2)2=3(y+2)
解:原方程化为 (y+2) 2﹣ 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或 y-1=0 ∴y1=-2 y2=1
(2).当△ = 0 ,方程有两个相等的实根, 8k+9 =0 , 即
k
8
9
(3).当△ <0 ,方程有没有实数根, 8k+9 <0 , 即
K<
9 8
8
说明:解此类题目时,也是先把方程化为一般形式,再算
2出021△/3/2,6 再由题目给出的《根一元的二次情方况程》确复习定pp△t课的件 情况。
18
审 1. 清题意,弄清题中的已知量和未知量找出
题中的等量关系。
设 2. 恰当地 出未知数,用未知数的代数式表
示未知量。
列 3. 根据题中的等量关系 出方程。
解 4. 方程得出方程的解。
检 5. 验看方程的解是否符合题意。
答 6. 作 《注一元意二次单方位程》。复习 ppt课件
17
练习三
类型一:判别式问题
2021/3/26
《一元二次方程》复习 ppt课件
10
步骤归纳
①右边化为0,左边化成两个因式的积; ②分别设两个因式为0,求解。
2021/3/26
《一元二次方程》复习 ppt课件

一元二次方程复习课公开课课件

一元二次方程复习课公开课课件

与一元二次方程相关的定理和推论
配方法
配方法是解一元二次方程的一种常用方法,通过配方可 以将方程转化为完全平方的形式,从而简化求解过程。
判别式法
判别式法是判断一元二次方程解的情况的一种常用方法 ,通过判别式可以判断方程是否有实数解、几个实数解 以及解的形式。
THANKS FOR WATCHING
感谢您的观看
一般形式
总结词
一元二次方程的一般形式是指满足标准形式但不限制 $a neq 0$ 的方程。
ห้องสมุดไป่ตู้详细描述
一元二次方程的一般形式是 $ax^2 + bx + c = 0$,其中 $a, b, c$ 是常数,且 $a$ 可以等于0。当 $a = 0$ 时,方程退化为一次方程。
特殊形式
总结词
一元二次方程的特殊形式是指满足标准形式并且 $a neq 0$ 的方程。
公式法
总结词
利用一元二次方程的解的公式直接求解。
详细描述
一元二次方程的解的公式为x = [-b ± sqrt(b² - 4ac)] / (2a),其中a、b、c分别为 一元二次方程的系数。通过代入系数值,可以直接求解方程。
因式分解法
总结词
通过因式分解将一元二次方程转化为 两个一次方程,从而求解。
04 一元二次方程的应用
实际问题中的一元二次方程
总结词
解决生活中的实际问题
详细描述
一元二次方程在现实生活中有着广泛的应用, 如计算物品的重量、速度、距离等。通过解 决实际问题,学生可以更好地理解一元二次 方程的概念和解题方法。
一元二次方程在几何中的应用
总结词
解决几何问题
详细描述
一元二次方程在几何中常用于计算面积、周长等。通过将几何问题转化为数学方程,学 生可以更方便地解决复杂的几何问题。

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

人教版九年级数学上第21章一元二次方程复习课课件(35张ppt)

人教版九年级数学上第21章一元二次方程复习课课件(35张ppt)
x1x2+x2=1-a,所以 2 即 3a 1 - 2a =1-a,
a
=1-a, a-1 解得a1=1,
a
a a a2=-1.当a=1时,原方程有两个相等的实数根 ,不合题意,舍去.
所以a=-1.
a
主题4 一元二次方程的应用 【主题训练4】某校为 培养青少年科技创新能力,举办了动漫制
作活动,小明设计了点做圆周运动的一个
5
【主题升华】 根的判别式的应用 1.根的判别式的作用:不解方程判断方程有无实数根. 2.一元二次方程的根的情况取决于Δ =b2-4ac的符号.
(1)当Δ =b2-4ac>0时,方程有两个不相等的实数根.
(2)当Δ =b2-4ac=0时,方程有两个相等的实数根.
(3)当Δ =b2-4ac<0时,方程没有实数根.
2
2
1 2
3 2
(3)设它们运动了ns后第二次相遇,根据题意,得: ×3, 1 2 +4n=21 3 ( n n) 2 n =7,n 2 解得 =-18(不合题意,舍去).
1 2
答:甲、乙从开始运动到第二次相遇时,它们运动了7s.
【主题升华】 一元二次方程解应用题的六个步骤 1.审——审清题意,找出等量关系.
第二十一章
一元二次方程复习课
【答案速填】①只含有一个未知数,并且未知数的最高次数是2的整式方程; ②ax2+bx +c=0(a≠0); ③直接开平方法; ④配方法; ⑤公式法; ⑥因式分解法; ⑦有两个相等 的实数根; ⑧没有实数根; ⑨
c b a ; ⑩ a.
主题1
一元二次方程及根的有关概念 +4x+5=0是关于x ) D.无法确定

一元二次方程一等奖一等奖-完整版PPT课件

一元二次方程一等奖一等奖-完整版PPT课件

u一元二次方程的根
使一元二次方程等号两边相等的未知数的值叫作一 元二次方程的解(又叫做根)
练一练:下面哪些数是方程 2 – – 6 = 0 的解 -4 ,-3 , -2 ,-1 ,0 ,1,2,3 ,4
解: 3和-2
你注意到了吗?一元 二次方程可能不止一 个根
例4:已知a是方程 22-2=0 的一个实数根, 求 2a24a2019的值
讲授新课
一 一元二次方程的概念
问题1:有一块矩形铁皮,长100cm,宽50cm,在它的四角各 切去一个正方形,然后将四周凸出部分折起,就能制作一 个无盖方盒,如果要制作的方盒的底面积为3600cm2,那 么铁皮各角应切去多大的正方形?
解:设切去的正方形的边长为 cm,则盒底的长为(100-2cm, 宽为50-2cm,根据方盒的底面 积为3600cm2,得
2由∣a ∣1 =2,且a-1 ≠0知,当a=-1时,原方 程是一元二次方程
方法点拨:用一元二次方程的定义求字母的值的方 法:根据未知数的最高次数等于2,列出关于某个字 母的方程,再排除使二次项系数等于0的字母的值.
变式:方程2a-42-2ba=0, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
想一想 为什么一般形式中a2bc=0要限制a≠0,b、c 可以为零吗?
当a=0时
b+c = 0
当a≠0,b= 0当时a,≠ 0 , c = 0 时 当 ,a ≠ 0 ,b = c =0时 ,
a2+c = 0 a2+b = 0
a2 = 0
总结:只要满足a ≠ 0 ,b , c 可以为任意


典例精析
x23x20 x23x20 1
3y2 12 3y 3y22 3y10 3

24.1 一元二次方程课件(共20张PPT)

24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义

如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程复习优秀课件
主题1 一元二次方程及根的有关概念
定义及一般形式:
• 只含有_一__个_未知数,未知数的最高次数是 _二__次___的_整__式方程,叫做一元二次方程.
一般形式:_a_x_2_+_b_x_+_c_=_o__(_a_≠__o)
A
整式方程
B
只含有一个未知数
C
未知数的最高次数是2

,一次项系数是
,常数项是
.
【解析】项和系数都包括它前面的符号,所以二次项系数是2,一
次项系数是-3,常数项是-2.
答案:2 -3 -2
一元二次方程的项的系数包括它前面的符号,一次项的系数和常 数项可以为0.
主题2 一元二次方程的解法
步骤归纳
① 同除二次项系数化为1; ②移常数项到右边; ③两边加上一次项系数一半的平方; ④化直接开平方形式; ⑤解方程.
A.2 018
B.2 008
C.2 014
D.2 012
【解析】选A.∵x=1是一元二次方程ax2+bx+5=0的一个根,
∴a·12+b·1+5=0,∴a+b=-5,∴2013-a-b=2013-(a+b)=
2013-(-5)=2018.
3.(2014·启东模拟)一元二次方程2x2-3x-2=0的二次项系数
变成 (ax+b)(cx+d)=0形式.
【主题升华】 一元二次方程解法选择
若没有特别说明,解法选择的基本顺序是直接开平方法→因式分 解法→公式法.配方法.
【主题训练2】(2013·义乌中考)解方程x2-2x-1=0.
【自主解答】移项得:x2-2x=1,配方得:x2-2x+1=2,即(x-1)2=2,
是( ) A.x2+3=Байду номын сангаас C.(x+1)2=0
【解析】选C.

B.x2+2x=0

A
D.(x+3)(x-1)=0 项
B 项
C 项
D 项
一元二次方程的解
方程可化为x2=-3,方程无解 可化为x(x+2)=0,方程的解
为x1=0,x2=-2 方程的解为x1=x2=-1
方程的解为x1=1,x2=-3
2.(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,
x
b± b 2 4ac
2a
若b2-4ac<0,方程没有实数根.
3、用公式法解方程 3x2=4x+7
解:移项,得: 3x2-4x-7=0
a=3 b=-4 c=-7
∵b2-4ac=(-4)2-4×3×(-7)=100>0
∴ x(4) 10 025
∴x1= -1 x2 = 67
3
3
先变为一般形式, 代入时注意符号.
分解因式法步骤
步骤归纳
①右边化为0,左边化成两个因式 的积;
②分别令两个因式为0,求解.
4、用分解因式法解方程:(y+2)2=3(y+2)
解:原方程化为 (y+2) 2﹣ 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或 y-1=0 ∴y1=-2 y2=1 把y+2看作一个未知数,
开方得:x-1=± 2 ,
x=1± 2 ,所以x1=1+2
,x2=12 - .
【备选例题】(2014·齐齐哈尔模拟)方程a2-4a-7=0的解是 .
【解析】a2-4a-7=0,移项得:a2-4a=7,配方得:a2-4a+4=7+4, (a-2)2=11,两边直接开平方得:a-2=±1 1 a=21 ±1 . 答案:a1=2+1 1 ,a2=2 -1 1
m=
.
【解析】在方程x2+6x=7的两边同时加上一次项系数的一半
的平方,得x2+6x+32=7+32,
配方,得(x+3)2=16.所以,m=3.
答案:3
3.(2012·永州中考)解方程:(x-3)2-9=0. 【解析】移项得:(x-3)2=9,两边开平方得x-3=±3, 所以x=3±3,解得:x1=6,x2=0.
【主题训练3】(2013·广州中考)若5k+20<0,则关于x的一元二
次方程x2+4x-k=0的根的情况是( )
A.没有实数根
B.有两个相等的实数根
C.有两个不相等的实数根
D.无法判断
【自主解答】选A.Δ=16+4k= (5k+4 20)
5
有实数根.
,∵5k+20<0,∴Δ<0,∴没
1.(2013·福州中考)下列一元二次方程有两个相等实数根的
主题3 根的判别式及根与系数的关系
根的判别式的应用 1.根的判别式是什么? Δ=b2-4ac 2.根的判别式的作用:不解方程判断方程有无实数根. 3.一元二次方程的根的情况取决于Δ=b2-4ac的符号. (1)当Δ=b2-4ac>0时,方程有两个不相等的实数根. (2)当Δ=b2-4ac=0时,方程有两个相等的实数根. (3)当Δ=b2-4ac<0时,方程没有实数根. (4)对于以上三种情况,反之也成立.
D
二次项系数不为0
【主题训练1】(2014·怀化模拟)若(a-3) x a 2- 7 +4x+5=0是关于x
的一元二次方程,则a的值为( )
A.3
B.-3
C.±3
D.无法确定
【自主解答】选B.因为方程是关于x的一元二次方程,所以a2-
7=2,且a-3≠0,解得a=-3.
1.(2014·武威凉州模拟)下列方程中,一定是一元二次方程的是
1.(2013·鞍山中考)已知b<0,关于x的一元二次方程(x-1)2=b的 根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.有两个实数根 【解析】选C.∵(x-1)2=b中b<0,∴没有实数根.
2.(2013·吉林中考)若将方程x2+6x=7化为(x+m)2=16,则
• 1、用直接开平方法:(x+2)2=9
解:两边开平方,得: x+2= ±3 ∴ x=-2±3∴ x1=1, x2=-5
• 2、用配方法解方程4x2-8x-5=0
右边开平方后,根 号前取“±”.
两边加上相等项“1”.
步骤归纳
① 先化为一般形式;
②再确定a、b、c,求b2-4ac;
③ 当 b2-4ac≥ 0时,代入公式:
()
A.ax2+bx+c=0 C.3x2+2y- 1 =0
2
B. 1 x2=0
2
D.x2+ 4 -5=0
x
【解析】选B.A中的二次项系数缺少不等于0的条件,C中含有两
个未知数,D中的方程不是整式方程.
2.(2013·牡丹江中考)若关于x的一元二次方程ax2+bx+5
=0(a≠0)的解是x=1,则2013-a-b的值是( )
相关文档
最新文档