数列的概念单元测试题百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.
函数()2cos 2f x x x =-{}n a ,则3a =( ) A .
1312
π
B .
54
π C .
1712
π
D .
76
π 2.
3
…
…
,则 ) A .第8项
B .第9项
C .第10项
D .第11项
3.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11
02
a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+
D .71089a a a a +>+
4.在数列{}n a 中,10a =
,1n a +,则2020a =( ) A .0
B .1
C
.D
5.已知数列2233331131357135
1,,,,,,,...,,,, (2222222222)
n
n n ,则该数列第2019项是( ) A .
1019892 B .
10
2019
2 C .
11
1989
2 D .
11
2019
2 6.已知数列{}n a 的前n 项和为n S ,且2
1n S n n =++,则{}n a 的通项公式是( )
A .2n a n =
B .3,1
2,2
n n a n n =⎧=⎨≥⎩ C .21n a n =+
D .3n a n =
7.在数列{}n a 中,()11
11,1(2)n
n n a a n a --==+
≥,则5a 等于
A .
3
2
B .
53 C .85
D .
23
8.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n
n x b x -+=的实数根,
则10b 等于( ) A .24
B .32
C .48
D .64
9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有
()()()f x f y f x y ⋅=+,若112
a =
,()()
*
n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .
1324
n S ≤< B .
3
14
n S ≤< C .102
n S <≤
D .
1
12
n S ≤<
10.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
11.在数列{}n a 中,11a =,()*
1
22,21
n n a n n N a -=≥∈-,则3
a =( )
A .6
B .2
C .
2
3 D .
211
12.数列{}n a 满足12a =,111
1
n n n a a a ++-=+,则2019a =( ) A .3-
B .12-
C .
13
D .2
13.已知数列2
65n a n n =-+则该数列中最小项的序号是( )
A .3
B .4
C .5
D .6
14.已知在数列{}n a 中,112,1
n n n
a a a n +==+,则2020a 的值为( ) A .
1
2020
B .
1
2019
C .
11010
D .
11009
15.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32
f x f x f -=-=,数列
{}n a 满足11a =,且
21n n
S a n n
=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )
A .1
B .3
C .-3
D .0
16.数列11
11
,,,
57911
--,…的通项公式可能是n a =( ) A .1(1)32
n n --+
B .(1)32
n n -+
C .1(1)23
n n --+
D .(1)23
n
n -+
17.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .8523
3n
⨯- B .1
852
3
3n -⨯- C .8543
3
n
⨯-
D .1
854
3
3
n -⨯- 18.已知数列{}n a
满足112n a +=+112
a =,则该数列前2016项的和为( ) A .2015
B .2016
C .1512
D .
3025
2
19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么