离散时间信号和系统分析实验报告

合集下载

数字信号1

数字信号1

电子信息工程学系实验报告课程名称:数字信号处理实验项目名称:离散时间信号与系统的傅里叶分析 实验时间:班级:通信092 姓名:王博 学号:910705222实 验 目 的:1.用傅立叶变换对离散时间信号和系统进行频域分析。

实 验 环 境:Win7、MA TLAB 仿真软件实 验 内 容 及 过 程:1.已知系统用下面差分方程描述:)1()()(-+=n ay n x n y试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。

要求写出系统的传输函数,并打印()~j H e ωω曲线。

2.已知两系统分别用下面差分方程描述:)1()()(1-+=n x n x n y )1()()(2--=n x n x n y试分别写出它们的传输函数,并分别打印 ()~j H e ωω曲线。

3.已知信号)()(3n R n x =,试分析它的频域特性,要求打印()~j X e ωω曲线。

4.假设)()(n n x δ=,将)(n x 以2为周期进行延拓,得到()x n ,试分析它的频率特性,并画出它的幅频特性。

下面对实验用的MA TLAB 函数进行介绍。

1.abs功能:求绝对值(复数的模)。

y=abs(x):计算实数x 的绝对值。

当x 为复数时得到x 的模(幅度值)。

当x 为向量时,计算其每个元素的模,返回模向量y 。

2.angle 功能:求相角。

Ph=angle(x):计算复向量x 的相角(rad )。

Ph 值介于 -π和 +π之间。

3.freqz功能:计算数字滤波器H(z)的频率响应。

H=freqz(B,A,w):计算由向量w 指定的数字频率点上数字器H(z)的频率响应)(jwe H ,结果存于H 向量中。

向量B 和A 分别为数字滤波器系统函数H(z)的分子和分母多项式系数。

[H ,w]=freqz(B,A,M,’whole’):计算出M 个频率点上的频率响应,存放在H 向量中,M 个频率点存放在向量w 中。

数字信号处理实验报告 (实验四)

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。

2. 运用MA TLAB 验证离散时间傅立叶变换的性质。

二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。

由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。

在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。

为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。

例3.1 运用MA TLAB 画出以下系统的频率响应。

y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。

数字信号处理实验4 离散时间系统的频域分析

数字信号处理实验4  离散时间系统的频域分析

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。

二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。

三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMz N a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。

如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。

格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。

其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。

zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。

②roots 函数。

用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。

2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。

在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。

实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。

时域离散信号实验报告(3篇)

时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。

2. 掌握时域离散信号的表示方法。

3. 熟悉常用时域离散信号的产生方法。

4. 掌握时域离散信号的基本运算方法。

5. 通过MATLAB软件进行时域离散信号的仿真分析。

二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。

这类信号在时间上不连续,但在数值上可以取到任意值。

时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。

时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。

2. 图形表示法:用图形表示离散信号,如用折线图表示序列。

3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。

常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。

2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。

3. 正弦信号:表示信号在时间上呈现正弦波形。

4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。

时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。

2. 乘法:将两个离散信号相乘。

3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。

4. 反褶:将离散信号沿时间轴翻转。

三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。

2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。

3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

离散时间信号与系统的傅立叶分析 (实验报告)

离散时间信号与系统的傅立叶分析 (实验报告)

电子信息工程系实验报告课程名称:数字信号处理实验项目名称:离散时间信号与系统的傅立叶分析 实验时间:班级:通信091 姓名:刘跃维 学号:实 验 目 的:用傅立叶变换对离散时间信号和系统进行频域分析实 验 环 境:计算机 MATLAB 软件原理说明:对信号进行频域分析就是对信号进行傅立叶变换。

对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数;也可以由差分方程经过傅立叶变换直接求它的传输函数;传输函数代表的就是系统的频率响应特性。

但传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在π2~0之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。

当然,点数取得多一些,该包络才能接近真正的频率特性。

注意:非周期信号的频率特性是w 的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。

实验内容和步骤1.已知系统用下面差分方程描述:)1()()(-+=n ay n x n y试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。

要求写出系统的传输函数,并打印w e H jw ~)(曲线。

MATLAB 代码如下:B=1;A=[1,-0.95];subplot(2,3,3);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.95y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(2,3,1);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);subplot(2,3,2);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-1.5,1.5]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=1;A=[1,0.5];subplot(2,3,6);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)-0.5y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(2,3,4);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);subplot(2,3,5);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-1.5,1.5]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');运行结果如下图所示:2.已知两系统分别用下面差分方程描述:)1()()(1-+=n x n x n y)1()()(2--=n x n x n y 试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。

《信号与系统》离散信号的频域分析实验报告

《信号与系统》离散信号的频域分析实验报告

信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。

4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。

实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。

图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。

分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。

并观察是否存在频谱混叠。

图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。

(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。

(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。

(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。

11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。

2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。

3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。

为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。

序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。

通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。

四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

实验四 离散时间系统的频域分析

实验四 离散时间系统的频域分析

实验四 离散时间系统的频域分析1.实验目的(1)理解和加深傅里叶变换的概念及其性质。

(2)离散时间傅里叶变换(DTFT)的计算和基本性质。

(3)离散傅里叶变换(DFT)的计算和基本性质。

2.实验原理对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。

离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。

它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。

设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥=-=-å,并且其傅里叶变换为:()()(){}sp n iwt f t f nT t nT dt e d ¥¥-=---=åòF 。

这就是采样序列f(nT)的DTFT::()()iwTinwT DTFT n F ef nT e ¥-=-=å,为了方便,通常将采样间隔T 归一化,则有:()()iwinw DTFT n F ef n e ¥-=-=å,该式即为信号f(n)的离散时间傅里叶变换。

其逆变换为:()1()2iw DTFT inw F e dw f n e ppp-=ò。

长度为N 的有限长信号x(n),其N 点离散傅里叶变换为:1()[()]()knNN n X k DFT x n x n W -===å。

X(k)的离散傅里叶逆变换为:101()[()]()knN N k x n IDFT X k X k W N --===å。

DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域都是有限长序列。

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6离散时间系统的z域分析

北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。

2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。

3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。

F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。

此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。

数字信号处理实验三:离散时间信号的频域分析

数字信号处理实验三:离散时间信号的频域分析

实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。

2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。

二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。

此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。

当n取2的整数幂时变换的速度最快。

通常取大于又最靠近x的幂次。

(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。

当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。

当x的长度大于n时,fft函数将序列x截断,取前n点。

一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。

注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。

考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。

通过fft函数来分析其信号频率成分。

t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。

实验一 时域离散信号与系统分析(实验报告)-2015

实验一 时域离散信号与系统分析(实验报告)-2015

《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。

2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。

3、学会离散信号及系统响应的频域分析。

4、学会时域离散信号的MATLAB 编程和绘图。

5、学会利用MATLAB 进行时域离散系统的频率特性分析。

二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。

(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。

4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。

ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。

4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。

其中位移点数n1在起点n0和终点n2之间任意可选。

自选3个入口参数产生杆图。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

z变换 离散系统分析实验报告

z变换 离散系统分析实验报告

南昌大学实验报告(信号与系统)学生姓名: 学号 专业班级:实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012、5、24 实验成绩:MATLAB 基础上机训练一八一、实验项目名称: z 变换及离散时间系统的Z 域分析二、实验目的:(1)掌握利用MA TLAB 绘制系统零极点图的方法 (2)掌握离散时间系统的零极点分析方法(3)掌握用MATALB 实现离散系统频率特性分析的方法 (4)掌握逆Z 变换概念及MA TLAB 实现方法三、实验原理1)离散系统零极点线性时不变离散系统可用线性常系数差分方程描述,即()()N Miji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。

将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。

系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。

通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性; ● 离散系统的频率特性;2)离散系统零极点图及零极点分析1.零极点图的绘制设离散系统的系统函数为()()()B z H z A z =则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。

信号与系统实验四 离散时间LTI系统分析实验报告资料

信号与系统实验四  离散时间LTI系统分析实验报告资料

实验四 离散时间LTI 系统分析一、实验目的(一)掌握使用Matlab 进行离散系统时域分析的方法1、学会运用MATLAB 求离散时间系统的零状态响应2、学会运用MATLAB 求解离散时间系统的单位样值响应3、学会运用MATLAB 求解离散时间系统的卷积和(二)掌握使用Matlab 进行离散时间LTI 系统z 域分析的方法1、学会运用MATLAB 求离散时间信号的z 变换和z 反变换2、学会运用MATLAB 分析离散时间系统的系统函数的零极点3、学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系4、学会运用MATLAB 进行离散时间系统的频率特性分析二、实验条件装有matlab2015a 的计算机一台三、实验内容(一)熟悉两部分相关内容原理 (二)完成作业1、表示某离散LTI 系统的差分方程如下:)()()(.)(.)(12240120-+=---+n x n x n y n y n y其中,)(n x 为激励,)(n y 为响应。

(1)试用MATLAB 命令中的filter 函数求出并画出)(n x 为单位阶跃序列时系统的零状态响应;程序:a=[1 0.2 -0.24];b=[1 1];n=-5:30;x=uDT(n);y=filter(b,a,x);stem(n,y,'fill');xlabel('n');title('x(n)为单位阶跃序列时系统的零状态响应');运行结果:(2)试用MATLAB命令求出并画出系统的单位样值响应[注:分别用filter函数和impz 函数求解,并比较二者结果是否一致];程序:%filter函数a=[1 0.2 -0.24];b=[1 1];n=0:30;x=impDT(n);y=filter(b,a,x);subplot(211);stem(n,y,'fill');xlabel('n');title('filter函数求系统的单位样值响应');%impz函数subplot(212);impz(b,a,30);title('impz 函数求系统的单位样值响应');运行结果:(3)试用MATLAB 命令中的conv 函数求出并画出)(n x 为单位阶跃序列时系统的零状态响应[注:)()(n h n x 和各取前100个样点],并与(1)的结果进行比较; 程序:a=[1 0.2 -0.24]; b=[1 1]; n=-50:50; x1=impDT(n); y1=filter(b,a,x1);nx=-50:50; nh=-50:50;x=double(uDT(nx)); h=double(y1); y=conv(x,h); ny1=nx(1)+nx(1);ny=ny1+(0:(length(nx)+length(nh)-2)); stem(ny,y,'fill');xlabel('n');title('y(n)=x(n)*h(n)'); axis([-5,30,0,2.5]);运行结果:(4)试用MATLAB 命令求出此系统的系统函数)(z H ,并画出相应的零极点分布图,根据零极点图讨论该系统的稳定性; 程序:a=[1 0.2 -0.24]; b=[1 1 0]; zplane(b,a);legend('零点','极点'); title('零极点分布图');运行结果:结论:该因果系统的极点全部在单位圆内,故系统是稳定的。

离散系统的时域分析实验报告

离散系统的时域分析实验报告

实验2 离散系统的时域分析一、实验目的1、熟悉并掌握离散系统的差分方程表示法;2、加深对冲激响应和卷积分析方法的理解。

二、实验原理在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下:其输入、输出关系可用以下差分方程描述:输入信号分解为冲激信号,记系统单位冲激响应,则系统响应为如下的卷积计算式:当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。

三、实验内容1、用MATLAB求系统响应1)卷积的实现线性移不变系统可由它的单位脉冲响应来表征。

若已知了单位脉冲响应和系统激励就可通过卷积运算来求取系统响应,即程序:x=input(‘Type in the input sequence=’); %输入xh=input(‘Type in the impulse response sequence=’); %输入hy=conv(x,h); % 对x,h进行卷积N=length(y)-1; %求出N的值n=0:1:N; %n从0开始,间隔为1的取值取到N为止disp(‘output sequence=’); disp(y); %输出ystem(n,y); %画出n为横轴,y为纵轴的离散图xlabel(‘Time index n’); ylable(‘Amplitude’); % 规定x轴y 轴的标签输入为:x=[-2 0 1 -1 3]h=[1 2 0 -1]图形:2)单位脉冲响应的求取线性时不变因果系统可用MATLAB的函数filter来仿真y=filter(b,a,x);其中,x和y是长度相等的两个矢量。

矢量x表示激励,矢量a,b 表示系统函数形式滤波器的分子和分母系数,得到的响应为矢量y。

例如计算以下系统的单位脉冲响应y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3)程序:N=input(‘Desired impuse response length=’);b=input(‘Type in the vector b=’);a=input(‘Type in the vector a=’);x=[1 zeros(1,N-1)];y=filter(b,a,x);k=0:1:N-1;stem(k,y);xlabel(’Time index n’); ylable(‘Amplitude’);输入:N=41b=[0.8 -0.44 0.36 0.02]a=[1 0.7 -0.45 -0.6]图形:2、以下程序中分别使用conv和filter函数计算h和x的卷积y和y1,运行程序,并分析y和y1是否有差别,为什么要使用x[n]补零后的x1来产生y1;具体分析当h[n]有i个值,x[n]有j个值,使用filter完成卷积功能,需要如何补零?程序:clf;h = [3 2 1 -2 1 0 -4 0 3]; %impulse responsex = [1 -2 3 -4 3 2 1]; %input sequencey = conv(h,x);n = 0:14;subplot(2,1,1);stem(n,y);xlabel('Time index n'); ylabel('Amplitude');title('Output Obtained by Convolution'); grid;x1 = [x zeros(1,8)];y1 = filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('Time index n'); ylabel('Amplitude');title('Output Generated by Filtering'); grid;图形:因为在y=filter(b,a,x)中,利用给定矢量a和b对x中的数据进行滤波,结果放入y矢量中,y与x长度要相等,所以要使用x[n]补零后的x1来产生y1。

离散信号与系统的频谱分析实验报告

离散信号与系统的频谱分析实验报告

实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。

2.检验序列DFT 的性质。

3.掌握利用DFT (FFT )计算序列线性卷积的方法。

4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。

5.了解采样频率对谱分析的影响。

6.了解利用FFT 进行语音信号分析的方法。

二、实验设备1.计算机2.Matlab 软件7.0以上版本。

三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。

2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。

3.比较计算序列的DFT 和FFT 的运算时间。

4.利用FFT 实现带噪信号检测。

5.利用FFT 计算信号频谱及功率谱。

6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。

四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。

若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。

(2)实序列DFT 的性质。

若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。

(3)实偶序列DFT 的性质。

若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。

数字信号处理实验报告

数字信号处理实验报告

实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。

(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。

(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。

(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。

2. 实验报告要求●简述实验原理及目的。

●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。

●记录调试运行情况及所遇问题的解决方法。

3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。

比较有y(n)和yt(n)。

这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。

这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。

(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称:信号分析与处理 指导老师:齐冬莲 成绩:__________________ 实验名称:离散时间信号和系统分析 实验类型:信号实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的和要求
1.复习离散时间信号和系统的基本概念及其运算的实现;
2.通过仿真实验,建立对典型的离散时间信号和系统的直观认识。

二、实验内容和原理
1.在n=[-15,15]之间产生离散时间信号
⎩⎨
⎧≤≤-=others
n n n x 0
443)(
2.产生复信号
320)()8/(≤≤=n e n x n
j π
1010)()3.01.0(≤≤-=+-n e n x n
j
并画出它们的实部和虚部及幅值和相角。

3.已知序列
⎪⎪⎪⎩⎪⎪⎪⎨⎧==-===others
n n n n n x 0
4331
2102)(
分别画出x(n),x(n-3)和x(-n)。

4.已知序列{}{}4,3,2,1,0;1,1,1,1,1][,3,2,1,0;4,3,2,1][====k n y k n x ,计算][][n y n x *并画出卷积结果。

5.求离散时间系统
][]3[]2[2]1[4][n x n y n y n y n y =-+-+-+
的单位脉冲响应h[k]。

6.求
∙ x(k)=cos(n)u(n)的Z 变换;
∙ )
2)(1(1
)(z z z X ++=
的Z 反变换。

7.求系统传递函数 2
2121)(z
z z
z H +++=

零极点并画出零极点图;

系统的单位脉冲响应h(n)和频率响应)(Ω
j e H
专业:自动化(电气)
姓名:冷嘉昱
学号:3140100926 日期:2016.5.13 地点:东三409
三、实验程序源代码与结果
1.


线
2.⑴


源代码线
实部


线
虚部
幅值


线
相角⑵
源代码


线
实部
虚部
3.⑴


线



线

4.


线
5.


线
6.
7.⑴


线



线
单位脉冲响应


线
频率响应。

相关文档
最新文档