人教部编版七年级数学上册第十章 数据的收集、整理与描述

合集下载

初中数学第10章数据的收集与整理

初中数学第10章数据的收集与整理

第十章数据的收集、整理与描述测试1 统计调查(1)学习要求了解全面调查是一种收集数据的方法,会设计简单的调查问卷收集数据,会用统计表和扇形图描述数据;能根据问题查找有关资料,获得数据信息。

(一)课堂学习检测一、填空题1.做统计调查时,通常先采用问卷调查的方法______,为此要设计______;为了更清楚地了解数据所蕴含的规律,经常用表格______;为了更直观地看出表中的信息,还可以用统计图来______.2.在调查中,考察全体对象的调查叫做______.3.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为______部分(选择A、B、C、D填空).4.2008年4月16日至20日,在北京奥林匹克公园公共区举办了“好运北京”综合测试赛,测试期间,公共餐饮售卖点5日的营业额如图所示:则营业额最高的是______日,它和营业额最低的那天相比,相差______元.二、选择题5.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好),下表为我国某几年生活质量统计表:年份(年) 1989 1997 2001 2002恩格尔系数(%) 54.5 46.6 38.2 37.7则下列说法正确的是( ).(A)生活质量稳步提高(B)生活质量稳步下降(C)生活质量有升有降(D)生活质量稳定不变6.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是( ).(A)该班喜欢乒乓球的学生最多(B)该班喜欢排球与篮球的学生一样多(C)该班喜欢足球的人数是喜欢排球人数的1.25倍(D)该班喜欢其它球类活动的人数为5人三、解答题7.学校食堂的主食主要有:米饭、馒头、花卷、面条,你班上同学最喜欢哪种主食,请设计一个调查问卷.(二)综合运用诊断8.查阅动物百科全书,得到信息:丹顶鹤体长约140厘米,营巢于周围环水的浅滩或深草丛中,每次产卵2枚,为国家一级保护动物;绿孔雀体长100~230厘米,营巢于灌木丛、竹丛间的地面,每次产卵4~8枚,为国家一级保护动物;鸳鸯体长38~44厘米,营巢于树洞中,每次产卵7~12枚,为国家二级保护动物.请用一张统计表表示上述信息.9.以区域发展水平为分类标志,我国将全国划分为三个带状经济区,即东部地区、中部地区、西部地区,观察各区域面积扇形图,并回答问题:⑴哪个地区面积最大?哪个地区面积最小?(2)哪个地区的面积超过全国的一半?(3)看此图,你能知道中部地区的面积是多少吗?如果能,请计算;如果不能,请说明理由.10.有一位同学调查了一个月内全校学生的借书情况,数据如下:借书次数0次1次2次3次3次以上总计学生人数471 422 71 36 0对应圆心角度数(精确到0.1°)(1)先完成上面表格,然后根据数据画出扇形统计图;(2)根据扇形图分析学校图书馆的借书率高吗?(3)根据以上信息,请你向学校提出一条好的建议.11.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图,解答下列问题:(1)1999年该地区销售盒饭共______万盒;(2)该地区盒饭销量最大的年份是______年,这一年的年销量是______万盒;(3)计算出这三年中该地区平均每家快餐公司的年销售盒饭数量(精确到0.01万).答:(三)拓广、探究、思考12.阅读下面材料:中国人民银行资料显示,到2001年底,我国城乡居民银行存款数额为8.7万亿人民币.你想了解居民存款的目的是什么吗?下图是根据中国人民银行提供的资料制作的统计图,图中的百分比是受访者中选择不同存款的目的(每人只选一项)人数的百分比.观察上图后,研究下面问题:(1)选择人数最多的前四类的存款目的分别是______、______、______、______,这四类人数的百分比之和是______.(2)图中的各个百分比是如何得到的?所有百分比之和是多少?答:(3)假如总共调查了1000人,请你把不同存款目的的人数填写在下表中:存款目的买房装修购买汽车生意周转教育费养老费预防意外得利息购买资产购买大件其他人数/名(4)谈谈对上述数据调查、分析后的体会.答:测试2 统计调查(2)学习要求1.了解通过抽样调查收集处理数据的方法,明确用样本估计总体是统计的基本思想.2.通过实例理解总体、样本和样本容量的概念.会用折线图表示经过整理的数据,直观地反映数据规律.(一)课堂学习检测一、填空题1.抽样调查是只从总体中抽取______进行调查,然后根据______推断全体对象的情况;要考察的全体对象称为______,组成其的每一个考察对象称为______,被抽取的那些______组成一个______.2.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是__________________,个体是__________________,抽取的样本是__________________,样本容量是______.3.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果______,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作____________.4.下列调查的样本中不缺乏代表性的有哪几个______.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七(一)班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.5.如图的折线图反映的是某个家庭每天购菜情况(统计时间为一周),则这个星期中购菜钱数最大值与最小值的差为______元.二、选择题6.为了了解某校九年级学生的双眼视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).(A)每名学生的视力(B)60名学生的视力(C)60名学生(D)该校九年级学生的双眼视力7.为了反映某地区的天气变化趋势,最好选择( ).(A)扇形统计图(B)条形统计图(C)折线统计图(D)以上三种都不行8.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).(A)选取一个班级的学生(B)选取50名男生(C)选取50名女生(D)随机选取50名七年级学生三、解答题9.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么?”,整理收集的数据,绘制成下图.⑴学校采用的调查方式是______;(2)求喜欢“踢毽子”的学生人数,并在图中将“踢毽子”部分的图形补完整;(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.10.为了提高长跑成绩,小彬坚持锻炼并每周日记录下1500米的成绩:小彬1500米成绩变化统计表 (单位:分)锻炼的星期数 1 2 3 4 5 6 7小彬的成绩7.5 7.5 7.5 7 6.9 6.6 6.3(1)请画出能反映小彬1500米成绩变化的统计图;(2)如果要清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5个星期的跑步成绩,你会如何选择?(二)综合运用诊断一、填空题11.在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种______抽样;通常样本容量越大,估计精度就会越______(填“高”或“低”).12.为了让大家感受丢弃塑料袋对环境的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个);33,25,28,26,25,31.如果该班有45位学生,那么根据提供的数据估计本周全班各家平均丢弃塑料袋数量约为______.13.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2003年到2007年,这两家公司中销售量增长较快的是______。

第十章《数据的收集、整理与描述》教材分析

第十章《数据的收集、整理与描述》教材分析

七年级数学(人教版)第十章《数据的收集、整理与描述》教材分析西葛中学董介文一、教材的地位:在当今的信息社会里,我们需要用数据解决问题。

统计概率所提供的“运用数据进行推断”的思考方法已成为现代社会一种普遍使用并且强有力的思维方式。

数据的收集、整理与描述与我们的生活息息相关。

例如:日本的福田地震、海啸和核泄漏问题已成为全世界人民关注的焦点,每天都需要收集大量的统计数据,并对这些数据进行精细的分析,并得出结论,从而采取有效措施;全国的人口普查;一个家庭的收入与支出;分析中考学生的数学成绩;统计学生的视力情况、身高、体重等等,都需要收集数据、整理数据、描述数据、得出结论。

这一章的知识充分体现了数学来源于生活,并服务于生活,更注重了数学的时效性。

在人教版的数学课程中,已加强统计概率的份量,已将“统计与概率”列为知识领域之一,成为与“数与代数”“图形与几何”并重的内容,这使得义务教育阶段的数学课程结构更加合理,使学生解决问题的能力得到更全面的培养。

在近几年的中考120分中,与数据的收集、整理与描述相关的这些统计知识和概率知识所占的比重有所加大,占9分左右。

“统计与概率”领域主要学习收集、整理、描述和分析数据等处理数据的基本方法和概率的初步知识,这些内容在三个年级均有安排,教学要求随着年级的升高和学生水平的增长逐渐提高。

本套教材安排了三章。

这三章内容采用统计部分和概率部分分开编排的方式,前两章是统计,最后一章是概率。

统计部分的两章内容按照数据处理基本过程的不同侧重点来安排,分别是7年级下册的第10章“数据的收集、整理与描述”,8年级下册的第20章“数据的分析”;概率部分为9年级上册的第25章“概率初步”。

二、教材安排:第十章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程。

人教版《数据的收集、整理与描述》_PPT课件

人教版《数据的收集、整理与描述》_PPT课件
____6_0___株黄瓜,并可估计出这个新品种黄瓜平均每株结___1_3____根
黄瓜.
四清导航 【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
7.(10 分)(2016·贵阳)某校为了解该校九年级学生 2016 年适应性考试数学成绩, 现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按 A,B,C,D 四个 等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信 息解答下列问题:
4._用___样__本___估___计__总___体___是统计的基本思想.
四清导航 【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
四清导航 【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
一、选择题(每小题 8 分,共 8 分)
8.(2016·泰安)某学校将为初一学生开设 ABCDEF 共 6 门选修
课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调
(3)1 200×(46%+20%)=792(人),即这次适应性考试中数学成绩 达到 120 分(包含 120 分)以上的学生有 792 人
四清导航 【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载
【获奖课件ppt】人教版《数据的收集 、整理 与描述 》_ppt 课件1- 课件分 析下载

第十章数据的收集、整理与描述小结与复习导学案

第十章数据的收集、整理与描述小结与复习导学案
全面调查 抽样调查 收 集 数 据 整 描 分 析 数 据 得 出 结 论
制表
理 数 据
绘图
述 数 据
二、小组研学 1. 对学 对学问题一:回顾全面调查和抽样调查的优缺点,想想什么情况下适合全面调查?什么情况下 适合抽样调查? 例 1.下列调查方式合适的是( ) A. 了解炮弹的杀伤力,采用全面调查的方式 B. 了解全国中学生的体能状况,采用全面调查的方式 C. 了解一批罐头产品的质量,采用抽样调查的方式 D. 对载人航天器“神州十号”零部件的检查,采用抽样调查的方式 对学问题二:回顾总体、个体、样本和样本容量的概念,体会样本和总体之间的关系. 例 2.为了了解某县八年级学生的体重情况,从中抽取了 200 名学生进行体重测试. 在这个 问题中,下列说法错误的是( ) A.全县八年级学生的体重是总体 B.每名学生的体重是个体 C.200 名学生的体重是一个样本 D.200 名学生是样本容量 2.群学 群学问题一:与收集数据、整理有关的问题 例 3. 某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年.为了了解该市此项活 动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查: A. 从一个社区随机选取 200 名居民; B. 从一个城镇的不同住宅楼中随机选取 200 名居民; C. 从该市公安局户籍管理处随机抽取 200 名城乡居民作为调查对象,然后进行调查. (1)在上述调查方式中,你认为比较合理的一个是 (填序号) (2)下表是有一种比较合理的调查方式所得到的 200 名居民每天锻炼时间的数据统计表, 请补全统计表.
课堂小结:学生举 手发言,老师点评 并鼓励,引导学生 对本节课的重点和 难点进行回顾,以
群学问题二:频数、频数分布直方图 突出重要的知识技 例 4. 为了进一步了解七年级学生的身体素质情况,体育老师对七年级随机抽取 50 名学生进行 1 分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如 能;帮助学生把握 知识要点,理清知 下图所示. 组别 次数 x 频数(人数) 第1组 第2组 第3组 第4组 第5组

人教版数学七年级第十章数据的收集,整理与描述单元测试精选(含答案)3

人教版数学七年级第十章数据的收集,整理与描述单元测试精选(含答案)3

人教版数学七年级第十章数据的收集,整理与描述单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④2.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人3.在下列调查方式中,较为合适的是()A.为了解深圳市中小学生的视力情况,采用普查的方式B.为了解龙岗区中小学生的课外阅读习惯情况,采用普查的方式C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式4.在计算机上,为了让使用者清楚、直观地看出硬盘的“已用空间”占“整个磁盘空间"的百分比,使用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.三种统计图都可以5.南北朝著名的数学家祖冲之算出圆周率约为3.1415926,在3.1415926这个数中数字“1”出现的频数与频率分别为()A.2,20%B.2,25%C.3,25%D.1,20%6.下列调查中,最适合采用抽样调查的是()A.乘坐飞机时对旅客行李的检查B.了解小明一家三口人对端午节来历的了解程度C.了解我校初2016级1班全体同学的视力情况D.了解某批灯泡的使用寿命7.如图,是小垣同学某两天进行体育锻炼的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟,根据统计图,小垣这两天体育锻炼时间最长的项目是A.跳绳B.引体向上C.跳远D.仰卧起坐8.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②→④→③D.②→④→③→①9.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下列叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查10.为了解某校2000名学生的视力情况,随机抽取了该校100名学生的视力情况.在这个问题中,样本容量是()A.2000名学生B.2000C.100名学生D.10011.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工12.某校团委为了解本校八年级500名学生平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校八年级500名学生平均每晚的睡眠时间;其中正确的是()A.①②B.①④C.②③D.②④13.为了解福清七年级学生的视力情况,现从全市七年级学生中随机抽取500名学生进行调查,下列说法不正确...的是一项是()A.这种调查是抽样调查B.个体是每个学生的视力情况C.样本容量是500D.若抽到的都是城区学生,则样本更具有代表性14.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是() A.购买100个该品牌的电插座,一定有99个合格B.购买1000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买一个该品牌的电插座,也可能不合格15.某校开展以“了解传统习俗,弘扬民族文化”为主题的实践活动.实践小组就“是否知道端午节的由来”对部分学生进行了调查,调查结果如图所示,其中不知道的学生有8人.下列说法不正确的是()A.被调查的学生共有50人B.被调查的学生中“知道”的人数为32人C.图中“记不清”对应的圆心角为60°D.全校“知道”的人数约占全校总人数的64%评卷人得分二、填空题16.某自然保护区的工作人员,欲估算该自然保护区栖息的某种鸟类的数量.他们首先随机捕捉了500只这种鸟,做了标记之后将其放回,经过一段时间之后,他们又从该保护区随机捕捉该种鸟300只,发现其中20只有之前做的标记,则该保护区有这种鸟类大约______只.17.甲、乙两家汽车销售公司根据近几年的销售量,分别制作了如图所示的折线统计图,试判断:从2014年到2018年,这两家公司中销售量增长较快的是_______公司.18.下列调查:①调查一批新研制出的尖端武器的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中适合抽样调查的是____________.(写序号)19.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选择了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为____名.评卷人得分三、解答题20.某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2≤t<340.13≤t<4100.254≤t<5a0.155≤t<68b6≤t<7120.3合计401(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?21.某校为了组织一次球类对抗赛,在本校随机抽取了若干名学生,对他们每个人最喜欢的一项球类运动进行了统计,将调查结果整理后绘制成如图所示的不完整的统计图,请你依据以上的信息回答下列问题:(1)求本次被调查的学生人数;(2)通过计算补全条形统计图;(3)若全校有4000名学生,请你估计该校最喜欢篮球和足球运动的学生共有多少人?22.我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求.深圳市教育局督导组为了调查学生对“节约教育”内容各学校全面持续开展“光盘行动”的了解程度(程度分为:“A:了解很多”、“B:了解较多”、“C:了解较少”、“D:不了.我们将这次调查的结果绘制了以下两幅解”),对本市某所中学的学生进行了抽样调查不完整统计图:根据以上信息,解答下列问题:()1补全条形统计图;()2本次抽样调查了______名学生;在扇形统计图中,求出“D”的部分所对应的圆心角度数.()3若该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.23.为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_________名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为__________(2)将条形统计图补充完整(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图24.某市教育行政部门为了解初三学生每学期参加综合实践活动的情况,随机抽样调查了某校初三学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)该校初三学生总数为人;(2)分别求出活动时间为5天、7天的学生人数为、,并补全频数分布直方图;(3)扇形统计图中“活动时间为5天”的扇形所对圆心角的度数是;(4)在这次抽样调查中,众数和中位数分别是、;(5)如果该市共有初三学生96000人,请你估计“活动时间不少于5天”的大约有多少人?25.保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占15,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?26.在新的教学改革的推动下,某中学初年级积极推进英语小班教学.为了了解一段时间以来的英语小班教学的学习效果,年级组织了多次定时测试,现随机选取甲,乙两个班,从中各抽取20名同学在某一次定时测试中的英语成绩,过程如下,请补充完整收集数据:甲班的20名同学的英语成绩统计(单位:分)86906076928356768570 96969068788068968581乙班的20名同学的英语成绩统计(满分为100分)(单位:分)78967576828760548772 100827886709276809878整理数据:(成绩得分用x表示)数量分数/0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100班级甲班(人数)13466乙班(人数)11864分析数据:请回答下列问题:(1)完成下表:平均分中位数众数甲班80.683a=乙班80.35b=78甲班成绩得分扇形图(x表示分数)(2)在班成绩行分的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数,c=.(3)根据以上数据,你认为班(填“甲”或“乙”)的同学的学习效果更好一些,你的理由是:;(4)若英语定时成绩不低于80分为优秀,请估计全年级1600人中优秀人数为多少?27.为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形B的圆心角度数是;(3)请补全条形统计图;(4)若该市“上班族”约有15万人,请估计乘公交车上班的人数.28.某校为了了解本校七年级学生课外阅读的爱好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了多少名学生?(2)求扇形统计图中“其它”中的扇形圆心角的度数.(3)补全条形统计图.29.为迎接2020年中考,某中学对全校九年级学生进行了一次数学期末模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)在这次调查中,一共调查了多少名学生;(2)将条形统计图补充完整;(3)若该中学九年级共有860人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?30.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宜传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其它垃圾)根据统计图提供的信息,解答下列问题:(1)在这次抽样调查中,一共有吨的生活垃圾;(2)请将条形统计图补充完整;(3)扇形统计图中,B所对应的百分比是,D所对应的圆心角度数是;(4)假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,请估计每月产生的有害垃圾多少吨?31.某数学兴趣小组在本校九年级学生中以“你最喜欢的项体育运动"为主体进行了抽样调查,并将调查结果绘制成下表和下图.项目篮球乒乓球羽毛球跳绳其他人数a121058请根据图表中的信息完成下列各题:(1)本次共调查学生______名;(2)a=______;(3)在扇形图中,“跳绳”对应的扇形圆是______.32.在大课间活动中,同学们积极参加体育锻炼,小明在全校随机抽取一部分同学就“我最喜欢的体育项目”进行了一次抽奖调查.下图是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)小明共抽取_____名学生;(2)补全条形统计图;(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是_______;(4)若全校共有2130人,请你估算“其他”部分的学生人数.33.为弘扬中华传统文化,某校组织八年级800名学生参加汉字听写大赛为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的模数分布表:分数段50.5﹣60.560.5﹣70.570.5﹣80.580.5﹣90.590.5﹣100.5频数163050m24所占百分8%15%25%40%n比请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为,表中m=.n=;(2)补全图中所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?34.“分组合作学习”成为我市推动课堂教学改革,打造自主高效课堂的重要举措.某中学从全校学生中随机抽取100人作为样本,对“分组合作学习”实施前后学生的学习兴趣变化情况进行调查分析,统计如下:分组前学生学习兴趣分组后学生学习兴趣请结合图中信息解答下列问题:(1)求出分组前学生学习兴趣为“高”的所占的百分比为;(2)补全分组后学生学习兴趣的统计图;(3)通过“分组合作学习”前后对比,请你估计全校2000名学生中学习兴趣获得提高的学生有多少人?请根据你的估计情况谈谈对“分组合作学习”这项举措的看法.35.漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_▲人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?36.某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.37.某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:(1)本次调查人数共人,使用过共享单车的有人;(2)请将条形统计图补充完整;(3)如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?38.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为%,该扇形圆心角的度数为;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?39.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.40.为了解市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为人,图2中,n=;(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,求“C.基本了解”所在扇形的圆心角度数;(4)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?41.下面是某班40名学生立定跳远的得分记录:2,4,3,5,3,5,4,4,3,51,5,3,3,2,4,3,5,4,44,5,2,3,2,5,4,5,2,34,4,3,5,2,4,5,4,3,4(1)完成下列统计表得分记录人数百分率%12345(2)用条形统计图表示上面的数据;(3)用扇形统计图表示不同得分的同学人数占班级总人数的百分率.42.为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?43.我校有2000名学生,为了解全校学生的上学方式,我校数学兴趣小组在全校随机抽取了150名学生进行抽样调查。

人教版七年级数学下册《第十章-数据的收集、整理与描述》知识点归纳

人教版七年级数学下册《第十章-数据的收集、整理与描述》知识点归纳

人教版七年级数学下册《第十章-数据的收集、整理与描述》知识点归纳第十章数据的收集、整理与描述
二、知识定义
全面调查:考察全体对象的调查方式叫做全面调查。

抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

总体:要考察的全体对象称为总体。

个体:组成总体的每一个考察对象称为个体。

样本:被抽取的所有个体组成一个样本。

样本容量:样本中个体的数目称为样本容量。

频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

频率:频数与数据总数的比为频率。

数据的收集、整理、描述与分析

数据的收集、整理、描述与分析

破坏性的调查不宜用全面调查;
(2)抽样调查
定义:只抽取一部分对象进行调查,然后根据调查数据来推断全体对
象的情况,这种方法是抽样调查。
总体:要考察的全体对象叫做总体;
个体:组成总体的每一个考察对象叫做个体;
样本:从总体中抽取的那一部分个体叫做样本。
样本容量:样本中个体的数目叫做样本容量(样本容量没有单位);
特点:扇形图能够用扇形的面积表示出各部分在总体中所占的百分 比、易于显示每组数据相对于总数的大小; 优点:能够清楚地表示出各部分在总体中所占的百分比(表明百分 比); 缺点:不能从统计图中看出每个项目的具体数量; 步骤:①计算百分数;②计算圆心角;③画出圆和扇形并标明百分 数;(用整个圆表示总体,每个扇形代表总体的一部分,用各个扇形的 大小表示各部分数据,圆心角百分比) (3)折线统计图 图形: 30% 10% 百分率 20% 40% 0%
地整理数据;
优点:统计表中的数据比较准确、详实,可以清楚地反映各个量之间
的真实情况;
缺点:统计表得到的信息需要进行分析,表达不够直观;
2、统计图
(1)条形统计图
定义:用一个单位长度在坐标系中表示一定的数量,根据数量的多少
画出长短不同的直线;
图形:
15
5
人数
10
20
新闻
动画
0
节目类别
体育 娱乐
4 10
二、回顾与思考 Ⅰ、数据的收集 1、收集数据的方法(在收集数据时,为了方便统计,可以用字母表示 调查的各种类型。)
①问卷调查法:为了获得某个总体的信息,找出与该信息有关的因 素,而编制的一些带有问题的问卷调查。
②媒体调查法:如利用报纸、电话、电视、网络等媒体进行调查。

人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例

人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
2.教师可以提出问题:“如果我们想要知道这次跳远比赛的成绩分布情况,我们应该如何收集和整理数据呢?”引导学生思考和讨论。
3.教师可以引导学生回顾之前学过的数据处理方法,如用表格整理数据,用图表展示数据等,激发学生的学习兴趣和回忆。
4.教师可以总结之前的知识,并提出本节课的学习目标,引导学生明确本节课的学习内容和要求。
3.游戏情境:设计有趣的数学游戏,如数据接龙、图表猜猜看等,让学生在游戏中体验数据的收集、整理与描述的过程,提高学生的实践能力。
4.媒体情境:利用多媒体课件、视频等资源,为学生提供丰富的数据资源,丰富学生的数据感知,帮助学生更好地理解和掌握数据处理的方法。
(二)问题导向
1.教师可以通过设计具有挑战性和启发性的问题,引导学生主动思考,激发学生的求知欲,激发学生解决问题的动力。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第十章“数据的收集、整理与描述”为主题,旨在通过实际教学案例,探讨如何在数学教学中有效地引导学生掌握数据的收集、整理与描述的方法,提高学生的数据处理能力,培养学生的逻辑思维和分析问题的能力。
在实际教学中,教师可以通过设计丰富多样的教学活动,如小组合作、动手操作、问题探究等,激发学生的学习兴趣,引导学生主动参与,从而更好地理解和掌握数据收集、整理与描述的方法。同时,教师还需关注学生的个体差异,给予不同程度的学生个性化的指导,确保每个学生都能在课堂上得到有效的锻炼和提升。
(二)讲授新知
1.教师可以通过讲解和示例,向学生介绍数据的收集方法,如调查、实验等,并解释每种方法的优缺点。
2.教师可以通过讲解和示例,向学生介绍图表的制作方法,如条形图、折线图、饼图等,并解释每种图表的特点和适用场景。

人教版七年级数学下册第十章数据的收集,整理与描述教学设计

人教版七年级数学下册第十章数据的收集,整理与描述教学设计
2.教学过程:
(1)教师将学生分成若干小组,每组根据调查问题,设计数据收集方案。
(2)小组内部分工合作,开展数据收集工作,确保数据的准确性和全面性。
(3)小组之间分享收集到的数据,进行数据整理和描述,讨论如何从数据中发现问题、总结规律。
(四)课堂练习
1.教学内容:针对午餐偏好调查数据,进行课堂练习,巩固所学知识。
人教版七年级数学下册第十章数据的收集,整理与描述教学设计
一、教学目标
(一)知识与技能
1.理解数据收集的意义,掌握数据收集的基本方法,如问卷调查、观察、访谈等,并能根据实际问题选择合适的方法。
2.学会整理和描述数据,掌握基本的整理和描述数据的方法,如制作表格、绘制统计图表(条形图、折线图、饼图等),并能从中提取有价值的信息。
3.能够运用所学知识,对实际问题进行数据的收集、整理和描述,从而解决实际问题。
4.培养学生的逻辑思维能力和数据分析能力,提高学生运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论等方式,让学生在数据收集、整理和描述的过程中,学会与他人合作、沟通,培养团队协作能力。
2.引导学生运用观察、分析、归纳等方法,从数据中发现规律和问题,培养学生的观察能力和逻辑思维能力。
(1)明确各小组成员的职责,确保每位学生都能参与其中,发挥各自的优势。
(2)定期组织小组讨论,让学生分享各自的心得和经验,互相学习,共同提高。
3.案例分析法,选择具有代表性的实际案例,引导学生运用所学知识进行分析,提高学生学以致用的能力。
4.重视过程评价,关注学生在数据收集、整理与描述过程中的表现,及时给予反馈和指导,帮助学生发现并解决问题。
3.结合生活实例,让学生在实践中掌握数据的收集、整理和描述方法,提高学生学以致用的能力。

初中七年级数学《数据的收集、整理与描述》期末复习建议

初中七年级数学《数据的收集、整理与描述》期末复习建议

第十章《数据的收集、整理与描述》期末复习建议1★样本和总体的关系是部分与整体的关系,选取样本的目的是了解总体。

★全面调查是通过调查总体的方式来收集数据;抽样调查是通过调查样本的方式来收集数据。

★抽样调查对样本最基本的要求是,样本在总体中要合适或具有典型性。

2、统计图表:(1)扇形统计图(2)条形统计图(3)折线统计图(4)频数分布直方图★选择合适的统计图时,要根据给出的数据的特点来选择,如果数据表示的是各部分所占百分比,宜用扇形统计图;如果数据表示的是变化的情况,宜用折线统计图;如果数据表示的是具体数字,宜用条形统计图★直方图:用一组长方形去表达统计数据分布状态的统计图★组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)★频数:落在各个小组内的数据的个数。

★制作直方图的步骤:①计算最大值与最小值的差;②决定组距和组数;③列频数分布表;④画频数分布直方图。

二、知识点练习:1. (1) 为了了解一批显像管的质量,从中抽取20个进行试验检查,这是 (2) 为了了解某班同学对球类运动的喜好情况,对全班同学进行调查,这是 .(以上两题填“全面调查”或“抽样调查” )。

(3) 小芳为了知道饭煮熟了没有,从饭煲中舀出一勺饭尝试,这样抽样调查的方法 (填“合适”或“不合适” )。

(4) 为了了解某校初中毕业生的身高情况,从中抽取了20名学生测量身高,在这个问题中,总体是 ;个体是 ; 样本是 ;样本容量是 。

2. 利用统计结果作出判断或决策:(06福州)今年5·18海交会上,台湾水果成为一大亮点,如图63是其中四种水果成交金额的统计图, 从中可以看出成交金额比菠萝多的水果是( ) A.香蕉 B.芒果 C.菠萝 D.猕猴桃三、 例题:例1、 现从我市区近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘 出如图所示的统计图,请结合图82中的信息, 解答下列问题:(l) 卖出面积为110-130cm 2,的商品房有 套, 并在右图中补全统计图;(2) 从图中可知,卖出最多的商品房约占全部卖出的商品房的 %;(3) 假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?例2、(07鄂尔多斯)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图78所示,请你根据图中的信息回答问题.图63人数 100 200300 400 500 45035015060%14%16% 文体活动 社会调查 社区服务 科技活动图82(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?例3:(2009年齐齐哈尔市)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________;(3)求该地区喜爱娱乐类节目的成年人的人数.四、 基础训练(A 组)1、(2009宁波)下列调查适合作全面调查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 2、(2009杭州) 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A .调查全体女生 B .调查全体男生C .调查九年级全体学生D .调查七、八、九年级各100名学生 3、(2009年新疆)要反映乌鲁木齐市一天内气温的变化情况宜采用( ) A .条形统计图 B .扇形统计图 C .频数分布直方图 D .折线统计图4、(2009湘西)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( ) A .个体B .总体C .样本容量D .总体的一个样本5、(2009年肇庆市)如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°书画电脑35% 音乐 体育人数(人)电脑 体育 音乐 书画 兴趣小组2824 20 16 12 8 4图66图67则平均成绩大于或等于60的国家个数是( )A .4B .8C .10D .12图2 6、(2009年安徽)如图2,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .7、 (07三明)某班有40名学生,其中男、女生所占比例如图65所示,则该班男生有 人. 8、(07安顺) 某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有 件不合格.9、(07宁德)育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图66中“电脑”部分所对应的圆心角为 度; (2)在图67中,将“体育”部分的图形补充完整;(3)爱好“书画”的人数占被调查人数的百分数 是 ;(4)估计育才中学现有的学生中,有 人爱好“书画”.10、(07长沙)为了改进银行的服务质量,随机抽查了30名顾客在窗口办理业务所用的时间(单位: 分钟).图68是这次调查得到的统计图.请你根 据图中的信息回答下列问题:(1)办理业务所用的时间为11分钟的人数是 ; (2)补全条形统计图; 五、能力训练(B 组)11、 (07四川)某商店按图69-1给出的比例,从甲、乙、丙三个厂家共购回饮水机150台,商店质检员对购进的这批饮水机进行检测,并绘制了如图69-2所示的统计图.请根据图中提供的信息回答下列问题.图658 9 10 11 12 13 时间24 6 8 10 人数图688 6 4 2 O 40 50 60 70 80 图1 成绩 频数(国家个数)(1)求该商店从乙厂购买的饮水机台数? (2)求所购买的饮水机中,非优等品的台数?(3)从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?12.、(2009年福州)以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:(1)从以上统计图可知,九年级(1)班共有学生人; (2)图7-1中a 的值是 ;(3)从图7-1、7-2中判断,在这次读书月活动中,该班学生每日阅读时间 (填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了 人。

第十章数据的收集、整理与描述知识交流

第十章数据的收集、整理与描述知识交流

第十章数据的收集、整理与描述本章教学目标:1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息。

2.通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。

3.了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。

4.学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。

6.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

具体内容和课时分配如下:10.1 统计调查约3课时10.2 直方图约2课时10.3课题学习从数据谈节水约2课时数学活动小结约2课时10.1统计调查(1)教学目标:1、了解通过全面调查收集数据的方法.2、会设计简单的调查问卷,收集数据.3、掌握划记法,会用表格整理数据;体会表格在整理数据中的作用.4、体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.教学重点:参与从收集数据到描述数据的全过程,利用统计图合理的描述数据,体会统计对决策的作用。

教学难点:组织有效的统计活动,使学生在活动中学会合作、学业全交流、学会描述。

解决重难点的方法:1、通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)。

2、引导学生感受渗透与体现于统计知识和方法之中的统计思想。

教学过程设计:一.问题引入问题:2008年奥运会即将在北京召开。

问国际奥委会是如何决定的?例:你最喜欢的季节是哪一个?在学校课程中你最喜欢的科目是什么?二.授新1.集数据,设计调查问卷。

2.整理数据。

三.描述数据为了更直观地看出表中的信息,还可以画出条形图和扇形图来描述数据。

《数据的收集、整理与描述》综合指导-练习及解析

《数据的收集、整理与描述》综合指导-练习及解析

第十章《数据的收集、整理与描述》综合指导知识扫描、数据处理的一般过程:、表示数据的两种基本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.、常见统计图)条形统计图:能清楚地表示出每个项目的具体数目;)扇形统计图: 能清楚地表示出各部分与总量间的比重;用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图。

制作扇形统计图的三个步骤:°计算各部分在总体中所占的百分比;°计算各个扇形的圆心角的度数=°×该部分占总体的百分比;°在圆中依次作出上面的扇形,并标出百分比。

扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大。

扇形的面积越小,圆心角的度数越小。

)折线统计图: 能反映事物变化的规律. 通过用数据点的连线来表示一些连续型数据的变化趋势,它能清楚地反映事物的变化情况。

、全面调查与抽样调查)全面调查:我们把对全体对象的调查称为全面调查.)抽样调查:从总体中抽取部分对象进行的调查叫抽样调查.在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。

、直方图基本概念()在数据统计中,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比称为频率。

频率反映了各组频数的大小在总数中所占的份量。

频率×%就是百分比。

()在数据统计中,有时将数据按一定方式分成若干组,则我们把分成的组的个数称为组数,每一组两个端点数据的差叫做组距。

、直方图的主要特征通过长方形的面积表示频数,反映落在同一事件中较多数据在不同区域中的分布特点。

它能:()清楚显示各组频数分布的情况;()易于显示各组之间频数的差别、频数分布直方图()画频数分布直方图时,首先要找出这组数据的最大值和最小值,求出极差;分组时,组距和组数没有固定标准,一般当数据在个以内时,分成~个组列出频数分布表,累计各组的频数;最后画出频数分布直方图。

2015-2016人教版七年级数学下册第十章 《数据的收集、整理与描述》教材分析 文字讲稿

2015-2016人教版七年级数学下册第十章  《数据的收集、整理与描述》教材分析 文字讲稿

第十章《数据的收集、整理与描述》教材分析概论新课标将初中数学内容分为了四个部分“统计与概率”,“数与代数”,“空间和图形”和“综合与实践”. 人教版教材将“统计与概率”内容分三章呈现,其中统计部分两章,概率部分一章. 统计部分第一次安排在七年级下的第10章“数据的收集、整理与描述”,第二次安排在八年级下的第20章“数据的分析”.一、课程学习目标1. 经历收集、整理、描述和分析数据的活动,了解数据处理的过程. 了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷收集数据.2. 体会抽样的必要性,通过实例了解简单随机抽样,初步体会用样本估计总体的思想. (P144实验与探究:捉----放-----捉问题)设计活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解实验也是获得数据的有效方法,就显得尤为重要.3. 会制作扇形图,能用统计图直观、有效地描述数据.4. 通过实例,了解频数及频数分布的意义,能画频数分布直方图(等距分组),能利用频数分布直方图解释数据中蕴含的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.5.能解释统计结果,根据结果做出简单的判断和预测,并能进行交流.(体现了小组合作式的学习方法)6. 通过表格,折线图,趋势图等,感受随机现象的变化趋势.(备注:趋势图,也可称为统计图或统计图表,是以统计图的呈现方式,如柱型图、横柱型图、曲线图、饼图、点图、面积图、雷达图等,来呈现某事物或某信息数据的发展趋势的图形. )7.通过经历统计活动,初步建立数据分析观念,感受统计在生活和生产中的作用,增强学习统计的兴趣.二、本章知识结构图三、 课时安排本章教学时间约需10-11课时,具体分配如下(仅供参考):10.1 统计调查 约3课时 10.2 直方图 约2课时 10.3 课题学习:从数据谈节水 约3课时( 增加1课时)数学活动与小结 约2课时四、 教学建议1、 一些想法(1) 注意培养学生对统计思想的全面理解教学中,除了通过具体案例使学生认识有关统计知识和统计方法外,应引导学生感受渗透于统计知识和方法之中的统计思想. 对统计思想的了解有助于把握解决统计问题的大方向,也有助于加深理解学习过程中的局部问题. (2) 改进学生的学习方式,注重“从做中学”对于条形图、折线图、扇形图是学生已经熟悉的知识,因此在本章教学时,应将重点放在引领学生通过实际案例亲身经历数据处理的基本过程,深入理解各种统计图的特点,避免学生产生是对已学知识简单重复的误解. 而在课题学习当中,更应引导学生设计一个完整的统计过程,既可避免抽象的概念和方法带来的学习困难,又可使学生感受统计与实际生活的联系,体会数据处理在解决现实问题中的作用. 让学生真实的经历了实际问题的统计过程,经历了数据收集以及处理工作中的各种问题,有效的提高了学生的学习热情以及知识的牢固程度.(3) 注重向学生呈现数据处理的完整过程条形图扇形图折线图直方图趋势图全章用了四个问题和一个课题学习来阐述数据收集、整理和描述的知识和方法,每个实例基本上都经历了收集数据、整理数据、描述数据和分析数据的过程. 对本章中的每个问题,一方面要按照数据处理过程中不同阶段的侧重点,来逐步安排相关的重点内容(如何调查、收集数据;如何列表、整理数据;如何画图、描述数据等),另一方面,还要注意每个问题都向学生展现出数据处理的全过程,而不是“就头论头,就尾论尾”地把统计过程割裂开来,这样才能更好的培养学生统计的观念意识.()⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧析的结论小组讨论交流,得出分分析数据图、折线图条形图、直方图、扇形统计图统计表描述数据用划记法记录数据理表格设计简洁清晰的数据整整理数据展开调查选择调查方法确定调查对象明确调查问题收集数据数据处理的基本过程: 注:这些环节有时是有交错的,不一定能分的很清楚.(4)培养学生认真读图的好习惯由于近几年的中考命题特点,对学生的识图能力有较高要求,所以应在本章开始培养学生认真读图的好习惯,使学生形成良好的识图能力,能够从统计图表中准确地读取数据. (5)准确把握教学要求①关于分析数据:它在本章中已经出现了,但属于较为简单的情形. 本套教科书在八年级下册第20章“数据的分析”中将对它有更深入的安排,而本章对分析数据的要求仅是通过简单实例,让学生初步感受它是统计全过程中必要的一环,初步体会统计思想和统计过程. 因此,在本章教学时,要特别注意准确把握教学要求,不要过早地出现较复杂分析数据的问题.②关于频数分布直方图:一般直方图是用矩形面积表示频数的,而对于等距分组的情形,为看图与画图方便可以改为用矩形的高表示频数. 本节的问题都属于后一情形,因此教学中不必过多涉及一般直方图,而应重点介绍用矩形的高表示频数的直方图.③通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)2、具体内容§10.1统计调查 (一)数据收集问题1.数据来源数据的来源一般有两条渠道:一条是通过统计调查或科学实验直接得到第一手统计数据,另一条是通过查阅资料等间接获得第二手统计数据. 在本章的教学过程中,可以考虑让学生对两种收集渠道都进行尝试.2.调查问卷的设计①设计调查问卷的步骤:确定调查目的; 选择调查对象;设计调查问题②设计调查问卷要注意:问卷设计:一般包括调查中所提问题的设计、问题答案的设计、以及提问顺序的设计等.几点要求:问题设置要紧紧围绕调查的目的;提问不能涉及提问者自己的观点;问卷提供的答案尽量全面;问题要简明,问卷形式简捷,便于答卷便于整理.例1调查问卷中下列问题及答案的设置好不好? 为什么?(1) 我认为猫是一种很可爱的动物, 你说呢?(A) 非常同意(B) 同意(C) 不确定(D) 不同意(E) 坚决反对(2) 你经常躺在床上看书吗?(A) 经常(B) 不经常例2学校食堂的主食主要有:米饭、馒头、花卷、面条,你班的同学最喜欢哪种主食,请设计一个调查问卷.例3两名同学在调查时使用下面两种提问方式,哪种更好些?(1)难道你不认为科幻片比武打片更有意思吗?(2)你更喜欢哪一类电影——科幻片还是武打片?3.全面调查与抽样调查(1)全面调查与抽样调查的区别:全面调查可以得到全面数据,但是工作量相对较大;而抽样调查只能得到局部数据,可靠性相对较差,但是工作量相对较小.①当调查的结果对调查对象具有破坏性时,或者会产生一定的危害性时,通常采用抽样调查;②当客观条件(人力、物力等)限制调查不易进行时,常采用抽样调查;③当调查的对象个数较少,调查容易进行时,我们一般采用全面调查;④但当调查的结果有特别要求时,或调查的结果有特殊意义时,如国家的人口普查,我们仍须采用全面调查.注意:①被调查的对象不能太少②被调查的对象应是随机抽取的. 因此, 抽样调查时既要关注样本的广泛性, 又要关注其代表性. 有些数据调查方案不唯一, 既可采用全面调查的方式, 又可采用抽样调查.(2) 相关的一些概念,如总体、个体、样本、样本容量,应当明确.例4为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析. 在这个问题中,总体是,个体是,样本是,样本容量是.例5下列调查中, 适合做抽样调查的有( )4.20% 6.40%5.60%13.30%11.90%0.00%2.00%4.00%6.00%8.00%10.00%12.00%14.00%20012002200320042005① 了解一批炮弹的命中精度; ② 调查全国中学生的上网情况; ③ 审查某文章中的错别字; ④ 考查某种农作物的长势 (A ) 1个(B ) 2个(C ) 3个(D ) 4个(二)数据描述问题学生在小学已经学习过条形统计图、扇形统计图和折线统计图, 其中对条形图和折线图, 能从中读取信息, 并能按要求画出它们来描述数据; 对扇形图, 能从中读取信息, 但不要求能绘制,如何制作扇形图,这是本学段的一个教学要求. 对于直方图、趋势图,是本学段学习的新统计图. 本学期最为基本的要求是能够独立制作出各种统计图,并了解它们在反映数据信息时的不同特点,其次,是通过经历制作统计图的完整过程,把握其中的细节,能够准确的从图表中提取信息. 有时,一些信息需要从若干个统计图中经过综合分析才能够得到.1本章出现的五种统计图各自的特点:(1) 条形统计图: 能清楚地表示出每个项目的具体数目 (2) 扇形统计图: 能清楚地表示出各部分在总体中所占的百分比 (3) 折线统计图: 能清楚地反映出事物变化的情况*(4)频数分布直方图:能够显示各组频数分布的情况,易于显示各组之间频数的差别. *(5)趋势图:用一条直线刻画数据的变化趋势,根据趋势图做预测. (带*的统计图是在后两节中学习的内容) 扇形图的画法:(1) 计算各部分占总体的百分比;(2) 计算表示各部分数量的扇形的圆心角度数(圆心角=360︒⨯某部分占总体的百分比); (3) 画圆,根据计算所得的圆心角,画出各个扇形,并标注项目及百分比; 例6.如果想表示我国从1995-2016年间国民生产总值的变化情况, 最合适的是采用( ) (A ) 条形统计图 (B ) 扇形统计图(C ) 折线统计图(D ) 以上都很合适例7.如图是某校七年级学生跳绳成绩的条形统计 图(共三等), 则下面回答正确的是( ) (A ) C 等人最少, 只有40人 (B ) 该校七年级共有120人 (C ) A 等人占总人数的30% (D ) B 等人最多,占总人数的32例8.下图反映了2001至2005年间我市农村居民人均收入的年增长率.下列说法正确的是()20 40 60 80 100 120 140 ABC 人数等级图①北京市居民人均常规工作日时间利用情况A .2003年农村居民人均收入低于2002年B .农村居民人均收入年增长率低于9%的有2年C .农村居民人均收入最多的是2004年D .农村居民人均收入在逐年增加例9.下图是甲、乙两户居民家庭全年支出费用的扇形 统计图.根据统计图,以下各个判断正确的是() A .甲户比乙户食品开销多 B .甲户比乙户教育开销少 C .甲户比乙户衣着开销多 D .以上说法都不对例10.典典学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了_____名居民的年龄,扇形统计图中a =_____,b =_____; (2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.例11.通常情况居民一周时间可以分为常规工作日 (周一至周五)和常规休息日(周六和周日). 居民 一天的时间可以划分为工作时间、个人生活必须时间、家务劳 动时间和可以自由支配时间等四部分. 2008年5月,北京市统46%22%0~14岁60岁以上41~5915~40200 50250 150 100 300 0~14 15~40 41~59 60岁以上 年龄60230100人数北京市居民每天可自由支配时间利用情况1042230191510102030405060708090100110看电视读书看报上网健身游戏学习参观社会交往交通时间其他(单位:分)图②计局在全市居民家庭中开展了时间利用调查,并绘制了统计图:(1)由图①,调查表明,我市居民人均常规工作日工作时间占一天时间的百分比为; (2)调查显示,看电视、上网、健身游戏、读书看报是居民在可自由支配时间中的主要 活动方式,其中平均每天上网占可自由支配时间的12%,比读书看报的时间多8分钟. 请根据以上信息补全图②;(3)由图②,调查表明,我市居民在可自由支配时间中看电视的时间最长. 根据这一信息,请你在可自由支配时间的利用方面提出一条建议:___ ____________.§10.2直方图( 一)总数与频数总数:所有研究对象个体总的数目叫做总数.频数:在若干个数据中,每个数据出现的次数,叫做该数据的频数;将总体划分为若干个小组,落在不同小组中的数据的个数叫做该组的频数.频率:频数与数据总数的比值叫做频率.(频率⨯100%就是百分比). (二)频数分布表 (三)频数分布直方图①横轴表示相关数据对应量的大小,并标出每一组数据的两个端点,对于纵轴, 等距分组时表示频数,每个矩形的高代表对应组的频数.② 特点: 能够显示各组频数分布的情况;易于显示各组之间频数的差别. ③频数分布直方图的画图步骤ⅰ计算极差,即计算一组数据中的最大值与最小值的差;ⅱ决定组距与组数,即将一组数据分成若干个小组,组距⨯组数≈极差;=频数组距频数组距,那么小长方形面积组距频数一般直方图是表示⨯=ⅲ决定组限,即分组后,确定各个小组两个端点的数值; ⅳ列频数分布表;ⅴ画出频数分布直方图.(四)直方图和条形图的联系与区别:①联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都可以用矩形的高来表示频数的多少来反映数据的分布情况的;②区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数;直方图中矩形的长宽都有意义,而条形图宽度是一定的,只有高有意义.(五)几点注意:(1) 画好频数分布直方图的关键是决定好组距和组数,因为它们的不同,甚至会对结果产生影响.其实它们两个是紧密联系的,一般是凭借经验和研究的具体问题,首先确定一个,再由“组距⨯组数≈极差”即可求出另一个,同时,在实际决定的过程中,往往有一个尝试的过程.对于这点,在教学上,应有专门的设计,使学生有所体会.(2) 组距和组数确定以后,就要根据组距和组数对数据分组.数据分组时,对数据要遵循“不重不漏”的原则,我们往往采取“上限不在内”的原则.如,152≤ x <155.(3) 对于本节的课本例题,也可以引导学生讨论,除了用统计的办法,还有没有别的办法也能选出身高差不多的40名同学. 例12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组例13.已知一个样本27,23,25,27,29,31,27,30,32,28,31,28,26,27,29,28,24,26,27,30,那么频数为 8 的范围是( )A .24.5 ~26.5B .26.5~28.5C .28.5~30.5D .30.5~32.5 例14、某校八年级(1)班为了解同学们一天零花钱的消费情况,对本班同学开展了调查,将同学一周的零花钱以2元为组距,绘制如图的频率分布直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.021 (1)若该班有48人,则零花钱用最多的是第组,有人; (2)零花钱在8元以上的共有人;(3)若每组的平均消费按最大值计算,则该班同学的日平均消费额是元(精确到0.1元)例15为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:分组 频数 50.5~60.54钱数(元)人数1210864260.5~70.5 870.5~80.5 1080.5~90.5 1690.5~100.5合计50(1)填充频率分布表的空格;(2)补全频数直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?例16以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、下旬)日人均阅读时间的情况:(1)从以下统计图可知,九年级(1)班共有学生______人;(2)图7-1中a的值是______;(3)从图7-1、7-2中判断,在这次读书月活动中,该班学生每日阅读时间______(填“普遍增加了”或“普遍减少了”);(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1小时的人数比活动开展初期增加了______人.(六)、关于数据分析问题学生对于数据图表, 能解释统计结果;能利用频数分布直方图解释数据中蕴含的信息;通过表格,折线图,趋势图等,感受随机现象的变化趋势. 根据结果做出来简单地判断和预测,并能进行交流. 但是目前要求不宜过高§10.3从数据谈节水如何收集、整理、描述和分析数据来解决一个实际问题,是学生学习的重点. 本课既安排了学生通过查阅资料获得第二手数据,也有让学生设计问卷,亲自调查获得第一手数据,这些过程都必须给学生们充分的时间,去积极参与,认真体会、总结. 建议教师应引导学生努力从不同的角度分析数据的不同特征,从而使用上各种统计图来描述数据.本节实际上是前面所有知识方法的一个综合实践,建议分几步进行:(1) 先给学生明确调查目的, 让学生课下按组设计调查问卷(作为作业);(2) 老师批阅后, 在课上组织学生讨论、修改, 最后统一;(3) 学生分组实施调查, 利用课余或周末的时间进行;(4) 分小组整理数据, 绘制统计图表, 作简单分析;(5) 在课堂上分组汇报.五、典型题型10.1 统计调查例1下列调查中,①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①B.②C.③D.④例2去年某市有近4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析.以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量例3我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操;B:跑操;C:舞蹈;D:健美操四项活动.为了了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如图32-1所示的两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有________人;(2)请将统计图②补充完整;(3)统计图①中B项目对应的扇形的圆心角是________度;(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【练习】1.下列调查中,适宜采用全面调查(普查)方式的是【】A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 【答案】C.【考点】调查方法的选择.【分析】A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查. .故选C.2.某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出)(1)实验所用的2号果树幼苗的数量是_______株;(2)请求出3号果树幼苗的成活数,并把图2的统计图补充完整; (3)你认为应选哪一种品种进行推广?请通过计算说明理由. 【关键词】扇形图与条形图 【答案】 解:(1)100 (2) (3)1号果树幼苗成活率为2号果树幼苗成活率为 4号果树幼苗成活率为∵112%6.89%25500=⨯⨯%90%100150135=⨯%85%10010085=⨯%6.93%100125117=⨯%85%6.89.%9%6.93>>>•4号 25% 30% 1号3号 25%2号 (图1) 500株幼苗中各品种幼苗所占百分比统计图 成活数(株)品种 O 1号 2号 3号 4号 135 85 11750 100 150 (图2)各品种幼苗成活数统计图 成活数(株) 品种O1号 2号 3号 4号1358511750100 150 (图2)各品种幼苗成活数统计图117∴应选择4号品种进推广.3.配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是元;(2)配餐公司上周在该校销售B 餐每份的利润大约是元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)【关键词】数据的收集与整理 【答案】解:(1)6元; (2)3元;(3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元.4.广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解比较了解 基本了解不太了解频数 40 12036 4 频率0.2m0.180.02(1)本次问卷调查取样的样本容量为_______,表中的m 值为_______.以往销售量与平均每份利润之间的关系统计图一周销售量(份)300~800 (不含800) 平均每份的利润(元)0.5 1 1.5 2 02.5 33.5 4 800~1200 (不含1200)1200及 1200以上AB C种类 数量(份) A 1000 B 1700 C400该校上周购买情况统计表(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全扇形统计图. (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?【关键词】扇形统计图、样本估计总体.【答案】(1)200;0.6; (2)72°;补全图如下:(3)1800×0.6=90010.2 直方图例4为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分,发现参赛者的成绩x 均满足50≤x <100,并制作了频数分布直方图,如图32-2.根据以上信息,解答下列问题: (1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x <90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?【练习】1.一个容量为80的样本,最大值是149,最小值是70,取组距为10,则可以分() A .10组B.9组C.8组D.7组2.为了解今年全县2000名初四学生“创新能力大赛”的笔试情况.随机抽取了部分参赛同学的成绩,整理并制作如图所示的图表(部分未完成).请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为 300 ; (2)在表中:m= 120 ;n= 0.3 ; (3)补全频数分布直方图;(4)如果比赛成绩80分以上(含80分)为优秀,那么你估计该县初四学生笔试成绩的优60%比较了解不太了解2%18%。

部编数学七年级下册第10章数据的收集、整理与描述(解析版)含答案

部编数学七年级下册第10章数据的收集、整理与描述(解析版)含答案

第10章数据的收集、整理与描述一、单选题1.下列调查中,适合采用全面调查(普查)的是()A.了解一批投影仪的使用寿命B.调查重庆市中学生观看电影《长津湖》的情况C.了解重庆市居民节约用水的情况D.调查“天月一号”火星探测器零部件的质量【答案】D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、对投影仪使用寿命的调查,适合采用抽样调查,故本选项不合题意;B、对重庆市中学生观看电影《长津湖》情况的调查,适合采用抽样调查,故本选项不合题意;C、对重庆市居民节约用水的情况的调查,适合采用抽样调查,故本选项不合题意;D、对“天月一号”火星探测器零部件的质量的调查,适合采用全面调查,故本选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查,解题的关键是选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.下列调查中,适宜采用抽样调查方法的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品D.调查初三某班的体考成绩的优秀率【答案】A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.由于不能调查所有中国民众对叙利亚局势持乐观态度,所以适宜采用抽样调查方式,故选项正确,符合题意;B.调查某6人小组中喜欢打篮球的人数,由于人数较少,应该调查所有人喜欢打篮球情况,故选项错误,不符合题意;C.由于调查重庆龙头寺火车站是否有乘客携带了危险物品很重要,应该采取普查,故选项错误,不符合题意;D.调查初三某班的体考成绩的优秀率应该采取全面调查,故选项错误,不符合题意;故选:A.【点睛】此题考查了抽样调查和全面调查的区别,解题的关键是选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.某网络直播平台2022年央视春晚观看学生人数统计图如图所示.若观看的小学生有30万人,则观看的大学生有()A.40万人B.50万人C.80万人D.200万人【答案】A【分析】先由小学生的人数及其所占百分比求出被调查的总人数,再用总人数乘以大学生对应的百分比即可.【详解】解:由题意知,被调查的总人数为30÷15%=200(万人),所以观看的大学生有200×20%=40(万人),故选:A.【点睛】本题主要考查扇形统计图,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.4.当今,大数据、云计算、人工智能等互联网新技术正在全方位改写中国社会,而5G应用将是推动互联网这个“最大变量”变成“最大增量”的新引擎,5G的出现将改变中国的经济格局,据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如图所示,根据图提供的信息,下列推断不合理的是()A.2022年5G间接经济产出比5G直接经济产出多2万亿元B.2026年5G直接经济产出为2021年5G直接经济产出的4倍C.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长D.2023年到2024年与2028年到2029年5G间接经济产出的增长率相同【答案】D【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:根据折线统计图,可知:A. 2022年5G间接经济产出比5G直接经济产出多:4-2=2(万亿),故此项不合题意;B.4÷1=4(倍),故2026年5G直接经济产出为2021年5G直接经济产出的4倍,故此项不合题意;C. 2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长,故此项不合题意;D. 2023年到2024年5G间接经济产出的增长率为:(6-5)÷5=20%,2028年到2029年5G 间接经济产出的增长率为:(9-8)÷8=12.5%,故2023年到2024年与2028年到2029年5G间接经济产出的增长率不相同,故此项符合题意;故选:D【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.5.2020年11月1日零时,我国开展第七次全国人口普查.2021年5月11日,国务院新闻办公室公布普查结果.如图是根据我国历次人口普查数据,绘制的我国每10万人中拥有大学文化(指大专及以上)程度人数的折线图.设2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,则下列关于x的方程正确的是()A .()10.9 1.55x +=B .()0.9110 1.55x +´=C .()0.91 1.55x +=D .()100.91 1.55x +=【答案】C 【分析】结合折线统计图,根据增长率列方程即可.【详解】解: 由图可知,2010年有0.9万人,2020年有1.55万人∵2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x∴()0.91 1.55x +=故选:C.【点睛】本题考查了折线统计图和增长率问题,结合图形找到所需数据并理解题意是解题的关键.6.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车 )人数的条形统计图(部分)和扇形分布图,那么下列说法正确的是( )A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【答案】B【分析】由乘车的人数和乘车人数所占的百分比求出总人数,再计算步行人数,步行人数所占圆心角,进而求出乘车人数所占的百分比;【详解】解:由图可知,乘车20人占总人数的百分之50%,总人数=20÷50%=40人,步行人数=40-20-12=8人,步行人数所占圆心角为836040°´=72°,骑车人数所占的百分比为1210040×%=30%,如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有500×30%=150人,综上所述,只有B选项符合题意,故选:B;【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,理解图中的数据信息是解题关键.7.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.90C.144D.200【答案】A【分析】根据乙类书籍有90本,占总数的45%,即可求得总书籍数.丙类所占的比例是1-15%-45%所占的比例乘以总数即可求得丙类书的本数.【详解】解:总数是:90÷45% = 200(本),丙类书的本数是:200×(1-15%-45%)=200×40%= 80(本).故选:A.【点睛】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.8.在进行数据统计时,随机选取了有20个数据的样本进行分组分析,其中某个小组有4个个体,该小组对应的扇形统计图圆心角度数为()A.36°B.72°C.60°D.120°【答案】B【分析】先求出该小组所占的百分比,再用360°乘以这个百分比即可求出对应的圆心角度数.【详解】解:360°×420=72°.故选:B.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.小明收集到甲、乙两家汽车销售公司近三年的销售量,如果从他制作的统计图中可以反映出两家公司销售量的变化情况,他应该制作()A.折线统计图B.条形统计图C.扇形统计图D.以上三种都可以【答案】A【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】解:∵他制作的统计图中可以反映出两家公司销售量的变化情况,∴他应该制作折线统计图故选A【点睛】本题考查了统计图的选择,掌握折线统计图的特点解题的关键.10.图(1)表示的是某书店今年1~4月的各月营业总额的情况,图(2)表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~4月的营业额一共是130万元,则这四个月中“党史”类书籍的营业额最高的是()A.1月B.2月C.3月D.4月【答案】D【分析】用该书店1~4月的营业总额减去1~3月的营业总额,求出该书店4月份的营业总额;再用1~4月的各月的营业总额乘以该月份“党史”类书籍所占的百分比,即可求出1~4月各月的“党史”类书籍的营业额,比较后即可得到答案.【详解】解:该书店4月份的营业总额是:130﹣(30+40+25)=35(万元),1月份的“党史”类书籍的营业额为:30×15%=4.5(万元);2月份的“党史”类书籍的营业额为:40×10%=4(万元);3月份的“党史”类书籍的营业额为:25×12%=3(万元);4月份的“党史”类书籍的营业额为:35×20%=7(万元);综上可知,4月份的“党史”类书籍的营业额最高.故选:D.【点睛】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率.二、填空题11.一个容量为80的样本,其中数据的最大值是143,最小值是50,若取组距为10,则适合将其分成_______组【答案】10【详解】分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.详解:143-50=93,93÷10=9.3,所以应该分成10组.故答案为10.点睛:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.12.经调查某村共有银行储户若干户,其中存款额2~3万元之间的储户的频率是0.2,而存款额为其余情况的储户的频数之和为40,则该村存款额2~3万元之间银行储户有___________ 户.【答案】10【分析】首先根据各个小组的频率和是1,得到存款额为其余情况的储户的频率,再根据总数=频数÷频率,求得总数,最后根据频数=频率×总数,求得频数.【详解】解:根据题意,得:存款额为其余情况的储户的频率=1-0.2=0.8,则银行储户的总数=40÷0.8=50户,则该村存款额2~3万元之间银行储户=50×0.2=10户.【点睛】本题考查频率、频数的关系:频率=频数数据总和,频数=频率×总数,总数=频数÷频率.注意:各组的频率和是1.13.课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:①在公园调查了1000名老年人的健康状况;②在医院调查了1000名老年人的健康状况;③调查了10名老年邻居的健康状况;④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.你认为抽样比较合理的是________(填序号).【答案】④【详解】试题解析:④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况,是比较合理的;故答案为:④;考点:抽样调查的可靠性.14.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有_________人.【答案】800.【详解】试题分析:选修A课程的学生所占的比例:202012108+++=25,选修A课程的学生有:2000×25=800(人),故答案为800.考点:1.用样本估计总体;2.条形统计图.15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.【答案】5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_________.【答案】92%.【详解】试题分析:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.考点:频数(率)分布直方图.17.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选择了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为____名.【答案】60【详解】试题分析:设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,即可列方程求解.解:设被调查的总人数是x人,则40%x﹣30%x=6,解得:x=60.故答案是:60.考点:扇形统计图.18.某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是__度.【答案】108°.【详解】试题分析:首先求出“A”所在的百分比为1-35%-20%-15%=30%,则圆心角的度数为:360°×30%=108°.三、解答题19.某校对学生课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课外书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤2;B:3≤x≤4;C:5≤x≤6;D:x≥7.请你根据两幅图提供的信息解答下列问题:⑴本次共调查了多少名学生?⑵补全条形统计图,并判断中位数在哪一组;⑶计算扇形统计图中扇形D的圆心角的度数.【答案】⑴本次调查了200名学生.⑵D高40,中位数在B组⑶圆心角度数为72o.【详解】试题分析:通过扇形图可得A所占得百分比为19%,通过条形图可得A的频数为38,用A的频数除以A所占的百分比即可求出调查的学生总数;(2)用总人数减去A、B、C的频数,求出D的频数即可补全条形图,从而判断中位数;(3)用D的频数除以总人数求出D所占百分比,再乘以360°即可求出扇形D的圆心角.试题解析:⑴本次调查了3819%=200名学生.⑵ 200-38-74-48=40,D高40,中位数在B组.⑶圆心角度数为40200×360°=72°.20.中学生带手机上学的现象越来越受到社会的关注,为此,某记者随机调查了某城区若干名学生家长对这种现象的态度(态度分为:A:无所谓;B:基本赞成;C:赞成;D:反对),并将调查结果绘制成频数折线图1和统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样检查中,共调查了 名学生家长;(2)将图1补充完整;(3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?【答案】(1)200;(2)详见解析;(3)3600(名)【分析】(1)根据总量=频数÷频率,由B 的数据可得此次抽样检查中,调查的学生家长数:40÷20%=200(名)(2)∵C 人数为:()200115%20%60%10´---=(名).∴根据以上数据将图1补充完整.(3)用样本估计总体即可.【详解】解:(1)40÷20%=200(名),故答案为200.(2)将图1补充完整如下:(3)∵样本中持反对态度的占60%,∴估计该市城区6000名中学生家长中持反对态度有6000×60%=3600(名)答:估计该市城区6000名中学生家长中有3600名家长持反对态度.【点睛】补全折线图,用样本估计总体.21.为了提升学生的交通安全意识,学校计划开展全员“交通法规”知识竞赛,七(3)班班主任赵老师给全班同学定下的目标是:合格率达90%,优秀率达25%(x <60为不合格;x≥60为合格;x≥90为优秀),为了解班上学生对“交通法规”知识的认知情况,赵老师组织了一次模拟测试,将全班同学的测试成绩整理后作出如下频数分布直方图.(图中的70~80表示7080x£<,其余类推)(1)七(3)班共有多少名学生?(2)赵老师对本次模拟测试结果不满意,请通过计算给出一条她不满意的理由;(3)模拟测试后,通过强化教育,班级在学校“交通法规”竞赛中成绩有了较大提高,结果优秀人数占合格人数的13,比不合格人数多10人.本次竞赛结果是否完成了赵老师预设的目标?请说明理由.【答案】(1)七(3)班共有50名学生;(2)合格率为80%以及优秀率为18%均小于定下的目标;(3)合格率及优秀率均达到目标.理由见解析.【分析】(1)计算各频数之和即可求解;(2)计算得出合格率和优秀率,与目标值比较即可;(3)设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,根据题意列出一元一次方程求解即可.(1)解:4+6+9+10+12+9=50(名),答:七(3)班共有50名学生;(2)解:x≥90的学生人数有9人,则优秀率为9¸50×100%=18%<25%;x≥60的学生人数有9+10+12+9=40人,则合格率为40¸50×100%=80%<90%;答:合格率为80%以及优秀率为18%均小于定下的目标;(3)解:合格率及优秀率均达到目标.理由如下:设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,依题意得:3x+x-10=50,解得:x=15,合格人数为3x=3×15=45(人),则合格率为45¸50×100%=90%;优秀人数为x=15(人),则合格率为15¸50×100%=30%>25%;答:合格率及优秀率均达到目标.【点睛】本题考查了条形统计图,一元一次方程的应用,解决本题的关键是掌握条形统计图.22.为丰富学生的课余生活,某学校准备组织学生举行各类球赛活动(每个学生只能参加一种球类活动),将全校学生参加球类活动的调查结果制成如图所示的扇形统计图.其中参加乒乓球的学生有320人.(1)求全校一共有多少名学生?(2)求参加足球的学生的人数比参加篮球的学生的人数多了几分之几?【答案】(1)1000(2)6 19【分析】(1)用参加乒乓球人数除以其占总人数的百分比可得答案;(2)用足球所占百分比减去篮球所占百分比,再除以篮球所占百分比即可.(1)320÷32%=1000(名),答:全校一共有1000名学生;(2)(25%−19%)÷19%=6 19,答:参加足球的学生的人数比参加篮球的学生的人数多了6 19.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解题关键是通过扇形统计图表示出各部分数量同总数之间的关系.23.为庆祝中国共产党成立100周年,某校举行了“感党恩、听党话、跟党走”党史知识竞赛活动,七年级(1)班选派部分学生参加了这次活动,班主任龙老师把本班参赛选手的成绩分为四类进行统计:A:优;B:良;C:中;D:差,并将结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出七年级(1)班参加竞赛活动的人数;(2)求出在扇形图中,表示“C 类”扇形的圆心角度数;(3)计算出A 类男生和C 类女生的人数,并将条形统计图补充完整.【答案】(1)七年级(1)班参加竞答活动的有20人(2)表示“C 类”扇形的圆心角为54°(3)A 类男生人数为2人,C 类女生人数为2人,补全条形统计图见解析【分析】(1)利用B 类人数除以其所占的百分比即可得到答案;(2)由C 类所占的百分比乘以360°,从而可得答案;(3)先求解A ,C 类总人数,再求解A 类男生人数,C 类女生人数,再画图即可.(1)解:由B 类有12人,占比20%, 可得:()7560%20+¸=人,答:七年级(1)班参加竞答活动的有20人.(2)解:()360160%15%10%54°´--=°﹣答:表示“C 类”扇形的圆心角为54°(3)A 类人数为:2015%3´=、C 类人数为:2015%3´=,A 类男生人数为:312-=、C 类女生人数为:312-=,所以A 类男生人数为2人,C 类女生人数为2人,补全图形如图:【点睛】本题考查的是从条形图与扇形图中获取信息,求解某部分扇形所对应的圆心角的大小,补全条形统计图,熟练从条形图与扇形图中获取互相关联的信息是解本题的关键.24.4月23日是“世界读书日”,我校校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解学生周末两天的读书时间,校团委随机调查了部分学生的读书时间x(单位:分钟),把读书时间分为四组:A(30≤x<60),B.(60≤x<90),C.(90≤x<120),D(120≤x<150).部分数据信息如下:a.B组和C组的所有数据:85 90 60 70 110 75 65 78 100 90 80 95 90b.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:(1)被调查的学生共有多少人,并补全频数分布直方图;(2)在扇形统计图中,C组所对应的扇形圆心角是_____;(3)请结合统计图给全校学生发出一条合理化的倡议.【答案】(1)20,作图见解析(2)108°(3)书是人类进步的阶梯,同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【分析】(1)由扇形统计图中A所占扇形比例为20%和频数分布直方图中A组频数为4,即可得总人数为4÷20%=20人,再由题干可求得B组人数为7人,D组人数为3人,补全频数分布直方图即可.(2)由(1)知频数分布直方图中C组频数为6,故C组所对应扇形圆心角为6360108°´=°20(3)与统计图的数据相关即可,答案不唯一(1)总人数为4÷20%=20人B组人数为13-6=7人D组人数为20-4-6-7=3人补全频数分布直方图如图所示(2)6 36010820°´=°故C组所对应的扇形圆心角是108°.(3)书是人类进步的阶梯、同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【点睛】本题考查了数据的调查及整理.频数分布直方图是用小长方形的面积来反映数据落在各个小组内的频数的大小的统计图.扇形统计图,特点:扇形统计图能清楚地表示出各部分在总体中所占的百分比,缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某一个量所占的百分比多,容易造成第一个统计量大于第二个统计量的错觉.注意:扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.25.第24届冬季奥林匹克运动会即将于2022年2月4日至2月20日在北京市和张家口市联合举行,这是中国历史上第一次举办冬季奥运会.随着冬奥会的日益临近,北京市民对体验冰雪活动也展现出了极高的热情.下图是随机对北京市民冰雪项目体验情况进行的一份网络调查统计图,请根据调查统计图表提供的信息,回答下列问题:(1)都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的___________%,并在图中将统计图补面完整;(2)此次网络调查中体验过冰壶运动的有120人,则参加过滑雪的有___________人;(3)此次网络调查中体验过滑雪的人比体验过滑冰的人多百分之几?【答案】(1)12%.补图见解析(2)270(3)12.5%【分析】(1)用冰壶的人所占百分比减去4个百分点即可求出百分比,按照百分比补全统计图即可;(2)用120人除以体验过冰壶运动的百分比求出总人数,再乘以滑雪的百分比即可;(3)求出体验过滑雪的人比体验过滑冰的人多多少人,再求出百分比即可.(1)解:都没参加过的人所占调查人数的百分比比参加过冰壶的人所占百分比低了4个百分点,那么都没参加过人的占调查总人数的百分比为:16%-4%=12%,不全统计图如图:故答案为:12%.(2)解:调查的总人数为:120÷24%=500(人),参加过滑雪的人数为:500×54%=270(人),故答案为:270(3)解:体验过滑冰的人数为:500×48%=240(人),(270-240)÷240=12.5%,体验过滑雪的人比体验过滑冰的人多12.5%.【点睛】本题考查了条形统计图,解题关键是准确从条形统计图中获取信息,正确进行计算求解.26.某校兴趣小组想了解球的弹性大小,准备了A、B两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.。

七级数学第十章《数据的收集整理与描述》单元测试题(含答案)

七级数学第十章《数据的收集整理与描述》单元测试题(含答案)

七年级数学第十章《数据的收集、整理与描述》单元测试题(含答案)七()班学号姓名成绩一、精心选一选(共8小题,每题有一个答案,每小题4分共32分)1.班长对全班同学说:“请同学们投票,选举一位同学”你认为班长在收集数据过程中的失误是()。

(A)没有确定调查对象(B)没有规定调查方法(C)没有展开调查(D)没有明确调查问题2.下面哪种统计图表不适于用来表示班上男、女生的人数()。

(A)折线统计图(B)条形统计图(C)扇形统计图(D)统计表3.甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,比较两校女生人数()(A)甲校女生人数多(B)乙校女生人数多(C)甲校与乙校女生人数一样多(D)以上说法都不对4.南北朝著名的数学家祖冲之算出圆周率约为 3.1415926,在3.1415926这个数中数字“1”出现的频数与频率分别为()。

(A)2,20% (B)2,25% (C)3,25% (D)1,20%5.某中学三个年级的人数比例如下图所示,已知三年级有620名学生,那么这个学校共有学生人数为()。

35%0%(A )2000 (B )1900 (C )1800 (D )1700 6.某同学按照某种规律写了下面一串数字:122 122 122 122 122……,当写到第93个数字时,1出现的频数是( )。

(A )33 (B )32 (C )31 (D )307.在-(-3),(-3)2,(-3)3,︱-3︱中,负数出现的频率为( )。

(A )25% (B )50% (C )75% (D )100%8.在全班45人中进行了你最喜爱的电视节目的调查活动,喜爱的电视剧有人数为18人,喜爱动画片有人数为15人,喜爱体育节目有人数为10人,则下列说法正确的是( )。

(A ) 喜爱的电视剧的人数的频率是10151818++(B ) 喜爱的电视剧的人数的频率是4518(C ) 喜爱的动画片的人数的频率是101818+(D ) 喜爱的体育节目的人数的频率是1-4518-4515二细心填一填(共6小题,每小题4分,共24分)1. 如果要反映一天温度的变化情况,我们应该绘制的统计图是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钱数(元)人数
12
108642第十章 数据的收集、整理与描述
班别 学号 姓名 成绩
一、填空题(每空2分,共42分)
1.考察全体对象的调查我们常把它称为 调查;考察部分对象的调查称为 调查. 2.为了了解某校七年级400名学生的期中数学成绩的情况,从中抽取了50名学生的数学成绩进行分析。

在这个问题中,
总体是 , 个体是 , 样本是 ,样本容量是 . 3、在进行数据描述时,要显示每组中的具体数据,应采用 图;要显示部分在总体中所占的百分比,应采用 图;要显示数据的变化趋势,应采用 图;要显示数据的分布情况,应采用 图. 4、进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是 (用字母按顺序写出即可) A 、明确调查问题;B 、记录结果;C 、得出结论; D 、确定调查对象;E 、展开调查;F 、选择调查方法。

5、在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是 .
6、某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%. 请你估计该市6万名七年级学生中,身体素质达标的大约有 万人.
7、某校八年级(1)班为了了解同学们一天零花钱的消费情况,对本班同学开展了调查,将同学一周的零花钱以2元
为组距,绘制如图的频率分布直方图,已知从左到右各组的频数之比为2∶3∶4∶2∶1.
(1)若该班有48人,则零花钱用最多
的是第 组,有 人; (2)零花钱在8元以上的共有 人;
(3)若每组的平均消费按最大值计
算,则该班同学的日平均消费额 是 元(精确到0.1元)
8、如果让你调查本班同学喜欢哪几类球类运动,那么:
(1)你的调查问题是 ; (2)你的调查对象是 ; (3)你要记录的数据是 ; (4)你的调查方法是 . 二、选择题(每小题5分,共35分)
9、下列调查工作需采用普查方式的是( )
(A)环保部门对长江某段水域的水污染情况的调查; (B)电视台对正在播出的某电视节目收视率的调查; (C)质检部门对各厂家生产的电池使用寿命的调查;
(D)企业在给职工做工作服前进行的尺寸大小的调查.
10、为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )
(A)1500名学生的体重是总体 (B)1500名学生是总体
(C)每个学生是个体 (D)100名学生是所抽取的一个样本
11、在一个样本中,50个数据分别落在5个小组内,第1,2,3,5,小组数据的个数分别是2,8,15,5,则第4小组的频数是( ) (A)15 (B)20 (C)25 (D)30 12、下列抽样调查较科学的是( )
① 小华为了知道烤箱中所烤的面包是否熟了,取出一小块品尝;
② 小明为了了解初中三个年级学生的平均身高,在七年级抽取一个班的学生做调查;
③ 小琪为了了解北京市2007年的平均气温,上网查询了2007年7月 份31天的气温情况;
④ 小智为了了解初中三个年级学生的平均体重,在七年级、八年级、九年级各抽一个班的学生进行调查。

(A) ①② (B) ①③ (C) ①④ (D) ③④ 13、一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以
分成( )
(A) 10组 (B) 9组 (C) 8组 (D) 7组
14、初二(1)班有48位学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去珍珠乐园的学生数”的扇形圆心角60°,则下列说法正确的是( )
(A) 想去珍珠乐园的学生占全班学生的60%
(B) 想去珍珠乐园的学生有12人 (C) 想去珍珠乐园的学生肯定最多
(D )想去珍珠乐园的学生占全班学生的1/6
15、某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们
在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为( )
(A) 0.96时 (B) 1.07时 (C) 1.15时 (D) 1.50时
第15题图 第16题图
16、小明调查了本班同学最喜欢的球类运动情况,并作出了如图的统计图,下
面说法正确的是( )
(A).从图中可以直接看出全班总人数.
(B).从图中可以直接看出喜欢足球运动的人数最多. (C).从图中可以直接看出喜欢各种球类运动的具体人数.
(D).从图中可以直接看出喜欢各种球类运动的人数的百分比.
三、解答题(第17题11分、第18题7分)
17、镇政府想了解李家庄的经济情况,用简单随机抽样的方法,在130户家庭
中抽取20户调查过去一年的收入(单位:万元),结果如下: 1.3 1.7 2.4 1.1 1.4 1.6 1.6 2.7 2.1 1.5
0.9 3.2 1.3 2.1 2.6 2.1 1.0 1.8 2.2 1.8
试估计村中住户的平均年收入、整村的年收入以及村中户年收入超过 1.5万元的百分比。

(7分)
18、小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.
根据以上提供的信息,解答下列问题: (1)补全频数分布表.(5分) (2)补全频数分布直方图.(2分)
(3)绘制相应的频数分布折线图.(2分)
(4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大
约有多少户?(2)
20161800120
8
4

户数140016001200100080060028%
19%25%15%
13%
乒乓球篮球
足球排球
网球。

相关文档
最新文档