薄膜的物理气相沉积蒸发法
第二章 薄膜制备的物理方法
![第二章 薄膜制备的物理方法](https://img.taocdn.com/s3/m/b35ec9caf705cc17552709c1.png)
反应方程举例如下:
Al(激活蒸汽) O2 (活性气体) Al2O3(固相沉积)
Sn(激活蒸汽) O2(活性气体) SnO2 (固相沉积) 在反应蒸发中,蒸发原子或低价化合物分子与活
为了避免污染薄膜材料,蒸发源中所用的支撑材 料在工作温度下必须具有可忽略的蒸汽压,以避 免支撑材料原子混入蒸发气体中。
通常所用的支撑材料为难熔的金属和氧化物。
同时,选择某一特殊支撑材料时,一定要考虑蒸 发物与支撑材料之间可能发生的合金化和化学反 应、相互润湿程度等问题。
支撑材料的形状则主要取决于蒸发物。
源,则膜厚分布为:
d
1
d0 1 l / h2 2
沉积速率和膜厚分布
沉积速率和膜厚分布
实际蒸发过程中,蒸发粒子都要受到真空室中残 余气体分子的碰撞,碰撞次数取决于分子的平均 自由程。设有N0个蒸发分子,飞行距离l后,未受 到残余气体分子碰撞的数目N为:
N N0 exp(l / )
同时,脉冲激光沉积可以实现高能等离子体沉积 以及能在气氛中实现反应沉积。
PLA的局限性:
(1)小颗粒的形成。在PLA膜中通常有0.110um的小颗粒,解决的办法是利用更短波 长的紫外线、靶转动和激光束扫描以保持 靶面平滑,更有效的办法是转动快门将速 度慢的颗粒挡住。
(2)膜厚不够均匀。熔蒸“羽辉”(发光部 分类似羽毛)具有很强的定向性,只能在 很窄的范围内形成均匀厚度的膜。
第二章 薄膜制备的物理方法
物理气相沉积
薄膜沉积的物理方法主要是物理气相沉积法,物 理气相沉积(Physical Vapor Deposition,简称 PVD)是应用广泛的一系列薄膜制备方法的总称, 包括真空蒸发法,溅射法,分子束外延法等。
薄膜材料第三章薄膜沉积的物理方法.
![薄膜材料第三章薄膜沉积的物理方法.](https://img.taocdn.com/s3/m/fa5fcc3b650e52ea55189840.png)
电阻加热蒸发沉积装置
3 薄膜沉积的物理方法
3.1 真空蒸发沉积(蒸镀)
3.1.2 蒸发沉积装置
三、闪烁蒸发:
待蒸发材料以粉末形式被送入送粉机构,通过机械式或 电磁式振动机构的触发,被周期性少量输送到温度极高的蒸 发盘上,待蒸发材料瞬间蒸发形成粒子流,随后输运到基片 完成薄膜的沉积。 1、蒸发温度: 与电阻加热蒸发基本相同 (1500~1900 ℃)。 2、主要改进: 解决了薄膜成分偏离源材料组分的问题! 3、应用场合: 制备蒸发温度较低的半导体、金属陶瓷和氧化物薄膜。 4、主要问题: 蒸发温度依然有限; 待蒸发材料是粉末态,易于吸附气体且除气难度较大; 蒸发过程中释放大量气体,易导致“飞溅”,影响成膜质量。
2、主要优点:
与电子束蒸发类似,可避免加热体/坩锅材料蒸发污染薄膜; 加热温度高,可沉积难熔金属和石墨 (蒸发源即电极,须导电); 设备远比电子束蒸发简单,成本较低。
3、主要问题:
电弧放电会产生 m大小的颗粒飞溅,影响薄膜的均匀性和质量。
电弧加热蒸发装置示意图
4、主要应用:沉积高熔点难熔金属及其化合物薄膜、碳材料薄膜 (如DLC薄膜)。
薄膜材料
3 薄膜沉积的物理方法
薄膜 沉积 的 物理 方法
蒸发(Evaporatio n) 物理气相沉积技术 (PVD) Physical Vapor Deposition 溅射(Sputtering ) 离化PVD (离子镀、IBAD 、IBD 等) 分子束外延 ( MBE ,Molecular Beam Epitaxy ) 外延技术 液相外延 (LPE ,Liquid Phase Epitaxy ) Epitaxy 热壁外延 (HWE ,Hot Wall Epitaxy )
第四章_薄膜的物理气相沉积
![第四章_薄膜的物理气相沉积](https://img.taocdn.com/s3/m/22c45d886bec0975f465e2a1.png)
4.1 蒸发沉积 4.2 溅射沉积 4.3 离子束沉积 4.4 脉冲激光沉积
4.1 蒸发沉积
蒸发沉积薄膜的基本过程:
1) 原材料被加热蒸发而气化 2) 气化的原子或分子从蒸发源向基片表面输运 3)蒸发的原子或分子在基片表面被吸附、成核、 核长大,继而形成连续薄膜
4.1.1 蒸发源
缺点:需要较复杂且昂贵的高频电源
4.1.2 原材料的蒸发与输运
1.
蒸发速率 假设在原材料表面液相和气相分子处于动态平 衡,则蒸发速率
dN r Pr P0 Je Adt 2 mkT
蒸发速率与蒸发源温度的关系
dG B 1 dT 2.3 G T 2 T
4.1.3 蒸发镀膜的膜厚分布
膜厚的分布取决于蒸发源的几何形状 与蒸发特性、基片的几何形状、基片与蒸 发源的相对位置等因素。
膜厚理论计算的简化假设: 1)蒸发凝结成薄膜
4.2 溅射沉积
溅射:荷能粒子轰击固体表面,使固体原子(或 分子)逸出的现象叫溅射。 使用范围:金属、合金、半导体、氧化物、氮化 物、碳化物、超导薄膜等。 溅射率:当粒子轰击靶阴极时,平均每个粒子从 阴极上打出的原子数。 溅射阈值:当入射粒子能量高于溅射阈值时才发 生溅射。
脉冲激光沉积的优点
相比其他制膜技术,PLD具有如下特点:1) 采用紫外脉冲激光器作为等离子体的能源,它 具有高光子能量、无污染且易于控制的特点; 2)可以比较精确的控制化学计量比,实现靶 膜成分接近一致。3) 可以引入反应气体,提 供了另一种改变薄膜组分的办法;4)四个靶 材托板随意更换,可以实现多层膜、异质结的 制备,尤其适合制备量子阱结构薄膜。5)工 艺相对简单,灵活性很大,可以实现诸多不同 种类的薄膜制备;6)可以使用激光器对薄膜 进行后续处理等。
氧化铝薄膜的制备方法
![氧化铝薄膜的制备方法](https://img.taocdn.com/s3/m/15a54083dc3383c4bb4cf7ec4afe04a1b071b0a4.png)
氧化铝薄膜的制备方法一、引言氧化铝薄膜是将氧化铝沉积到基材(PET、PE等)表面而制成的一种薄膜。
镀氧化铝薄膜技术最早起源于美国Dupon公司的蒸镀发明专利,后来日本三菱树脂、东洋株式会社和凸版印刷等公司也开始研究镀氧化铝薄膜技术,开发出透明的氧化物薄膜主要用于替代铝箔作为微波食品包装。
关于镀氧化铝薄膜制备技术主要有两种方法,一种是物理气相沉积(PVD),另一种是化学气相沉积(CVD)。
二、物理气相沉积物理气相沉积方法是通过高温使物质蒸发,或利用电子、离子、光子等荷能离子的能力使靶材物质(铝)发生溅射,在基材上形成所需要的薄膜。
PVD制备的过程可大致分为三个阶段:第一阶段为粒子的发射,而根据粒子发射的不同形式,出现了蒸镀、电弧离子镀、溅射、离子束等工艺;第二阶段为粒子的输送过程;第三阶段为薄膜的形成。
真空蒸镀、电弧离子镀和溅射镀膜是目前实验室及工业生产应用最为广泛的方法。
在使用金属、合金作为靶材时,传统PVD可以较快的速率沉积相应的薄膜;当涉及到化学反应时还可以沉积如陶瓷半导体或化合物薄膜等。
由于氧化铝的熔点很高,难以蒸发,目前适用于沉积氧化铝薄膜的PVD方法主要为电弧离子镀和磁控溅射两种。
2.1蒸镀法蒸镀法根据蒸发加热源不同分为电阻、电感(高频感应)和电子束等方式。
其中,电阻蒸发源以电阻丝方式加热,温度可达1700℃;电子束加热能量较高,达20kw/cm3,温度可达3000-6000℃;电感加热可达3000℃以上;而电子束蒸镀法能获得比电阻加热源更大的能量密度,热量可直接到蒸镀材料的表面,所以,其蒸发温度高、热效率高、蒸发速度快,从而沉积效果好,特别适合制作高熔点薄膜材料和高纯薄膜材料。
因此,氧化物蒸镀薄膜普遍采用电子束蒸镀法。
表1镀膜加热方式比较加热方式沉积膜装置成本沉积速度电阻(舟状)AL较低普通电阻(坩埚)AL、SiOx、AlOx较低普通电感AL、SiOx、AlOx较低普通电子束AL、SiOx、AlOx、AlOx/Si高高速2.2磁控溅射法磁控溅射法是基于磁控溅射技术,即通过离子轰击靶材后,产生溅射粒子,这些粒子再沉积到基材表面。
铝气相沉积膜
![铝气相沉积膜](https://img.taocdn.com/s3/m/d25cbdec370cba1aa8114431b90d6c85ec3a8836.png)
铝气相沉积膜铝气相沉积膜(Aluminum Gas-Phase Deposition Films)引言铝气相沉积膜是一种常见的薄膜材料,具有广泛的应用领域。
本文将介绍铝气相沉积膜的制备方法、特性及其在各个领域中的应用。
一、制备方法铝气相沉积膜的制备方法主要包括物理气相沉积和化学气相沉积两种。
1. 物理气相沉积物理气相沉积是利用高温蒸发技术,将铝材料加热至蒸发温度,然后通过凝结在基底表面形成薄膜。
该方法制备的铝气相沉积膜具有较高的纯度和结晶度,适用于制备高质量的薄膜。
2. 化学气相沉积化学气相沉积是利用化学反应将气态前驱体转化为固态薄膜。
铝气相沉积膜的化学气相沉积方法主要有氢气还原法和有机金属气相沉积法。
通过调节反应条件和前驱体浓度可以控制薄膜的厚度、成分和晶体结构。
二、特性铝气相沉积膜具有以下特性:1. 优异的导电性能铝是一种优秀的导电材料,铝气相沉积膜具有良好的导电性能,可用于制备电子器件中的导电层或电极。
2. 良好的光学特性铝气相沉积膜具有较高的反射率和较低的吸收率,适用于制备反射镜、太阳能电池板等光学器件。
3. 良好的耐蚀性铝气相沉积膜具有良好的耐蚀性,不易受到酸碱等外界环境的侵蚀,适用于制备耐腐蚀的涂层。
4. 多功能性铝气相沉积膜可以通过控制沉积条件和添加其他元素,赋予其多种功能,如抗菌、防反射等特性。
三、应用领域铝气相沉积膜在各个领域中有广泛的应用。
1. 电子器件铝气相沉积膜常用于制备集成电路中的金属线、电极等部件,其优异的导电性能能够满足高速、高精度的电子器件要求。
2. 光学器件铝气相沉积膜可以用于制备反射镜、太阳能电池板等光学器件,其良好的光学特性能够提高器件的性能。
3. 包装材料铝气相沉积膜可以用于制备食品包装材料,具有良好的耐蚀性和防潮性能,能够保护食品的品质和延长保质期。
4. 涂层材料铝气相沉积膜可以用于制备耐腐蚀的涂层,保护金属表面免受外界环境的侵蚀。
5. 纳米技术铝气相沉积膜可以与其他材料结合,应用于纳米技术领域,如纳米传感器、纳米电子器件等。
第三讲_薄膜的物理气相沉积-蒸发沉积
![第三讲_薄膜的物理气相沉积-蒸发沉积](https://img.taocdn.com/s3/m/e49b379ce53a580216fcfea1.png)
提高薄膜的沉积速率和真空度,均有助于提高薄膜纯度
蒸发沉积技术的种类
电阻热蒸发 电子束热蒸发 电弧热蒸发 激光束热蒸发 空心阴极热蒸发
电阻式热蒸发装置
特点: 装置简单,应用广泛 需要针对不同的被蒸发材料选择加热材料和方法 加热温度不能过高,易产生电阻丝等加热材料的污染
A A xA pA (0) M B B B x B pB (0) M A
都将不同于合金中的组元之比
合金中各元素的热蒸发
合金组元的蒸气压之比一般都要偏离合金的原 始成分。当组元A与其他组元的吸引作用力较小时 ,它将拥有较高的蒸气压;反之,其蒸气压将相对 较低。 当需要制备的薄膜成分已知时,由上式可以确 定所需要使用的合金蒸发源的成分。比如,已知在 1350K的温度下,Al的蒸气压高于Cu,因而为了获 得Al-2%Cu成分的薄膜,需要使用的蒸发源的大致 成分应该是Al-13.6%Cu。但当组元差别很大时,这 一方法就失去了可行性。
合金中各元素的热蒸发
对于初始成分确定的蒸发源来说,由上式确定的 组元蒸发速率之比将随着时间而发生变化: 易于蒸发 的组元的优先蒸发将造成该组元的不断贫化,进而造 成该组元蒸发速率的不断下降。
解决这一问题的办法
使用较多的物质作为蒸发源,即尽量减小组元成分的相 对变化 采用向蒸发容器中不断地、但每次仅加入少量被蒸发物质 的方法,即使得少量蒸发物质的不同组元能够实现瞬间的 同步蒸发 利用加热至不同温度的双蒸发源或多蒸发源的方法,分别 控制和调节每个组元的蒸发速率(所谓三温度法)
第三讲
薄膜材料的蒸发沉积
Preparation of thin films by vacuum evaporation
+薄膜的物理气相沉积Ⅰ——热蒸发
![+薄膜的物理气相沉积Ⅰ——热蒸发](https://img.taocdn.com/s3/m/5441d9fc26fff705cc170a95.png)
薄膜的物理气相沉积
8
薄膜沉积速率正比于气体分子的通量。 单位表面上元素的净蒸发速率
α N(p p) Φ 2π MRT
A e h
n m M N
A
α — 系数,介于0~1之间; pe、ph — 平衡蒸气压和实际情况下的分压。 单位表面上元素的质量蒸发速率
M Γ α ( p p ) 2π RT
粉末
薄膜的物理气相沉积
48
缺点: 坩埚、加热元件及各种支撑部件的可能污染; 加热功率和温度有限。 (不适用于高纯或难熔物质的蒸发)
薄膜的物理气相沉积
49
2.3.2 电子束蒸发装置★
薄膜的物理气相沉积
50
优点: 磁场偏转法可避免灯丝蒸发的污染; 避免坩埚材料的污染。 缺点: 热效率低; 热辐射。 电子枪和坩埚
19
合金组元蒸发速率之比
φ p φ p
A B
A B
M γ x p (0) M M γ x p (0) M
B A A A A B B B
B A
★蒸发法不宜被用来制备组元平衡蒸气压差别 较大的合金的薄膜。 组元蒸气压相近时,可估算合金蒸发源的成分。 例如,1350K,薄膜成分:Al-2%Cu (质量分数), 需蒸发源成分:A1-13.6%Cu (质量分数)。
第二章 薄膜的物理气相沉积(I) —— 蒸发法
物理气相沉积(Physical Vapor Deposition, PVD) 利用某种物理过程,如物质的热蒸发或在 受到粒子束轰击时物质表面原子的溅射等现 象,实现物质原子从源物质到薄膜的可控转移 过程。
薄膜的物理气相沉积
1
特点:
(1)需要使用固态的或者熔化态的物质作为沉
A
制造无机薄膜的技术方法
![制造无机薄膜的技术方法](https://img.taocdn.com/s3/m/0593a94bf56527d3240c844769eae009581ba2ef.png)
制造无机薄膜的技术方法无机薄膜是一种极薄的材料层,通常是几百到几纳米厚度。
无机薄膜在很多行业中都有广泛的应用,比如电子、能源、材料、医学等领域。
因此,制造无机薄膜的技术方法十分重要。
1. 物理气相沉积法物理气相沉积法是一种将固体材料通过升华转化为气态,然后在表面上沉积的技术方法。
物理气相沉积法通常包括蒸发沉积和磁控溅射两种方法。
蒸发沉积是将材料加热到其熔点以上,使其转化为气态,然后在表面上沉积。
磁控溅射是利用高能电子击打材料表面,将原子从材料表面弹出,并在下方表面沉积。
物理气相沉积法的优点是制备的薄膜具有高质量和良好的结晶性能,但需要高温和高真空条件,适用于特定的材料和厚度范围。
2. 化学气相沉积法化学气相沉积法通过在气态中添加反应气体,产生一种化学反应,将材料沉积在表面上。
化学气相沉积法通常包括气相沉积和等离子体增强化学气相沉积两种方法。
气相沉积是将反应气体引入反应室中,在表面上沉积材料。
等离子体增强化学气相沉积是利用等离子体产生反应气体,增强反应的效果。
化学气相沉积法能制备出厚度较大的薄膜,并且需要较低的温度和气压条件,适用于大量制备,但其薄膜质量、结晶性能和控制精度较低。
3. 溶液法溶液法是将材料溶解在溶剂中,然后将其涂覆在表面上并蒸发溶剂或进行其他处理,最终制备出薄膜。
溶液法包括旋涂法,离子溶胶沉积法等多种方法。
旋涂法是将溶解材料涂覆在旋涂器上,利用离心力在基板上制备出薄膜。
离子溶胶沉积法是通过在溶液中加入反应剂,产生离子和分子,并通过电场吸引离子到基板上制备薄膜。
溶液法制备工艺简单,适用于大面积和柔性基板,但是制备的薄膜质量和结晶性能较低。
4. 主动控制沉积技术主动控制沉积技术是一种根据图像处理和反馈控制系统,利用扫描探针显微镜对沉积过程进行实时监测,并调整气压等参数实现精密控制的技术。
主动控制沉积技术可以实现高分辨率薄膜制备,并提高制备效率,但其设备和成本较高。
综上所述,无机薄膜的制备方法有很多种,具体的制备方法需要根据应用场景和材料特性而定。
薄膜的制备方法有哪些
![薄膜的制备方法有哪些](https://img.taocdn.com/s3/m/ba9ef49f81eb6294dd88d0d233d4b14e85243e88.png)
薄膜的制备方法有哪些薄膜的制备方法是指将材料制备成薄膜的工艺方法,主要包括物理气相沉积、化学气相沉积、溶液法、激光烧结法等多种方法。
下面将对这些方法进行详细介绍。
首先,物理气相沉积是一种常用的薄膜制备方法,其主要原理是通过物理手段将原料气体转化为固态薄膜。
常见的物理气相沉积方法包括蒸发沉积、溅射沉积和激光烧结法。
其中,蒸发沉积是通过加热原料使其蒸发,然后在基底上凝结成薄膜;溅射沉积是通过离子轰击原料使其溅射到基底上形成薄膜;激光烧结法则是利用激光束将原料烧结成薄膜。
其次,化学气相沉积是另一种常用的薄膜制备方法,其原理是通过化学反应使气态原料在基底上沉积成薄膜。
常见的化学气相沉积方法包括化学气相沉积、原子层沉积和气相沉积等。
其中,化学气相沉积是通过将气态原料与化学反应气体在基底上反应生成薄膜;原子层沉积是通过将气态原料分别按照周期性的顺序吸附在基底上形成单层原子膜,然后重复多次形成薄膜;气相沉积是通过将气态原料在基底上沉积成薄膜。
此外,溶液法也是一种常用的薄膜制备方法,其原理是将材料溶解在溶剂中,然后通过溶液的挥发或化学反应在基底上形成薄膜。
常见的溶液法包括旋涂法、喷涂法和浸渍法等。
其中,旋涂法是将溶液滴在旋转基底上,通过离心作用使溶液均匀涂布在基底上形成薄膜;喷涂法是通过将溶液喷洒在基底上,然后通过干燥使溶液挥发形成薄膜;浸渍法是将基底浸入溶液中,然后通过溶液的挥发或化学反应在基底上形成薄膜。
最后,激光烧结法是一种利用激光束将材料烧结成薄膜的方法。
其原理是通过激光束的照射使材料在基底上烧结成薄膜。
这种方法适用于高能激光烧结材料,可以制备高质量的薄膜。
综上所述,薄膜的制备方法包括物理气相沉积、化学气相沉积、溶液法和激光烧结法等多种方法。
每种方法都有其特点和适用范围,可以根据具体需求选择合适的方法进行薄膜制备。
薄膜的物理气相沉积Ⅰ蒸发法
![薄膜的物理气相沉积Ⅰ蒸发法](https://img.taocdn.com/s3/m/a207ba805ebfc77da26925c52cc58bd630869360.png)
新材料应用到物理气相沉积中,以获得性能更优异的薄膜。
02
新工艺的开发
除了新材料外,新工艺的开发也是非常重要的。需要研究如何开发新的
工艺,以更有效地沉积出高质量的薄膜。
03
跨学科合作
新材料和新工艺的研究与开发往往需要跨学科的合作,如化学、物理、
材料科学等。需要积极开展跨学科的合作,以推动薄膜沉积技术的发展。
蒸发物质的性质
蒸发物质的性质也会影响薄膜的 附着力。需要研究如何选择和优 化蒸发物质的性质,以提高薄膜 的附着力。
工艺参数优化
工艺参数如温度、压力、气体流 量等也会影响薄膜的附着力。需 要研究如何优化这些工艺参数, 以提高薄膜的附着力。
新材料、新工艺的研究与开发
01
新材料的研究
随着科技的发展,不断有新的材料被发现和研究。需要研究如何将这些
感谢您的观看
THANKS
总结词
激光诱导蒸发源是利用高能激光束照射材料表面,使其达到熔融状态并产生蒸气的过程。
详细描述
激光诱导蒸发源通过高能激光束照射材料表面,使其迅速达到高温熔融状态并蒸发。该蒸发源具有高能量密度、 快速加热和精确控温等优点,适用于高熔点材料和薄膜的制备。同时,激光诱导蒸发源还可以实现薄膜的图案化 制备和原位掺杂等特殊应用。
单晶结构
通过特定工艺可制备单晶 结构的薄膜,具有更好的 物理性能。
非晶结构
通过控制蒸发条件可获得 非晶结构的薄膜,具有优 异的稳定性和光学性能。
薄膜的物理性质
导电性
01
蒸发法制备的薄膜导电性良好,可应用于电子器件和集成电路。
光学性能
02
蒸发法制备的薄膜具有优异的光学性能,如高反射、高透过等
特性。
薄膜的物理气相沉积-蒸发法资料
![薄膜的物理气相沉积-蒸发法资料](https://img.taocdn.com/s3/m/c7164bf050e2524de5187e36.png)
2.2 薄膜沉积厚度均匀性与纯度
(1)薄膜沉积的方向性和阴影效应 蒸发源几何类型: •点源:蒸发源的几何尺寸远小于基片的尺寸; – 蒸发量:
– 沉积量:
– 基片某点的沉积量与该点和蒸发源连线与基片法向的夹角有 关;
2.2 薄膜沉积厚度均匀性与纯度
• 面源:蒸发源的几何尺寸与基片的尺寸相当; – 沉积量:
2.1 物质的热蒸发
2、合金的蒸发 合金蒸发与化合物蒸发与化合物蒸发的区别与联系 联系:也会发生成分的偏差。 区别:合金中原子的结合力小于在化合物中不同原子的结合力 ,因而,合金中元素原子的蒸发过程实际上可以被看成是各自 相互独立的过程,就像它们在纯元素蒸发时的情况一样。
2.1 物质的热蒸发
合金的蒸发: • 合金薄膜生长的特点:合金薄膜不同于化合物,其固相成分 的范围变化很大,其熔点由热力学定律所决定; • 合金元素的蒸气压: – 理想合金的蒸气压与合金比例(XB)的关系(拉乌尔定律):
2.3 真空蒸发装置
优点: 1.电阻式蒸镀机设备价格便宜,构造简单容易维护。 2.靶材可以依需要,做成各种的形状。 缺点: 1. 因为热量及温度是由电阻器产生,并传导至靶材,电阻器本身的材料难免会在 过程中参加反应,因此会有些微的污染,造成蒸发膜层纯度稍差,伤害膜层的质 量。 2. 热阻式蒸镀比较适合金属材料的靶材,光学镀膜常用的介电质(dielectric)材 料,因为氧化物所需熔点温度更高,大部分都无法使用电阻式加温来蒸发。 3. 蒸镀的速率比较慢,且不易控制。 4. 化合物的靶材,可能会因为高温而被分解,只有小部分化合物靶材可以被闪燃 式蒸镀使用。 5. 电阻式蒸镀的膜层硬度比较差,密度比较低。
2.1 物质的热蒸发
由气体分子通量的表达式,单位表面上元素的净蒸发速率等于:
第三章薄膜的物理气相沉积Ⅰ蒸发法
![第三章薄膜的物理气相沉积Ⅰ蒸发法](https://img.taocdn.com/s3/m/b9b092f114791711cd79178c.png)
六 真空蒸发源
3、激光加热蒸发 利用激光作为热源使待蒸发材料蒸发。 激光蒸发属于在高真空条件下制备薄膜的技术。
激光源放在真空室外边,激光束通过真空室窗 口打到待蒸发材料上使其蒸发,沉积在衬底上。 适合制备高纯,难熔物质薄膜
六 真空蒸发源
3、激光加热蒸发
激光蒸发示意图
六 真空蒸发源
六 真空蒸发源
克努森源(见图2.4b)也相当于一个面蒸发源。它是一个高温坩 埚的上部开一个直径很小的小孔。在坩埚内,物质的蒸气压近似 等于其平衡蒸气压;而在坩埚外,仍保持着较高的真空度。与普 通的面蒸发源相比,具有较小有效蒸发面积,因此蒸发速率较低。 但其蒸发束流的方向性较好。克努森盒的温度以及蒸发速率可以 被控制得极为准确。
3.3 薄膜沉积的厚度均匀性和纯度
一、薄膜沉积的方向性和阴影效应
利用蒸发法沉积薄膜时,真空度一般较高。被蒸发物质的原子、 分子一般处于分子流状态。
当蒸发源与衬底之间存在某种障碍物时,沉积的过程将会产生阴 影效应,即蒸发来的物质将障碍物阻挡而不能沉积到衬底上。
三、汽化热和蒸汽压
物质的饱和蒸气压:在一定温度下,真空室内 蒸发物质的蒸汽与固态或液态相平衡时所呈现 的压力。
物质的饱和蒸气压随温度的上升而增大,一定 的饱和蒸气压则对应着一定的温度。规定物质 在饱和蒸气压为1.3Pa时的温度,称为该物质 的蒸发温度。
五、元素、化合物、合金蒸发的特点
利用物质在一定温度时的汽化热He代替H, 得到近似表达式。
lgP与1/T基本满足线性关系
ln P H e I RT
H e
P Be RT
五、元素、化合物、合金蒸发的特点
图2.1 a 元素的平衡蒸汽压随温度的变化曲线
(点表示相应元素的熔点)
薄膜的物理气相沉积
![薄膜的物理气相沉积](https://img.taocdn.com/s3/m/7e966e57a1c7aa00b42acb84.png)
三.分类
蒸发法: 1、较高的沉积速度;
2、相对较高的真空度,导致较高 的薄膜质量。
最常见的 PVD方法
溅射法: 1、在沉积多元合金薄膜时化学成
分容易控制; 2、沉积层对衬底的附着力较好。
脉冲激光沉积法
第一节 物质的热蒸发 (Thermal Evaporation)
一、元素的蒸发速率 二、元素的蒸气压 三、化合物和合金的
二、元素的平衡蒸气压
一.平衡蒸气压的推导
克劳修斯-克莱普朗方程指出,物质的平衡蒸气压pe随温 度T的变化率可以定量地表达为:
dpe H dT TV
(2-3)
其中,ΔH——蒸发过程中单位摩尔物质的热焓变化, 随着温度不同而不同,
ΔV——相应过程中物质体积的变化。
由于在蒸发时, V气 V固(V液)
故
VV V气 V固(V液) V气 V
nRT
利用理想气体状态方程
P NA
,
1mol气体的体积为: V NA RT VV 代入
nP
克-克方程,则有
dpe dT
pH RT2
(2-4)
作为近似,可以利用物质在某一温度时的气化热 ΔHe代替ΔH,从而得到物质蒸气压的两种近似 表达方式:
lnpe
He RT
其中α为一个系数,它介于0~1之间;
Pe——平衡蒸气压;
ph——实际分压
当α=1速率
( pe ph) M 2 RT
(2-2)
二.影响蒸发速率的因素
由于物质的平衡蒸气压随着温度的上升增 加很快,因而对物质蒸发速度影响最大的因 素是蒸发源的温度。。
C例外
三、化合物和合金的热蒸发
一.化合物的蒸发
1.化合物蒸发中存在的问题: a) 蒸发出来的蒸气可能具有完全不同于其固态或液态的成分;
pvd是什么材料
![pvd是什么材料](https://img.taocdn.com/s3/m/a46a309427fff705cc1755270722192e453658dc.png)
pvd是什么材料PVD是什么材料。
PVD是物理气相沉积(Physical Vapor Deposition)的缩写,是一种常用的薄膜制备技术。
PVD薄膜技术是通过将材料加热至高温,使其蒸发或溅射,然后沉积到基底表面上,形成薄膜的一种方法。
PVD技术可以制备出具有优良性能的薄膜材料,广泛应用于各种领域,如电子、光学、机械等。
PVD薄膜技术主要包括蒸发法和溅射法两种。
蒸发法是将原料加热至蒸发温度,使其蒸发后沉积在基底表面,形成薄膜。
而溅射法则是通过向靶材轰击离子,使其溅射到基底表面上,形成薄膜。
这两种方法都能够制备出高质量的薄膜材料。
PVD薄膜技术具有许多优点。
首先,PVD薄膜具有优良的附着力和致密性,能够有效提高材料的硬度和耐磨性。
其次,PVD薄膜具有优异的化学稳定性和耐腐蚀性,能够在恶劣环境下长时间稳定工作。
此外,PVD薄膜还具有优秀的光学性能和导热性能,适用于各种光学和电子器件的制备。
PVD薄膜技术在电子领域有着广泛的应用。
例如,PVD薄膜可用于制备导电膜、光学膜、防反射膜等。
在半导体工业中,PVD薄膜技术也被广泛应用于制备金属导线、隔离层、封装材料等。
此外,PVD薄膜还可以用于制备太阳能电池、光学镀膜、显示器件等。
除了电子领域,PVD薄膜技术还在机械领域有着重要的应用。
例如,PVD薄膜可用于制备刀具涂层、汽车零部件涂层、航空发动机涂层等。
这些涂层能够提高材料的耐磨性、耐腐蚀性和导热性,延长材料的使用寿命,提高设备的性能。
总的来说,PVD薄膜技术是一种重要的表面工程技术,能够制备出具有优良性能的薄膜材料,广泛应用于电子、光学、机械等领域。
随着科学技术的不断发展,PVD薄膜技术将会有更广阔的应用前景,为各行各业的发展提供更多可能性。
薄膜物理总结
![薄膜物理总结](https://img.taocdn.com/s3/m/cff114cf0912a21615792983.png)
一.薄膜制备的真空技术基础:薄膜制备方法物理方法:热蒸发法 溅射法 离子镀方法化学方法:电镀方法 化学气相生长法1,气体分子的平均自由程:气体分子在两次碰撞的间隔时间里走过的平均距离。
21d n πλ= d — 气体分子的有效截面直 2,单位面积上气体分子的通量:气体分子对于单位面积表面的碰撞频率。
3,流导:真空管路中气体的通过能力。
分子流气体:流导C 与压力无关,受管路形状影响,且与气体种类、温度有关。
4,真空泵的抽速: p — 真空泵入口处气体压力Q — 单位时间内通过真空泵入口处气体流量5,真空环境划分:低真空> 102 Pa中真空102 ~ 10-1 Pa高真空10-1 ~ 10-5 Pa超高真空< 10-5 Pa低压化学气相沉积:中、低真空(10~ 100Pa );溅射沉积: 中、高真空(10-2 ~ 10Pa );真空蒸发沉积: 高真空和超高真空(<10-3 Pa );电子显微分析: 高真空;材料表面分析: 超高真空。
6,气体的流动状态:分子流状态:在高真空环境下,气体的分子除了与容器壁外,几乎不发生气体分子间的相互碰撞。
特点:气体分子平均自由程大于气体容器的尺寸或与其相当。
(高真空薄膜蒸发沉积系统、各种材料表面分析仪器)粘滞流状态:当气压较高时,气体分子的平均自由程很短,气体分子间的相互碰撞较为频繁。
粘滞流状态的气体流动模式:层流状态:低流速黏滞流所处的气流状态,即气体宏观运动方向与一组相互平行的流线相一致。
紊流状态:高流速黏滞流所处的气流状态,气体不再能够维持相互平行的层状流动模式,而呈现出一种旋涡式的流动模式。
克努森(Knudsen)准数:分子流状态Kn<1过渡状态Kn=1~100粘滞流状态Kn > 1007,旋片式机械真空泵工作原理:玻意耳-马略特定律(PV=C)即:温度一定的情况下,容器的体积和气体压强成反比。
性能参数:理论抽速Sp:单位时间内所排出的气体的体积。
PVD制程介绍范文
![PVD制程介绍范文](https://img.taocdn.com/s3/m/b64fcb80d4bbfd0a79563c1ec5da50e2524dd19d.png)
PVD制程介绍范文PVD制程,即物理气相沉积(Physical Vapor Deposition),是一种重要的薄膜制备技术。
它利用高能粒子(原子、分子或离子)在真空环境中运动并沉积在基底上形成薄膜。
PVD制程可以实现高纯度、致密、均匀的薄膜沉积,并在多个领域得以应用。
首先,蒸发是最常用的PVD技术之一、蒸发法是指将加热材料加热到其蒸发温度,使其从固态直接转变为气态,并在真空环境中沉积在基底上。
蒸发技术可以使用电子束加热、电阻加热或者感应加热等方式加热材料。
蒸发法可以制备金属、氧化物、氮化物、硫化物等多种材料的薄膜。
其次,溅射是另一种重要的PVD技术。
溅射技术通常使用靶材作为薄膜源,通过在真空环境中撞击靶材表面的高能离子使其薄膜溅射到基底上。
溅射技术可以控制薄膜的组分和微观结构,并具有较高的沉积速率。
溅射法可以制备金属、合金、氧化物、氮化物等多种材料的薄膜。
此外,离子镀也是一种常用的PVD技术。
离子镀技术是在真空环境中加入辅助气体,使得离子在高压电场下被加速并沉积在基底上。
离子镀技术可以使薄膜在低温下形成,具有高结晶度和致密度,并且可以改善基底表面的性质。
离子镀法可以制备金属、合金、氧化物等多种材料的薄膜。
PVD制程具有多个优点。
首先,PVD制程在低温下进行,不会对基底材料产生热损伤,适用于热敏感性材料。
其次,PVD制程可以制备致密、均匀、高纯度的薄膜,具有良好的外观和机械性能。
此外,PVD制程可以快速、高效地进行,提高了生产效率。
最后,PVD制程可以沉积不同材料的薄膜,适用于多种应用。
PVD技术在许多领域得到了广泛应用。
在半导体工业中,PVD制程广泛应用于制备金属薄膜,如铝、铜等,以作为导线、电极等。
在光学薄膜领域,PVD制程用于制备反射膜、透明电极等。
在显示器生产中,PVD技术被用于制备透明导电膜。
PVD制程还被应用于表面涂层、摩擦材料等领域。
总之,PVD制程是一种重要的薄膜制备技术,通过高能粒子在真空环境中沉积在基底上形成薄膜。
纳米薄膜制备技术的方法和步骤详解
![纳米薄膜制备技术的方法和步骤详解](https://img.taocdn.com/s3/m/7512414f6d85ec3a87c24028915f804d2b168737.png)
纳米薄膜制备技术的方法和步骤详解纳米薄膜制备技术是一种重要的材料制备方法,可用于制备具有纳米尺寸的薄膜材料。
纳米薄膜具有独特的物理和化学性质,被广泛应用于光电子学、能源存储、传感器等领域。
本文将详细介绍几种常用的纳米薄膜制备方法和相关的步骤。
1. 物理气相沉积法(PVD)物理气相沉积法是制备纳米薄膜的一种常用方法。
它利用高温或真空弧放电等方式将固体材料转化为蒸汽或离子形式,通过在衬底表面沉积形成薄膜。
该方法包括蒸发、溅射和激光烧结等技术,下面将介绍其中两种常用的物理气相沉积法。
- 蒸发法:将固体材料置于高温坩埚中,通过加热使其升华成蒸汽,然后沉积在预先清洁处理的衬底上。
蒸发法适用于制备高纯度、单晶和多晶材料的纳米薄膜。
- 溅射法:利用高能离子束轰击固体材料,使其表面物质脱离并形成蒸汽,然后沉积在衬底表面。
溅射法具有较高的原子密度和较好的原子堆积度,可用于制备复杂化合物或多元合金等纳米薄膜。
2. 化学气相沉积法(CVD)化学气相沉积法是使用气体反应来制备纳米薄膜的方法。
该方法通常在高温下进行,通过在反应气体中加入反应物质,并使其在衬底表面发生化学反应形成薄膜。
化学气相沉积法具有高产率、高纯度和较好的均匀性等优点,是制备大面积纳米薄膜的理想方法。
- 热CVD:在高温下进行反应,通过热分解或气相化学反应形成纳米薄膜。
此方法常用于制备二维材料如石墨烯等。
- 辅助CVD:加入辅助激发源如等离子体、激光或电弧等,以提供能量激活气体分子,使其发生化学反应形成纳米薄膜。
辅助CVD可以改善反应速率、增加产率和提高薄膜质量。
3. 溶液法溶液法是制备纳米薄膜的常用方法之一,适用于各种材料的制备。
具体步骤包括以下几个方面:- 溶液制备:将所需材料溶解在合适的溶剂中,形成可使溶液中纳米颗粒分散的溶液。
- 衬底处理:选择合适的衬底材料,并进行清洗和表面处理,以保证薄膜的附着和均匀性。
- 溶液沉积:将衬底浸入溶液中,控制溶液温度和浸泡时间,使纳米颗粒在衬底表面自发沉积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 物质的热蒸发
影响蒸发速率的因素: 由于元素的平衡蒸汽压随着温度的上升增加很快,因而对
元素的蒸发速率影响最大的因素是蒸发源所处的温度。
2.1 物质的热蒸发
(2)元素的平衡蒸气压 --- 元素的蒸气压: •Clausius-Clapyeron方程:
•理想气体近似:
---实际材料的蒸气压函数: •金属Al:
2.1 物质的热蒸发
由气体分子通量的表达式,单位表面上元素的净蒸发速率等于:
NA(pe ph) 2MRT
其中α蒸发系数(0~1),Pe—元素的平衡蒸汽压,Ph—元素的 实际分压; • 最大蒸发速率(分子/cm2s): α=1, Ph= 0
元素的质量蒸发速率:
(pe ph)
M
2RT
为单位表面上元素的质量蒸发速率。
2.1 物质的热蒸发
2、合金的蒸发 合金蒸发与化合物蒸发与化合物蒸发的区别与联系 联系:也会发生成分的偏差。 区别:合金中原子的结合力小于在化合物中不同原子的结合力 ,因而,合金中元素原子的蒸发过程实际上可以被看成是各自 相互独立的过程,就像它们在纯元素蒸发时的情况一样。
2.1 物质的热蒸发
合金的蒸发: • 合金薄膜生长的特点:合金薄膜不同于化合物,其固相成分 的范围变化很大,其熔点由热力学定律所决定; • 合金元素的蒸气压: – 理想合金的蒸气压与合金比例(XB)的关系(拉乌尔定律):
2.1 物质的热蒸发
要实现蒸发法镀膜,需要三个最基本条件:加热,使镀料 蒸发;处于真空环境,以便于气相镀料向基片运输;采用温 度较低的基片,以便于气体镀料凝结成膜。
蒸发材料在真空中被加热时,其原子或分子就会从表面 逸出,这种现象叫热蒸发。
2.1 物质的热蒸发
(1)元素的蒸发速率 --- 蒸发现象:
薄膜的物理气相沉积蒸 发法
主要内容
引言 2.1 物质的热蒸发 2.2 薄膜沉积的厚度均匀性和纯度 2.3 真空蒸发装置
引言
一、定义 物理气相沉积(Physical Vapor Deposition, PVD )
利用某种物理过程,如物质的热蒸发或受到离子轰击时物 质表面原子的溅射现象,实现物质原子从源物质到薄膜的可控 转移的过程。
2.1 物质的热蒸发
• 蒸发源的选择: – 固体源:熔点以下的饱和蒸气压可以达到0.1Pa; – 液体源:熔点以下的饱和蒸气压难以达到0.1Pa; – 难熔材料:可以采用激光、电弧蒸发;
2.1 物质的热蒸发
(3)化合物与合金的热蒸发 --- 多组元材料的蒸发:
• 合金的偏析:蒸气成分一般与原始固体或液体成分不同; • 化合物的解离:蒸气中分子的结合和解离发生频率很高;
具有较高的沉积速率、相对较高的真空度,以及由此导致的较 高的薄膜纯度等优点。 溅射法:具有自己的特点,如在沉积多元合金薄膜时化学成分容 易控制、沉积层对沉底的附着力较好。
2.1 物质的热蒸发
利用物质在高温下的蒸发现 象,可以制备各种薄膜材料。蒸 发法具有较高的背底真空度。在 较高的真空条件下,不仅蒸发出 来的物质原子或分子具有较长的 平均自由程,可以直接沉积在沉 的纯净程度。
2.1 物质的热蒸发
1、化合物的蒸发 化合物蒸发中存在的问题: a)蒸发出来的蒸气可能具有完全不同于其固态或液体的成分; (蒸气组分变化) b)气态状态下,还可能发生化合物个组员间的化合与分解过程 ;后果是沉积后得到的薄膜成分可能偏离化合物的正确的化学组 成。 化合物蒸发过程中可能发生的各种物理化学反应: 无分解反应;固态分解反应;气态分解蒸发
-- 蒸发不发生解离的材料,可以得到成分匹配的薄膜:如 B2O3, GeO, SnO, AlN, CaF2, MgF2,……
-- 蒸发发生分解的材料,沉积物中富金属,沉积物化学成 分发生偏离,需要分别使用独立的蒸发源;如:Ag2S, Ag2Se, IIIV半导体等;
2.1 物质的热蒸发
– 蒸发发生解离的材料;沉积物中富金属,需要分立的蒸发源; 硫族化合物:CdS, CdSe, CdTe,…… 氧化物:SiO2, GeO2, TiO2, SnO2,
2.1 物质的热蒸发
2.1 物质的热蒸发
2.1 物质的热蒸发
• 元素的蒸发 根据物质的蒸发特性,物质的蒸发情况可被划分为两种类型: 1. 将物质加热到其熔点以上(固-液-气)。 例如:多数金属 2. 利用由固态物质的升华,实现物质的气相沉积。 例如:Cr、Ti、Mo、Fe、Si等
石墨C例外,没有熔点,而其升华温度又相当高,因而实践 中多是利用石墨电极间的高温放电过程来使碳原子发生升华。
PB=XBPB(0) PB(0)为纯元素的蒸气压;
– 实际合金的蒸气压:PB=γBXBPB(0) = aBPB(0) – 合金组元蒸发速率之比:
2.1 物质的热蒸发
蒸发质量定律的应用: • 假设所制备的Al-Cu合金薄膜要求蒸气成分为Al-2wt%Cu :即:ΦAl/ ΦCu=98MCu/2MAl,蒸发皿温度:T=1350K。求所 配制的Al-Cu合金成分。 • PAl/PCu=1×10-3/2 ×10-4, 假设:γAl= γCu 则:XAl/X Cu=15 (mol比)≈6.4 (质量比) - 计算只适用于初始的蒸发,若蒸发持续进行,成分将平衡 到某一固定的值; - 蒸气成分的稳定性与蒸发工艺有关;
• 蒸发与温度有关,但不完全受熔体表面的受热多少所决定;
• 蒸发速率正比于物质的平衡蒸气压(Pe)与实际蒸气压力(Ph)之
差; --- 蒸发速率(两种表达):
• 元素的净蒸发速率:在一定的温度下,处于液态或固态的元 素都具有一定的平衡蒸汽压。因此,当环境中的分压降低到了 其平衡蒸汽压之下时,就会发生元素的净蒸发。
二、特点(相对于化学气相沉积而言): (1)需要使用固态的或熔融态物质作为沉积过程的源物质; (2)源物质经过物理过程而进入气相; (3)需要相对较低的气体压力环境; (4)在气相中及沉底表面并不发生化学反应。
引言
三、分类
蒸发法:把装有基片的真空室抽成真空,使气体压强达到10-2Pa 以下,然后加热镀料,使其原子或分子从表面逸出,形成蒸汽流 ,入射到基片表面,凝结形成固态薄膜。