斜齿轮与蜗杆啮合

合集下载

塑料齿轮设计注意事项

塑料齿轮设计注意事项

塑料齿轮是慢丝切割的螺纹可以对半分模,也可以旋转抽芯张学孟先生提出过两种噪音指标:一、控制最大滑动比的噪音指标Bcg。

原理是:在齿轮基圆的附近的渐开线的曲率变化大,敏感性高,齿面在啮合时的接触滑动比也大,所以在基圆附近的齿高传递力时,力的变化比较剧烈,齿面的粗糙度对力的影响也大,因此容易引起齿的振动,产生较大的噪音。

所以,应该使啮合起始圆尽可能的远离基圆。

二、摩擦噪音指标。

原理是:先说两个定义:1、主动齿轮的节园到啮合起始圆的这段弧形称为进弧区;2、从节园到其齿顶称为退弧区。

当齿面接触由进弧区移动到退弧区时,摩擦力的方向在节园处发生突变。

在进弧区内,主动齿轮的齿腹先于从动齿轮的齿顶接触,齿面滑动的方向是朝着主动齿轮的齿顶,摩擦力与之相反。

摩擦力产生的力矩的方向正好和主动齿轮加载的方向相同,因此摩擦力增大了齿面的法向压力。

刚超过节园时,摩擦力随着滑动方向的改变而改变。

齿面受力发生突变,导致牙齿发生振动而产生噪音。

减小从动齿轮的外径和增大主动齿轮的外径和改善摩擦噪音指标。

2.关于塑齿双啮测试压力的规定①目前未查到国内相关标准是如何规定的;②日本的齿轮标准:JISB1702-3_2008和JISB1752_1989都对测试压力进行了规定。

这两个标准对于塑齿测试压力的规定是一致的,如附图所示。

但是问题是:这两个标准中对于塑齿测试压力的数值规定明显的偏大。

以1个模数,齿宽b=20mm的齿轮为例,标准规定的测试压力是5.4*2=8.4N=856.56161890146gf=0.85656161890146kgf,这对于一般的双啮仪提供的测试力范围是不相符合的。

而且这个力明显的偏大。

从实际的情况是,对于塑齿的双啮测试一般是在100gf~200gf,一般取200gf=1.96133N≈2N。

对于塑胶斜齿轮一般都是用滚齿加工铜公,然后再用铜公加工模具。

对于斜齿设计推荐用标准的,但是如果斜齿轮的齿厚很小的情况下,在精度要求不是很苛刻的条件下也可以考虑用线割的方式直接割除斜齿齿廓,其出差在um (丝)级的。

8蜗杆斜齿设计解析

8蜗杆斜齿设计解析

机械设计基础
应用: 常用于两轴交错、传动比较大、传递功率不太大(50kW以下) 或间歇工作的场合。此外,由于当γ1较小时传动具有自锁性, 故常用在卷扬机等起重机械中,起安全保护作用。它还广泛应 用在机床、汽车、仪器、冶金机械及其它机器或设备中适用于 中、小功率的地方。
机械设计基础
§8-2 蜗杆传动的主要参数和几何尺寸
第八章 蜗杆传动
学习要求: 1.了解蜗杆传动的特点、类型及应用 2.熟悉普通圆柱蜗杆传动的主要参数 3.熟练掌握蜗杆传动的失效形式和计算准则;掌握蜗杆 传动的受力分析、滑动速度和效率 4.掌握蜗杆传动的热平衡计算;了解蜗杆和蜗轮的结构 特点 5.了解蜗杆传动的强度计算特点
机械设计基础
本章重点: 1.熟悉蜗杆传动的特点 2.掌握蜗杆、蜗轮的主要参数 3.掌握蜗杆传动的主要失效形式及设计计算准则 4.了解蜗杆传动的设计计算 5.了解蜗杆传动的热平衡计算以及改善其散热能力的措施 和方法
机械设计基础
二、蜗杆、蜗轮的材料
材料及热处理 40、45(调质) 蜗 杆 20Cr、20CrMnTi(渗碳淬火) 45、40Cr(表面淬火) ZCuSn10P1、ZCuSnPb5Zn5 蜗 轮 用途 不太重要 高速重载 Vs<12~25m/s
ZCuAl10Fe3
HT150、HT200
Vs<10m/s
一、主要参数
机械设计基础
1.模数m、压力角a 中间平面——垂直于蜗轮轴线且过蜗杆轴线的平面。 在中间平面内,蜗杆的啮合传动可视为齿条和渐开线齿轮 的啮合。所以,蜗杆的轴向模数mx1和轴向压力角a x1应与蜗轮 的端面模数mt2和端面压力角at2相等。
即正确啮合条件: mx1 mt 2 m
a x1 a t 2 20 1 (旋向相同) 2

斜齿轮与蜗杆的配合条件

斜齿轮与蜗杆的配合条件

斜齿轮与蜗杆的配合条件
斜齿轮与蜗杆的配合条件是:
1. 肚脐部分,在两个独立的边缘接触面厚度之和为常数,以保持一定的接触强度和传动能力。

2. 制造不需要特别的测量设备和固定方法。

3. 这种传动的丝杆只需要以比较低的压力来传动轮的力。

4. 两者在接触面上应有足够的接触面积以提供足够的摩擦力。

5. 蜗杆蜗杆与蜗轮蜗轮之间的接触面相对静止。

6. 蜗齿尺寸和受力特点需要满足实际应用的需求,并经过适当的设计和计算验证。

7. 轮齿与蜗杆齿之间的传动比应满足设计要求,以达到所需的转速和扭矩传递。

总的来说,斜齿轮与蜗杆的配合条件是要求两者之间有足够的接触面积和接触强度,同时满足所需的传动比和扭矩传递。

这种配合方式能够有效地将旋转转换成直线运动,并广泛应用于各种机械传动系统中。

机械设计题库(选择)

机械设计题库(选择)

1. 即使两构件的相对运动是平动,他们也不一定构成移动副。

( )2.对于联接螺纹,即使制造和装配足够精确,螺纹牙受力也是不均匀的。

( )3.零件受变应力作用,则作用在零件上的载荷是变载荷。

( )4. 联接承受横向力,则螺栓的失效形式是剪切强度不足。

( )5. 在高转速、有振动的场合,楔键联接没有平键联接好。

( )6. 滚动轴承的基本额定寿命是指滚动轴承的任一元件出现疲劳点蚀前轴承运转的总转数或一定转速下的工作小时数。

( )7. 传动轴只承受弯矩作用,心轴只承受扭矩作用。

( )8. 滚子链传动的动载荷随链条节距增大而增大,随链轮齿数增大而减小。

( )9. 相互啮合的齿轮,齿面接触强度一定相等,齿根弯曲疲劳强度一般不等。

( )10. 带传动的平均传动比等于常数,链传动的平均传动比随载荷的大小而改变。

( )11. 带传动的弹性滑动是不可避免的。

( )12. 滚动轴承的当量动载荷是指轴承寿命为转时,轴承所能承受的最大载荷。

( )13. 凸缘联轴器和齿式联轴器都可以补偿两轴的安装误差。

( )14. 流体动压单油楔向心滑动轴承的承载能力与其半径间隙成正比。

( )15. 只要是啮合传动,则其瞬时传动比不变。

( )16. 带传动存在弹性滑动的根本原因是松、紧边存在拉力差。

( )17. 润滑油的油性越好则其粘度越大。

( )18. 仅从提高螺纹联接的疲劳强度考虑,增大螺栓刚度是不合理的。

( )19. 对于蜗杆传动,其传动中心距公式为。

( )20. 蜗杆传动本质上属于齿轮传动,因此其传动比公式也为。

( )21. 滚子链链轮的齿数取得过大,将使链传动的寿命明显减小。

( )22. 对滑动轴承来讲,轴颈与轴瓦的摩擦和磨损是不可避免的。

( )23. 在动力传动中,V带传动比平带传动应用广泛的主要原因是V带与带轮间的当量摩擦系数更大。

( )24. 带传动靠摩擦力工作,因此带轮的工作表面越粗糙越好,张紧力越大越好。

( )25. 在分度圆直径不变的情况下,齿轮的齿数越大则其齿根弯曲疲劳强度越小。

蜗杆传动(含答案)

蜗杆传动(含答案)

蜗杆传动一、判断题(正确 T ,错误 F )1. 两轴线空间交错成90°的蜗杆传动中,蜗杆和蜗轮螺旋方向应相同。

( )2. 蜗杆传动的主平面是指通过蜗轮轴线并垂直于蜗杆轴线的平面。

( )3. 蜗杆的直径系数为蜗杆分度圆直径与蜗杆模数的比值,所以蜗杆分度圆直径越大,其直径系数也 越大。

( )4. 蜗杆传动的强度计算主要是进行蜗轮齿面的接触强度计算。

( )5. 变位蜗杆传动中,是对蜗杆进行变位,而蜗轮不变位。

( ) 二、单项选择题1. 与齿轮传动相比,( )不能作为蜗杆传动的优点。

A 传动平稳,噪声小B 传动比可以较大C 可产生自锁D 传动效率高 2. 在标准蜗杆传动中,蜗杆头数一定时,若增大蜗杆直径系数,将使传动效率( )。

A 降低B 提高C 不变D 增大也可能减小 3. 蜗杆直径系数的标准化是为了( )。

A 保证蜗杆有足够的刚度B 减少加工时蜗轮滚刀的数目C 提高蜗杆传动的效率D 减小蜗杆的直径 4. 下列公式中,用( )确定蜗杆传动比的公式是错误的。

A21ωω>=i B 12z z i >= C 12d d i >= D 21n n i >=5. 提高蜗杆传动效率的最有效方法是( )。

A 增加蜗杆头数B 增加直径系数C 增大模数D 减小直径系数 三、填空题1. 在蜗杆传动中,蜗杆头数越少,则传动效率越___________,自锁性越____________。

2. 有一普通圆柱蜗杆传动,已知蜗杆头数21=z ,蜗杆直径系数8=q ,蜗轮齿数372=z ,模数mm 8=m ,则蜗杆分度圆直径_________________mm ,蜗轮的分度圆直径________________mm ,传动中心距________________mm ,传动比___________,蜗轮分度圆上的螺旋角_____________。

3. 阿基米德蜗杆传动变位的主要目的是为了_____________________和____________________。

斜齿轮和蜗杆啮合条件(二)

斜齿轮和蜗杆啮合条件(二)

斜齿轮和蜗杆啮合条件(二)
斜齿轮和蜗杆啮合条件
斜齿轮的啮合条件
•斜齿轮是一种常见的传动装置,由两个或多个啮合的齿轮组成。

•斜齿轮的啮合条件主要包括齿数、模数、齿廓曲线等方面。

齿数的选择
•斜齿轮的齿数选择应满足一定的要求,如齿数比要在一定范围内。

•齿数比的选择要根据工作条件和传动比决定,一般要尽量选择齿数比较大的齿轮。

模数的确定
•斜齿轮的模数是齿轮轴的直径与齿数的比值,决定了齿轮的大小。

•根据传动功率和转速要求,以及材料的选择,可以确定合理的模数。

齿廓曲线的选用
•斜齿轮的齿廓曲线有很多种,如圆弧形、渐开线形等。

•渐开线形齿廓曲线在工程应用中最常见,因为它具有良好的啮合性能和传动效率。

蜗杆的啮合条件
•蜗杆是一种具有螺旋形齿的传动装置,常用于减速和传动力矩。

•蜗杆的啮合条件主要包括摩擦角、螺旋角等方面。

摩擦角的控制
•蜗杆的摩擦角是指蜗杆齿轮之间的摩擦力与正压力之间的比值。

•蜗杆的摩擦角要控制在一定范围内,以保证良好的啮合性能和传动效率。

螺旋角的选择
•蜗杆的螺旋角是指蜗杆螺旋线与轴线的夹角。

•螺旋角的选择要根据传动比、工作条件和材料等因素决定,一般应保证蜗杆与蜗轮的啮合良好。

总结
•斜齿轮和蜗杆是常用的传动装置,它们的啮合条件对于传动效率和工作可靠性至关重要。

•在设计和选择斜齿轮和蜗杆时,齿数、模数、齿廓曲线、摩擦角和螺旋角等因素需要综合考虑。

•合理选择和控制这些啮合条件,可以提高传动效率,减少噪音和磨损,从而保证传动系统的正常运行。

《机械设计基础》第12章 蜗杆传动

《机械设计基础》第12章 蜗杆传动
2、重合度大,传动平稳,噪声低;
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。

KISSsoft教程:交叉斜齿轮

KISSsoft教程:交叉斜齿轮

KISSsoft高级教程:交叉斜齿轮,结合金属蜗杆和塑料齿轮,考虑长齿高制设计方法1. 概述由于交叉斜齿轮系统中蜗杆和塑料齿轮的材料不同,将会导致啮合时齿厚的分布大小不一。

金属材料的杨氏弹性模量(材料在弹性变形阶段,其应力和应变成正比例关系,标志了材料的刚性,杨氏模量越大,越不容易发生形变,符合胡克定律)为210000MPa,而塑料材料则只有3000MPa。

所以,金属蜗杆的齿厚需要缩小,而增加塑料齿轮的齿厚。

通常,在实际啮合过程中,蜗杆上轮齿断裂的可能性占到20%-40%,而塑料斜齿轮占到60%-80%。

不采用齿廓修形的情况下,蜗轮和蜗杆的齿厚分布一般为,齿厚分布均衡。

法向齿厚Sn需要缩小ΔSn(Mn*0.5),从而使蜗杆的齿厚分布占到34%,蜗轮的轮齿厚度占到66%。

塑料齿轮的齿根强度因为金属蜗杆的轮齿减小而得到巨大提升,齿数也会相应增加。

同时,齿根和齿顶圆仍然保持和先前而修改齿形时的大小。

所以,DIN3960标准采用的公式为:考虑变位系数时,在分度圆上的齿厚:Sn=Mn*(α)。

齿根圆直径:df=d+2**Mn-2h fp 。

2. KISSsoft计算过程解析在KISSsoft软件模块中,打开交叉斜齿轮模块,如图1所示。

图1 交叉斜齿轮模块将已知数据输入到基本界面,如图2、图3和图4所示。

图2 交叉斜齿轮基本数据输入模块图3 塑料齿轮长齿制齿廓设置图4 公差界面设置点击计算按钮,会出现下面错误,如图5所示:公差设置依据资料 ②请注意:在选项框中会提示怎样解决该错误的方法。

塑料齿轮计算采用DIN3990或ISO6336,需要在“特殊模块设置”窗口中点击“塑料”栏后,激活选项“允许根据DIN3990/ISO6336简单计算塑料齿轮类型”。

② ① ①塑料齿轮不适用于DIN3990或ISO6336标准。

KISSsoft软件中,为准确计算该类型系统,需要考虑塑料的S-N 曲线,其温度依靠VDI2545标准确定。

斜齿轮

斜齿轮

b' b αt αn
作者:潘存云教授
β a'
a a’ a c c
β
β
不论在法面还是端面,其齿顶高和齿根高一样: 不论在法面还是端面,其齿顶高和齿根高一样: hf= (h*an+c * n) m n ha=h*anmn h*an — 法面齿顶高系数, han*=1 法面齿顶高系数, c*n — 法面顶隙系数 法面顶隙系数, c*n=0.25
Fn Ft
β
Fn β F t
β
作者:潘存云教授
β
β
Fs
Fs
东华大学专用
作者: 孙志宏
蜗杆传动( 蜗杆传动(worm and worm gear) )
作用: 用于传递交错轴之间的回转运动和动力。 作用: 用于传递交错轴之间的回转运动和动力。 蜗杆主动、蜗轮从动。 蜗杆主动、蜗轮从动。 ∑=90° 90° 形成:若单个斜齿轮的齿数很少( 形成:若单个斜齿轮的齿数很少(如z1=1)而且β1很 )而且β 大时,轮齿在圆柱体上构成多圈完整的螺旋。 大时,轮齿在圆柱体上构成多圈完整的螺旋。
东华大学专用
作者: 孙志宏
7. 斜齿轮的主要优缺点 ①啮合性能好、传动平稳,噪音小。 啮合性能好、传动平稳,噪音小。 啮合性能好 ②重合度大,承载能力高。 重合度大,承载能力高。 重合度大 ③zmin< zvmin ,机构更紧凑。 机构更紧凑 ④缺点是产生轴向力,且随β增大而增大, 缺点是产生轴向力, 增大而增大, 缺点是产生轴向力 一般取β=8°~20°。 ° ° 人字齿轮, 采用人字齿轮,可使β=25°~40°。 ° ° 常用于高速大功率传动中(如船用齿轮箱) 常用于高速大功率传动中(如船用齿轮箱)。
考虑齿轮宽度,则直齿轮的齿 廓曲面是发生面在基圆柱上作 纯滚动时,发生面内一条与轴 线平行的直线KK所展成的曲面。

机械设计基础-填空题_64学时原题

机械设计基础-填空题_64学时原题

《机械设计基础》填空部分复习题概论1、一非对称循环变应力,其σmax=100N/mm2,σmin=-50N/mm2,计算其应力幅σa= 75N/mm2,平均应力σm= __25_N/mm2,循环特性r= -0.5。

2、机械零件由于某种原因,不能正常工作时,称为失效。

机械零件在不发生失效的条件下,零件能安全工作的限度,称为工作能力。

3、随时间变化的应力称为变应力,具有周期性变化的变应力称为循环变应力。

按照随时间变化的情况,应力可分为静应力和变应力。

变应力的五个基本参数是σmax、σmin、σm、σa、r。

应力循环中的最小应力与最大应力之比,可用来表示变应力中应力变化的情况,通常称为变应力的循环特性r。

当r=+1表示为静应力,r=0表示为脉动应力,它的σmin=0,σm=σa=σmax/2;当r=-1表示为对称应力,它的σmax=σa;σm= 0 ;非对称循环变应力的r变化范围为-1~0和0~+1之间。

4、在变应力中,表示应力与应力循环次数之间的关系曲线称为材料的疲劳曲线。

在变应力作用下,零件的主要失效形式是疲劳破坏。

在静应力下,塑性材料的零件按不发生塑性变形条件进行强度计算,故应取材料的屈服极限作为极限应力;而脆性材料的零件按不发生断裂的条件进行计算,故应取材料的强度极限作为极限应力。

变应力下,零件的许用极限应力与零件材料的疲劳极限有关,同时还应考虑应力集中系数、尺寸__系数和表面状态系数。

5、变应力可归纳为对称循环变应力、非对称循环变应力和脉动循环变应力三种基本类型。

第一章运动简图1、平面机构具有确定运动的条件是自由度等于原动件个数,且自由度>0。

2两构件通过面接触组成的运动副称为低副;平面机构中又可将其分为回转副和移动副。

两构件通过点或直线接触组成的运动副称为高副。

3、两构件直接接触并能产生一定相对运动的联接称为运动副,按照其接触特性,又可将它分为低副和高副。

第二章连杆机构1、按照连架杆是曲柄还是摇杆,可将铰链四杆机构分为三种基本型式曲柄摇杆机构、双曲柄机构和双摇杆机构。

机械设计复习

机械设计复习

机械设计:齿轮传动:四问答题1.平行轴外啮合大、小斜齿轮的螺旋角方向是否相同斜齿轮受力方向与哪些因素有关2.开式齿轮传动应按何种强度条件进行计算怎样考虑它的磨损失效3.闭式齿轮传动应按何种强度条件进行计算4.为什么轮齿弯曲疲劳裂纹常发生在齿根受拉伸侧5.如图所示的轮系中,五个齿轮的材料、参数皆相同;当轮1主动时,问哪个齿轮的接触疲劳强度最差哪个齿轮的弯曲疲劳强度最差设轮1传递给轮2、'2的功率相同;答:轮1接触疲劳强度最差,一周工作两次;轮2和'2弯曲疲劳强度最差;因对称循环的疲劳极限应力一般仅为脉动循环时的70%;6.什么叫硬齿面齿轮什么叫软齿面齿轮各适用于什么场合7.普通斜齿圆柱齿轮的螺旋角取值范围是多少为什么人字齿轮和双斜齿轮的螺旋角可取较大值8.选择齿轮齿数时应考虑哪些因素9.在锥-圆柱齿轮传动中,应将锥齿轮放在高速级还是低速级为什么10.某开式齿轮传动时发生轮齿折断,试提出可能的改进措施要求提出5种;答:1增大齿轮模数,同时减少齿数;2改善材料特性,热处理,提高心部的强度b σ、屈服极限s σ、疲劳极限1-σ;3正变为,增大齿根厚度;4增大齿根过渡圆角半径、降低齿根表面粗糙度值,以减小应力集中;5提高加工精度,以减小动载荷系数v K ,齿向载荷系数βK , 齿间载荷分布系数αK ;11.某机器中一对直齿圆柱齿轮传动,材料皆为45钢调质,z 1=20,z 2=60,模数m=3mm,现仍用原机壳座孔,换配一对45钢表面淬火齿轮,齿宽不变,z 1=30,z 2=90,模数m=2mm;问:①接触应力有何变化②接触强度有何变化③弯曲应力有何变化 答:1接触应力不变;2接触疲劳强度提高;3弯曲应力增大;12.一对闭式软齿面直齿轮传动,其齿数与模数有两种方案:az 1=20;z 2=60,模数m=4mm ;bz 1=40;z 2=120,模数m=2mm,其他参数都一样;试问①两种方案的接触强度和弯曲强度是否相同②若两种方案的弯曲强度都能满足,则哪种方案更好13.齿面接触疲劳强度计算的计算点在何处其计算的力学模型是什么它针对何种失效形式答:齿面接触疲劳强度的计算点在节点处,这主要是基于点蚀多发生于轮齿节线附近靠齿根一侧;其力学模型是一对圆柱相接触,针对的失效形式为齿面接触疲劳失效,也称为点蚀;五受力分析题1.斜齿轮传动如图所示不计效率,试分析中间轴齿轮的受力,在啮合点画出各分力的方向;2.如图所示为三级展开式斜齿圆柱齿轮减速器传动布置方案,为了减小轮齿偏载,并使同一轴上的两齿轮产生的轴向力能相互部分抵消,请指出该如何变动传动的布置方案;3.起重卷筒用标准直齿圆柱齿轮传动,如图所示,试画出:1在位置B 处啮合时大齿轮两个分力的方向;2当变换小齿轮安装位置,使其在A 、B 、C 各点啮合时,哪个位置使卷筒轴轴承受力最小画出必要的受力简图,并作定性分析4.如图所示斜齿圆柱齿轮传动,齿轮1主动,在图中补上转向和螺旋线方向,并画出从动轮2其他分力;当转向或螺旋线方向改变时,从动轮2各分力的方向有何变化5.如图所示为一两级斜齿圆柱齿轮减速器,动力由轴I输入,轴Ⅲ输出,齿轮4螺旋线方向及Ⅲ轴转向如图示,求:1为使轴Ⅱ轴承所受轴向力最小,各齿轮的螺旋线方向;2齿轮2、3所受各分力的方向;6.如图所示为二级减速器中齿轮的两种不同的布置方案,试问哪种方案较为合理为什么答:第二个方案较合理b ,因为此方案的齿轮布置形式使轴在转矩作用下产生的扭转变形能减弱轴在弯矩作用下产生的弯曲变形所引起的载荷沿齿宽分布不均匀的现象;蜗杆传动:各分力的大小及其对应关系如下:蜗杆切向力圆周力F和蜗轮轴向力a2Ft1蜗轮切向力圆周力F和蜗杆轴向力a1Ft2蜗轮径向力F和蜗杆径向力r1Fr2式中,T、2T分别是蜗杆、蜗轮的转矩;1d、2d分别是蜗杆、蜗轮的分度圆直径;1是蜗杆轴向压力角;负号“-”表示力的方向相反;1蜗杆、蜗轮各分力方向判断蜗杆传动中,蜗杆蜗轮的切向力、径向力方向的判断与外合齿轮传动的方法相同;即:2切向力F;蜗轮主动时,对于蜗杆为阻力,在啮合点与其蜗杆转向相反;对于蜗轮t为驱动力,在啮合点与其蜗轮转向相同;3径向力F;分别指向各自轴心;r4轴向力Fa;在蜗轮蜗杆的切向力确定之后,由作用力与反作用力关系就能相应判断蜗轮蜗杆的轴向力方向;与斜齿圆柱齿轮传动一样,蜗杆传动也可以用左右手定则来确定主动轮一般为蜗杆轴向力的方向,即:当蜗杆主动时,右旋用右手握蜗杆,左旋用左手握蜗杆;四指弯曲3各分力方向的判断蜗杆传动中、蜗杆,蜗轮的切向力、径向力方向的判断与外啮合齿轮传动的方法相同;轴向力F,在蜗杆和蜗轮的切向力t1F、t2F方向确定后;由作用力与反作用力a关系,就能相应判断蜗轮、蜗杆的轴向力F、a2F方向;比如:已知蜗杆转向,可确a1定蜗杆切向力F方向,从而也可确定蜗轮的轴向力a2F方向;反之,也可由蜗轮转向,t1确定蜗轮切向力F方向,从而确定蜗杆轴向力a1F方向;t2与斜齿圆柱齿轮传动一样,蜗杆传动也可以用“左、右手定则”来确定主动轮一般为蜗杆轴向力F;a需要强调的是:上述“左右手定则”仅适用于蜗杆主动时;加入蜗杆不是主动,而是蜗轮主动,情况又如何显然,“左右手定则”不能适用于从动蜗杆;但是,它却仍能对主动件蜗轮的轴向力作出判断;于是,我们就可以总结出这样的规律;1 “左、右手定则“无论对于斜齿圆柱齿轮传动或是蜗杆传动都是同样适用的; 2左右手定则只适用于主动件;有时虽然已知蜗杆主动,却不知道其具体转向,而只知道从动件蜗轮在工作中的转向,左右手定则也就不便直接应用,只好由其他方法作出判断;4蜗杆或蜗轮转向的判断在蜗杆传动的受力分析中,常常需要判断蜗杆或蜗轮的转向;对于零件未知转向的判断,往往需要全面掌握主从动件切向力方向判断,切向力与另一零件轴向力的关系,以及反映主动件转向,轮齿旋向和轴向力方向之间关系的“左右手定则”知识;6.圆柱蜗杆传动的强度计算蜗杆传动的强度计算,主要为蜗轮齿面的接触疲劳强度计算和蜗轮轮齿的弯曲疲劳强度计算;关于蜗杆传动的强度计算,在不同教科书,公式的表述形式各不相同,一般只要求做到以下程度就可以了;1对计算公式不要求进行推到,但要熟悉公式中各符号和参数的含义及确定方法,并能够正确地应用公式;注意区别蜗杆传动与齿轮传动强度计算公式中的不同;2注意区别蜗杆传动与齿轮传动强度计算公式中的不同,如:由于蜗杆传动效率较低,计算中已不能忽略其影响,故公式中转矩用蜗轮转矩T,而非蜗杆转矩1T;其次,2由于强度计算只针对蜗轮进行,故许用应力、齿形系数等都应取蜗轮的数据;3注意公式中单位统一4蜗杆和蜗轮的结构蜗杆一般与轴作成一体;蜗轮结构形式多样,为降低成本,减少有色金属消耗,一般对采用组合式结构;典型例题蜗杆传动的常见题型和齿轮传动相似,有时也与齿轮传动综合起来考虑;包括概念类题型、主要参数及几何计算和设计计算题等;例1:以标准阿基米德蜗杆传动,已知模数m=8mm,蜗杆头数2z 1=,传动比i=20,要求中心距a=200mm,试确定蜗杆和蜗轮的主要参数及几何尺寸;解 :例2 如图所示为斜齿轮-蜗杆减速器,小齿轮由电动机驱动,转向如图;已知:蜗轮右旋;电动机功率P=4kW,转速n=1450r/min, 齿轮传动的传动比2i 1=; 蜗杆传动效率=η,传动比18i 2=,蜗杆头数2z 3=,模数m=10mm 分度圆直径80m m d 3=,压力角 20=α齿轮传动效率损失不计;试完成以下工作:1.使中间轴上所受轴向力部分抵消,确定各轮的旋向和回转方向;2.求蜗杆啮合点的各分力的大小,并在图中画出力的方向;解:1各轮的旋向回转方向以及蜗杆在啮合点的各分力方向如图所示所示;1) 蜗杆的转矩a3F 与t4F 方向相反;解题要点:1. 根据蜗轮和蜗杆旋向相同规律可知,蜗轮右旋,蜗杆也右旋;2. 要使中间轴上蜗杆和大齿轮的轴向力部分抵消,需要两个零件的轴向力相反;只有蜗杆和大齿轮的齿向相同时,由于两者转向相同,轮齿旋向相同,但一为从动大齿轮、一为主动蜗杆,其轴向力才必然反向;进而由大齿轮右旋,推定小齿轮必为左旋;3. 由已知小齿轮转向,则大齿轮-蜗杆轴的转向可以确定,即:与1n 转向相反;由蜗杆在啮合中主动轮,利用“左右手定则”右手握蜗杆,即可判定蜗杆的轴向力a3F 方向;再由蜗轮切向力t4F 与蜗杆轴向力a3F 方向相反,可确定蜗轮切向力t4F 方向;进而由蜗轮从动,其切向力t4F 为驱动力,可确定蜗轮转向、蜗杆转向;而由蜗杆主动,其切向力t3F 是蜗杆运动的工作阻力,可确定蜗杆切向力t3F 方向t3F 方向在啮合点与蜗杆3转向相反;4. 注意将各分力画在相应啮合点上;尤其要注意不要把轴向力直接画在零件的轴线上;此外,还应掌握正确地表达空间受力简图;例3:如图所示为一斜齿轮-双头蜗杆传动的手摇起重装置;已知:手柄半径R=100毫米,卷筒直径D=200mm,齿轮传动的传动比2i 1=,蜗杆的模数m=5mm,直径系数q=10,蜗杆传动的传动比50i 2=,蜗杆副的当量摩擦因数140f v .=,作用在手柄上的力F=200N,如果强度足够,试分析:当手柄按图示方向转动,重物匀速上升时,能提升的重物为多重当升起后松开手时,重物能否自行下落齿轮传动功率损失和轴承损失不计;解:Nm m 102Nm m 100200FR T 41⨯=⨯==小齿轮上转矩:解题要点: 小齿轮主动,动力由此输入,蜗轮是动力输出端;输入输出转矩之比,与转动比和效率有关;轴承及齿轮传动的效率较高,可忽略其影响,故功率损失主要取决于蜗杆副的啮合效率;匀速提升过程中,蜗杆输出转矩为重物所产生的阻力矩;习题一填空1. 蜗杆传动中,常见的失效形式有 胶合、磨损和点蚀 ,通常先发生在 蜗轮上;设计中;可通过 选用减磨材料、耐磨材料、 改善润滑条件等 来减轻;2. 蜗杆传动参数中,蜗杆分度圆直径和模数应取 标准值 ;蜗杆头数和蜗轮齿数应取 整数 ;蜗杆螺旋升角应取 精确计算值 ;3. 蜗杆常用材料为 钢 ,蜗轮常用材料为 铜合金 ;这样选取主要考虑配对材料应该具有 一定强度 和 较好的抗胶合、抗磨损性能 ;4. 单头蜗杆和多头蜗杆相比,其主要特点为: 结构紧凑 , 容易实现反行程自锁 ,加工方便 , 效率低 ;5. 为了降低成本同时具有较好的减磨性和耐磨性,蜗轮的结构形式多采用 组合式 ,轮缘材料选用 铜合金 ,轮毂材料选用 铸铁 ;6. 蜗杆传动强度计算中,只计算的 蜗轮 强度,原因为 蜗轮材料若于蜗杆材料 ;二选择题1. 蜗杆传动中, 关系不成立;A 、21n n i =B 、21i ωω= C 、21d d i = D 、21z z i = 2. 通常蜗轮齿数不应少于 ;A 、17B 、14C 、27D 、283. 蜗杆传动的变位是 ;A 、蜗杆变、蜗轮不变B 、蜗杆不变、蜗轮变C 、蜗杆变、蜗轮都变4. 蜗杆传动中的主剖面是指 ;A 、蜗轮的端面B 、过蜗轮轴线,垂直蜗杆轴线的平面C 、过蜗杆曲线,垂直蜗轮轴线的平面;5. 阿基米德蜗杆传动在主剖面内的特点 ;A 、相当于齿轮齿条啮合,易磨损B 、相当于齿轮齿条啮合,易车削C 、相当于两齿轮啮合,易铣削三问答题1.与齿轮传动相比,蜗杆传动的特点是什么常用于什么场合2.蜗杆传动可分为哪几种类型有何特点3.什么是蜗杆的直径系数在何种条件下,它的取值可以不受限制4.在蜗杆传动中选择蜗杆的头数和蜗轮齿数时如何考虑5.蜗轮轮齿的弯曲强度与斜齿轮相比哪个高6.为什么闭式蜗杆传动要进行热平衡计算7.蜗杆的头数及导程角对传动的啮合效率有何影响8.试证明具有反行程自锁性能的蜗杆传动的效率5.0η<四受力分析1.如图所示的传动系统,1、2为直齿锥齿轮,3、5为蜗杆,4、6为蜗轮,设锥齿轮1为主动,转动方向如图;试确定:1)要求各轴上所受轴向力部分抵消,确定各轮的回转方向和各蜗杆、蜗轮的轮齿旋向;2)画出各轮的轴向分力的方向和蜗杆3在啮合点出的三个分力的方向;2.如图所示为由锥齿轮、斜齿轮和蜗杆传动组成的三级减速器,轴I由电动机驱动,转向如图所示1)为使轴II和轴III上所受的轴向力相互抵消一部分,判断斜齿轮3、斜齿轮、蜗杆5和蜗轮6的旋向,并标注在图上;2)在图中标出蜗杆转向n和蜗轮转向6n;53)将蜗杆5所受各分力Fr5、Fa5、Ft5在啮合点处画出;五计算题1.用于分度机构的普通圆柱蜗杆传动,要求传动比为45,蜗轮分度圆直径约为110mm,试选配蜗杆传动的主要参数:蜗杆头数、蜗轮齿数、模数、蜗杆分度圆直径和蜗杆的导程角;2.一普通圆柱蜗杆传动,要求中心距a=160mm,传动比30,蜗轮用标准滚刀加工;试为其选配适合的参数z,2z,m, 1d及 ;1链传动:习题一填空1.链传动的主要类型有套筒滚子链 , 齿形链 ;2.工作中,链节作着周期性速度的变化;从而给链传动带来速度不均匀性和有规律的震动;3.滚子链传动的主要失效形式有元件疲劳 , 磨损后脱链或跳齿、胶合、冲击破裂 , 静力拉断、链轮磨损 ;4.链轮的转速n越高 ,齿数z越少 ,链节距P越大 ,则链传动的动载荷也越大 ,工作平稳性越差;5.采用较小的链节距p和较多的链轮齿数z是减少动载荷和提高滚子链传动工作平稳性的主要方法;二选择题1.链传动的平均传动比为 A ;链传动的瞬时传动比为 B ;A、常数;B、非常数;2.链传动的链节数是 A ;A、偶数B、奇数C、质数3.链轮齿数不宜过少,否则 A ;A、运动的不均匀性更趋严重B、链条磨损后易脱落4.一般推荐链轮的最大齿数为z=120,这是从减少maxB 考虑的;A、链传动的运动不均匀性B、链在磨损后容易引起拖链5.通常张紧轮应装在靠近 A 上;A、主动轮的松边; A、主动轮的紧边;C、从动轮的松边;D、从动轮的紧边;6.多排链的排数一般不超过 A ;A、3、4B、5、6C、7、87.链传动最适宜的中心距为 B ;A、20p~30p;B、30p~50p;C、50p~80p;8.与带传动相比,链传动工作中的压轴力 B ;A、较大B、较小C、大体相当9.在同时包含链传动和带传动的机械系统中,应将 B 至于系统的高速级;A、链传动B、带传动10.链轮的z最小取 B , z最大取 E ;A、6B、9C、17D、80E、120F、150轴:例8-1 指出图所示轴结构设计中存在的问题,并予以改正;解:结构设计中存在的主要问题:1 轴的两端一般应画出倒角;2 齿轮未作轴向和周向固定;3 右轴头用于固定半联轴器的轴端挡圈使用不当;4 轴与齿轮及右轴承的非工作配合面过长,致使轴上零件的装、拆不便;5 左轴承内座圈右侧的定位轴肩过高,致使轴承得不到合力拆卸;改进后的轴,其合理结构设计如上右图所示;例2:普通单级斜齿圆柱齿轮减速器的输入轴,通过弹性联轴器与驱动电动机相联,已知齿轮在轴上对称布置,距两轴承支点的计算距离均为100mm,齿轮的分度圆半径为40mm;齿轮工作中所受各分力的大小分别为:5400t F N =,2010r F N =,1400a F N =;当轴线水平、左端外伸、啮合点在齿轮的上方时,则齿轮的圆周力t F 方向指向纸外、轴向力a F 指向右方;试依次画出轴的空间受力图及垂直面、水平面受力图,并求解支反力;解 1 轴的空间受力简图如图a 所示;2 垂直面受力图如图b,反力3 水平面受力图如图c,支反力AV F 、BV F 、AH F 、BH F 计算结果均为正值,表明其方向设定无误;习题8一判断题1.重要或受力较大的轴,选用合金钢的理由是因为其对应力集中的敏感度低; ⨯2.轴的强度计算中,按许用切应力计算的方法适用于转轴的校核计算; ⨯3.当其余条件相同时,具有相同横截面面积的空心轴比实心轴的刚度大; ∨4.可以用改变支点位置和改善轴的表面品质的方法来提高轴的强度; ∨5.为了减小应力集中,在轴的直径变化处应尽可能采用较大的过渡圆角半径; ∨6.弹性挡圈的轴向固定方式,结构简单,适用于轴向力较大的场合; ⨯二填空题1.工作中,既受弯矩又受转矩作用的轴,称为 转轴 ;只受弯矩不受转矩作用的轴称为 心轴 ;2.为提高轴的刚度,可以采用 加大轴径 、 采用弹性模量大的材料 、 采用空心轴 等方法;3.轴的圆柱面通常可采用 车削、磨削 加工方法获得,轴上的键槽通常则采用 铣削 加工方法获得;4.采用当量弯矩法进行轴的强度计算时,公式e M =中e M 是 当量弯矩 ,α是根据 转矩性质 而定的应力校正系数;5.在轴的结构设计中,根据功能通常可将轴肩区分为 定位 轴肩和 工艺 轴肩;6.轴的毛坯一般采用 圆钢或锻造 , 铸造 毛坯的品质不易保证;7.同一轴上不同轴向位置有多个平键键槽时,键槽应布置在 同一条母线上 ;同一轴向位置的两平键键槽应 相差180度 布置;8.轴上零件的轴向固定可以采用 轴肩 、 套筒 等方法;周向固定可以采用 键 、 销钉 等方法;9.为了提高轴的疲劳强度,可以改善其表面品质,常用的方法有: 降低表面粗糙度 、 采用表面强化 等;三选择题1.根据轴在工作中承载情况分类,车床主轴为 A ,自行车前轮轴为 C ;A.转轴 B.传动轴 C.心轴2.已知某减速器的输出轴,轴上传动件为斜齿轮,那么这个斜齿轮的轴向力将对轴产生 B ,切向力将对轴产生 C ;A.转矩 B.弯矩 C.转矩和弯矩3.轴的刚度不够时,可以采用 B 来提高轴的刚度;A.将碳素钢材料换成合金钢B.采用同质量的空心轴C.减小轴径四问答题1.轴按受载情况分类有哪些形式自行车的中轴和后轮轴各属于何种轴2.为什么常用轴多呈阶梯形3.常见的零件在轴上轴向和周向固定的方法有哪些4.轴的常用材料有哪些为什么不能用合金钢代替碳素钢来提高轴的刚度5.与滚动轴承和联轴器配合处的轴径应如何选取6.当量弯矩计算公式中,系数 的含义是什么如何确定7.轴类零件设计应考虑哪些方面的问题,基本设计步骤如何8.如所示为某传动系统的两种不同布置方案的比较;若传递功率和各传动件的尺寸参数等完全相同,则分别按强度条件计算其减速器主动轴的直径尺寸,其结果是否相同9.轴的强度计算中,若轴上开有键槽,则在确定轴径尺寸时该如何考虑10.从轴的结构工艺性考虑,同一轴上不同轴向位置的键槽,一般怎样设计比较合理11.在轴的结构设计中,如何考虑轴的结构工艺性滚动轴承:例1 锥齿轮减速器主动轴采用一对30206圆锥滚子轴承如图,已知锥齿轮平均模数m m =,齿数z=20,转速n=1450r/min,轮齿上的三个分力,F T =1300N,F R =400N,F A =250N,轴承工作时受有中等冲击载荷可取冲击载荷系数51f p .=,工作温度低于1000C,要求使用寿命不低于12000h,试校验轴承是否合用; 注:30206,派生轴向力,2Y F F r =,e=;当e F F r a >,X=,Y=;当e F F r a <,X=1,Y=0;基本额定动载荷C r =×103N; 解:1计算滚动轴承上的径向载荷r1F 、r2F此题没有直接给出滚动轴承上的载荷,因此需通过轴系的受力分析求出轴承上的载荷;轴系的载荷是锥齿轮上的三个分力,求支反力时要分平面,且径向力与轴向力在一个平面里;1锥齿轮平均半径r m2水平面支反力,如下图所示;804013008040F F T 1x ⨯=⨯=N=650N 3垂直面支反力804040036250-8040F 36F -F R A 1y ⨯+⨯=⨯+⨯=N= 4轴承上的径向载荷轴承1轴承22计算轴承上的轴向载荷a1F 、a2F滚动轴承的配置为背对背,派生轴向力的方向如图所示;2计算轴向载荷可以判断轴承1为压紧端,轴承2为放松端;于是3计算轴承的当量动载荷r1P 、r2P因e=,则e 58.0656378F F r1a1>==,e 31.0102.01628F F 3r2a2<=⨯= r1r2P P >,则取N 10012P P 3r2r ⨯==.4计算轴承的寿命h L计算结果表明,所选轴承符合要求;例2:如图所示为涡轮轴系的结构图,已知涡轮轴上的轴承采用脂润滑,外伸端装有半联轴器;试指出图中的错误,并指出其正确结构图;解 该轴系存在的错误如图所示;1轴上定位零件的定位及固定图中1:安装蜗轮的轴头长度应小于轮毂宽度,以使蜗轮得到可靠的轴向定位; 2装拆与调整图中2:轴承端盖与机体之间无调整垫片,无法调整轴承间隙;图中3:左轴承内侧轴肩过高无法拆卸;图中4:与右轴承配合处的轴颈过长,轴缺少台阶,轴承拆装不方便;图中5:整体式箱体不便轴系的拆装;3转动件与静止件的关系图中6:联轴器为转动件,不能用端盖作轴向固定,应用轴肩定位;图中7:轴与右轴承盖透盖不应接触;4零件的结构工艺性图中8:为便于加工,轴上安装蜗轮处的键槽应与安装联轴器处的键槽开在同一母线上;图中9:联轴器上的键槽与键之间应留有间隙;图中10:箱体端面的加工面积过大,应起轴承凸台;5润滑与密封图中11:轴与轴承透盖之间缺少密封装置;图中12:轴承与蜗轮的润滑介质不同,应在轴承孔与箱体之间加密封装置;改正后的轴系结构图如右上图所示;习题一选择题1.与滑动轴承相比,以下滚动轴承的优点中,___的观点有错误;A.内部间隙小,旋转精度高B.在轴颈尺寸相同时,滚动轴承宽度比滑动轴承小,可减小机器的轴向尺寸; C.滚动摩擦远小于滑动摩擦,因此摩擦功率损失小,发热量小,特别适合在高速情况下使用;D.由于摩擦功率损失小,则滚动轴承的润滑油耗量少,维护简单,与滑动轴承相比,维护费可节约30%2.滚动轴承套圈与滚动体常用材料为___;A.20Cr B.40Cr C.GCr15 D.20CrMnTi3.以下材料中,____不适用做滚动轴承保持架;A.塑料 B.软钢 C.铜合金 D.合金钢淬火4.推力球轴承不适于高转速,这是因为高速时_____,从而使轴承寿命严重下降;A.冲击过大 B.滚动体离心力过大C.滚动阻力大 D.圆周线速度过大5.下列各类滚动轴承中,除主要承受径向载荷外,还能承受不大的双向轴向载荷的是___;A.深沟球轴承 B.角接触轴承C.圆柱滚子轴承 D.圆锥滚子轴承6.______轴承能很好地承受径向载荷与单向轴向载荷的综合作用;A.深沟球轴承 B.角接触轴承C.推力球轴承 D.圆柱滚子轴承7.角接触轴承所能承受轴向载荷的能力取决于_____;A.轴承的宽度 B.接触角的大小C.轴承精度 D.滚动体的数目8.在下列四种轴承中,____必须成对使用;A.深沟球轴承 B.圆锥滚子轴承C.推力球轴承 D.圆柱滚子轴承9.润滑条件相同时,以下四种精度和内径相同的滚动轴承中____的极限转速最高;A.深沟球轴承 B.圆锥滚子轴承C.推力球轴承 D.圆柱滚子轴承10.有一根只用来传递转矩的轴用三个支点支承在水泥基础上,它的三个支点的轴承应选用____;A.深沟球轴承 B.调心滚子轴承C.圆锥滚子轴承 D.圆柱滚子轴承11.中速旋转正常润滑的滚动轴承的主要失效形式是___;A.滚动体破碎 B.滚道压坏。

齿轮与蜗杆转动总结

齿轮与蜗杆转动总结

齿轮与蜗杆转动总结————————————————————————————————作者:————————————————————————————————日期:蜗杆传动1.如图所示为一蜗杆起重装置。

已知:蜗杆头数11=z ,模数5=m ,分度圆直径601=d mm,传动效率25.0=η,卷筒直径320=D mm,需要提起的重量6300=G N,作用在手柄上的力280=F ,手柄半径180=l mm 。

试确定:G1Z 2Z lD蜗杆起重装置(1) 蜗杆的齿数2z(2) 蜗杆所受的轴向力1a F 的大小及方向; (3) 提升重物时手柄的转向。

解:(1)通过手柄施加给蜗杆的驱动转矩为:mm N Fl T ⋅⨯=⨯==411004.5180280提升重物G所需要的蜗轮的转矩为:mm N D G T ⋅⨯=⨯=⨯=6210008.1232063002 由于1T 和2T 满足的关系式:ηi T T 12=,因此有:5025.01004.510008.14612=⨯⨯⨯==ηT T i 所以5012==i z z(2)蜗杆所受的轴向力1a F 为:N mz T d T F F t a 806422222221===-= 1a F 的方向水平向右。

(3)当提升重物时,蜗轮逆时针转动,蜗杆所受轴向力水平向右,由于蜗杆右旋,所以,根据右手定则可以判断出手柄的转向为竖直向下(即从手柄端看为顺时针方向)。

2.如果所示为一升降机传动装置示意图。

已知电动机功率KW P 8=,转速m in /9701r n =,蜗杆传动参数为11=z ,402=z ,mm m 10=,8=q ,'''30207ο=λ,右旋,蜗杆蜗轮副效率75.01=η。

设整个传动系统的总效率为68.0=η,卷筒直径mm D 630=。

试求:VQ1n 电D2341a F 1r F 升降机传动装置示意图(a)(b)n11a F 1r F 1t F(1) 当升降机上行时,电动机的转向(在图中标出即可); (2) 升降机上行时的速度v ; (3) 升降机的最大载重量Q;(4) 蜗杆所受的各分力的大小及方向(方向在图中标出即可)。

机械设计基础自动控制原理随堂练习答案

机械设计基础自动控制原理随堂练习答案

.....答题: A. B. C.答题: A. B. C.3. 如图1-6所示,图中A点处形成的转动副数为( ) 个。

A 1B 2C 3答题: A. B. C. D. (已提交)答题:.答题:.答题:.答题:.答题:.答题:.答题: A. B. C.答题: A. B. C.答题: A. B. C.答题: A. B. C.答题: A. B. C. D. E. 答题: A. B. C.答题:.答题:.答题:.答题:....A. B. C.A. B. C.A. B. C.A. B. C.A. B. C........A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.......A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.A. B. C.C 齿坯加工→滚齿→渗碳淬火→磨齿D 齿坯加工→滚齿→磨齿→淬火答题: A. B. C. D. (已提交)16.齿轮采用渗碳淬火的热处理方法,则齿轮材料只可能是( ) 。

A 45钢B ZG340-640C 20CrD 20CrMnTi答题: A. B. C. D. (已提交)17.一减速齿轮传动,小齿轮1选用45钢调质;大齿轮选用45钢正火,它们的齿面接触应力( )。

A σH1>σH2B σH1<σH2C σH1=σH2D σH1≤σH2答题: A. B. C. D. (已提交)18.对于硬度≤350HBS的闭式齿轮传动,设计时一般( )。

A 先按接触强度计算B 先按弯曲强度计算C 先按磨损条件计算D 先按胶合条件计算答题: A. B. C. D. (已提交)19.设计一对减速软齿面齿轮传动时,从等强度要求出发,大、小齿轮的硬度选择时,应使( )。

A 两者硬度相等B 小齿轮硬度高于大齿轮硬度C 大齿轮硬度高于小齿轮硬度D 小齿轮采用硬齿面,大齿轮采用软齿面答题: A. B. C. D. (已提交)20.一对标准渐开线圆柱齿轮要正确啮合,它们的( ) 必须相等。

蜗杆斜齿轮重合度

蜗杆斜齿轮重合度

蜗杆和斜齿轮之间的重合度是指在蜗杆传动中,蜗杆齿与斜齿轮齿咬合的程度。

合适的重合度可以提高传动效率,减少噪声和磨损,延长使用寿命。

一般来说,重合度越小,传动效率越高。

然而,重合度过小也会导致噪声和磨损的增加。

对于直齿轮,其重合度为εα=L/Pb,而对于斜齿轮,其重合度为ε=(L+ΔL)/Pb=εα+εβ。

其中,εα=L/Pb称为端面重合度,即与斜齿轮端面参数相同的直齿轮传动的重合度;εβ=ΔL/Pb=bsinβb(b 为齿宽)称为纵向重合度,是由于轮齿倾斜而产生的附加重合度。

重合度的具体数值会根据工作要求和加工精度而定,通常在0.03-0.1之间。

以上信息仅供参考,如需获取更多信息,建议查阅机械设计相关书籍或咨询专业人士。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档