2014新北师大版八年级数学下册第一次月考试题

合集下载

北师大版八年级下册数学第一册月考试卷

北师大版八年级下册数学第一册月考试卷

北师大版八年级下册数学第一册月考试卷1一.选择题(共10小题)1.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个2.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b3.已知a>b,且c为非零实数,那么下列结论一定正确的是()A.ac<bc B.ac2<bc2 C.ac>bc D.ac2>bc24.实数a,b,c满足a<b<0<c,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c5.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<6.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.27.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣28.如图,是关于x的不等式2x﹣a≤﹣1的解集,则a的取值是()A.a≤﹣1 B.a≤﹣2 C.a=﹣1 D.a=﹣29.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤210.关于x的不等式x﹣m>0,恰有两个负整数解,则m的取值范围是()A.﹣3<m<﹣2 B.﹣3≤m<﹣2 C.﹣3≤m≤﹣2 D.﹣3<m≤﹣2二.填空题(共10小题)11.已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=.12.若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是.13.若x<y,且(a﹣3)x>(a﹣3)y,则a的取值范围是.14.若关于x的不等式﹣2x+a≥2的解集是x≤﹣1,则a的值是.15.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.16.不等式组有解,m的取值范围是.17.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.18.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打折.19.在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为.20.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是.三.解答题(共10小题)21.在下列各题中的空格处,填上适当的不等号:(1);(2)(﹣1)2(﹣2)2;(3)|﹣a| 0;(4)4x2+10;(5)﹣x20;(6)2x2+3y+1x2+3y.22.解不等式组:,并把解集在数轴上表示出来.23.解不等式:﹣1>6x.24.若关于x,y的二元一次方程组的解满足x+y>﹣.求出满足条件的所有正整数m的值.25.(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.26.关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.27.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.28.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则a(c2+1)>b(c2+1).(6)若a>b>0,则<..29.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?30.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?北师大版八年级下册数学第一册月考试卷1参考答案与试题解析一.选择题(共10小题)1.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.2.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【分析】根据不等式的性质分别进行判断,即可求出答案.【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.已知a>b,且c为非零实数,那么下列结论一定正确的是()A.ac<bc B.ac2<bc2 C.ac>bc D.ac2>bc2【分析】根据不等式的性质,可得答案.【解答】解:A、c<0时,ac<bc,故A不符合题意;B、c2>0,∴ac2>bc2,故B不符合题意;C、c<0时,ac<bc,故C不符合题意;D、c2>0,∴ac2>bc2,故D符合题意;故选:D.【点评】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质求解是解题关键.4.实数a,b,c满足a<b<0<c,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【分析】根据不等式的性质求解即可.【解答】A、两边都乘以正数,不等号的方向不变,故A不符合题意;B、差的绝对值是大数减小数,故B不符合题意;C、两边都乘以同一个负数,不等号的方向改变,故C不符合题意;D、两边都乘以同一个负数,不等号的方向改变,故D符合题意;故选:D.【点评】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质求解是解题关键.5.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【分析】根据数轴判断出a、b的大小以及c是正数,再根据不等式的性质对各选项分析判断即可得解.【解答】解:由图可知,a<b<0,c>0,A、应为a﹣c<b﹣c,故本选项错误;B、a+c<b+c正确,故本选项正确;C、应为ac<bc,故本选项错误;D、>0,<0,应为>,故本选项错误.故选B.【点评】本题考查了不等式的性质,实数与数轴熟记性质并准确识图,正确确定出a、b、c的关系是解题的关键.6.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.2【分析】本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.【解答】解:≤﹣2,m﹣2x≤﹣6,﹣2x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣2的解集为x≥4,∴m+3=4,解得m=2.故选:D.【点评】考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.7.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2【分析】先解不等式组,然后根据题意可得a>﹣2,由此求得a的取值.【解答】解:,解不等式x+a≥0得,x≥﹣a,由不等式4﹣2x>x﹣2得,x<2,∵不等式组:不等式组有解,∴a>﹣2,故选D.【点评】本题考查了不等式组有解的条件,属于中档题.8.如图,是关于x的不等式2x﹣a≤﹣1的解集,则a的取值是()A.a≤﹣1 B.a≤﹣2 C.a=﹣1 D.a=﹣2【分析】先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.【解答】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤﹣1,解不等式2x﹣a≤﹣1得,x≤,即=﹣1,解得a=﹣1.故选C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.9.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2 B.m>2 C.m<2 D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.10.关于x的不等式x﹣m>0,恰有两个负整数解,则m的取值范围是()A.﹣3<m<﹣2 B.﹣3≤m<﹣2 C.﹣3≤m≤﹣2 D.﹣3<m≤﹣2【分析】首先解不等式,然后根据条件即可确定m的值.【解答】解:∵x﹣m>0,∴x>m,∵不等式x﹣m>0恰有两个负整数解,∴﹣3≤m<﹣2.故选B.【点评】本题考查不等式的整数解问题,解题的关键是理解题意,属于基础题,中考常考题型.二.填空题(共10小题)11.已知x≥5的最小值为a,x≤﹣7的最大值为b,则ab=﹣35.【分析】解答此题首先根据已知得出理解“≥”“≤”的意义,判断出a和b的最值即可解答.【解答】解:因为x≥5的最小值是a,a=5;x≤﹣7的最大值是b,则b=﹣7;则ab=5×(﹣7)=﹣35.故答案为:﹣35.【点评】此题主要考查了不等式的解集的意义,解答此题要明确,x≥5时,x可以等于5;x≤5时,x可以等于5是解决问题的关键.12.若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是a>1.【分析】依据不等式的性质解答即可.【解答】解:∵不等式(1﹣a)x>2可化为x<,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.13.若x<y,且(a﹣3)x>(a﹣3)y,则a的取值范围是a<3.【分析】根据题意,知在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【解答】解:∵若x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.故答案为a<3.【点评】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.14.若关于x的不等式﹣2x+a≥2的解集是x≤﹣1,则a的值是0.【分析】根据不等式的性质,可得答案.【解答】解:由题意,得2﹣a=2,解得a=0,故答案为:0.【点评】本题考查了不等式的解集,利用不等式的性质是解题关键.15.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【解答】解:解3m﹣2x<5,得x>.由不等式的解集,得=3.解得m=.故答案为:.【点评】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.16.不等式组有解,m的取值范围是m<8.【分析】根据不等式的解集是小大大小中间找,可得答案.【解答】解:由有解,得m<8.故答案为:m<8.【点评】本题考查了不等式的解集,解答此题要根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.18.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.【分析】设打x折,根据题意得出不等式,求出不等式的解集即可.【解答】解:设打x折,根据题意得:100(1+50%)x≥100(1+20%),解得:x≥0.8,即至多打8折,故答案为:8.【点评】本题考查了一元一次不等式的应用,能根据题意列出不等式是解此题的关键.19.在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为x>3.【分析】根据新定义列出不等式,依据不等式的基本性质解之可得.【解答】解:根据题意,得:x+x﹣2﹣1>3,即2x﹣3>3,∴2x>6,解得:x>3,故答案为:x>3.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.如果不等式3x﹣m≤0的正整数解是1,2,3,那么m的范围是9≤m<12.【分析】先求出不等式的解集,再根据其正整数解列出不等式,解此不等式即可.【解答】解:解不等式3x﹣m≤0得到:x≤,∵正整数解为1,2,3,∴3≤<4,解得9≤m<12.故答案为:9≤m<12.【点评】本题考查了一元一次不等式的整数解,根据x的取值范围正确确定的范围是解题的关键.再解不等式时要根据不等式的基本性质.三.解答题(共10小题)21.在下列各题中的空格处,填上适当的不等号:(1)<;(2)(﹣1)2<(﹣2)2;(3)|﹣a| ≥0;(4)4x2+1>0;(5)﹣x2≤0;(6)2x2+3y+1>x2+3y.【分析】(1)根据两负数比较大小的法则进行比较即可;(2)先求出各数的值,再比较出其大小即可;(3)根据绝对值的性质进行解答即可;(4)、(5)、(6)根据不等式的基本性质进行解答即可.【解答】解:(1)∵﹣<﹣1,﹣>﹣1,∴﹣<﹣.故答案为:<;(2)∵(﹣1)2=1,(﹣2)2=4,1<4,∴(﹣1)2<(﹣2)2.故答案为:<;(3)∵|﹣a|为非负数,∴|﹣a|≥0.故答案为:≥;(4)∵4x2≥0,∴4x2+1>0.故答案为:>;(5)∵x2≥0,∴﹣x2≤0.故答案为:≤;(6)∵2x2≥x2,∴2x2+3y≥x2+3y,∴2x2+3y+1≥x2+3y.故答案为:>.【点评】本题考查的是不等式的基本性质,熟知不等式的基本性质是解答此题的关键.22.解不等式组:,并把解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.【解答】解:由①得x≥4,由②得x<1,∴原不等式组无解,【点评】此题考查解不等式组问题,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.解不等式:﹣1>6x.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3x+20﹣2>12x,移项、合并,得:﹣9x>﹣18,系数化为1,得:x<2【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.24.若关于x,y的二元一次方程组的解满足x+y>﹣.求出满足条件的所有正整数m的值.【分析】方程组两方程相加表示出x+y,代入已知不等式求出m的范围,即可确定出正整数解.【解答】解:,①+②得:x+y=2﹣m,代入不等式得:2﹣m>﹣,解得:m<,则正整数m的值为1,2.【点评】此题考查了一元一次不等式的整数解,二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.25.(1)解不等式﹣≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是﹣4<a≤﹣3.【分析】(1)①去分母;②去括号;③移项;④合并同类项;⑤化系数为1,据此解不等式﹣≤1,并把它的解集在数轴上表示出来即可.(2)根据关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,求出a的取值范围即可.【解答】解:(1)∵2x﹣3(x﹣1)≤6,∴2x﹣3x+3≤6,解得x≥﹣3,这个不等式的解集在数轴上表示如下:.(2)∵关于x的一元一次不等式x≥a只有3个负整数解,∴关于x的一元一次不等式x≥a的3个负整数解只能是﹣3、﹣2、﹣1,∴a的取值范围是:﹣4<a≤﹣3.故答案为:﹣4<a≤﹣3.【点评】此题主要考查了一元一次不等式的整数解,要熟练掌握,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.26.关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解答】解:(1)由①得:x<,由②得:x<,由两个不等式的解集相同,得到=,解得:a=1;(2)由不等式①的解都是②的解,得到≤,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.27.已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解答】解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.28.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若b﹣3a<0,则b<3a;√(2)如果﹣5x>20,那么x>﹣4;×(3)若a>b,则ac2>bc2;×(4)若ac2>bc2,则a>b;√(5)若a>b,则a(c2+1)>b(c2+1).√(6)若a>b>0,则<.√.【分析】利用不等式的性质逐个判断即可.【解答】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【点评】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.29.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得,解得:答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.30.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?【分析】(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由购买2副乒乓球拍和1副羽毛球拍共需116元,购买3副乒乓球拍和2副羽毛球拍共需204元,可得出方程组,解出即可.(2)设可购买a副羽毛球拍,则购买乒乓球拍(30﹣a)副,根据购买足球和篮球的总费用不超过1480元建立不等式,求出其解即可.【解答】解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,,解得:.答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)设可购买a副羽毛球拍,则购买乒乓球拍(30﹣a)副,由题意得,60a+28(30﹣a)≤1480,解得:a≤20,答:这所中学最多可购买20副羽毛球拍.【点评】本题考查了二元一次方程组及一元一次不等式的应用,解答本题的关键是仔细审题,找到等量关系及不等关系,难度一般.第21页(共21页)。

北师大版八年级数学下册第一次月考试卷(含答案)

北师大版八年级数学下册第一次月考试卷(含答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。

北师大八年级下数学第一次月考试卷

北师大八年级下数学第一次月考试卷

三明四中08-09下八年级数学第一次月考试卷 (满分120分,时间120分钟。

)成绩: 一、填空题(每题2分,共24分。

) 1、分解因式:224a ab -= 。

2、多项式 24m 2n +18n 的公因式是________________。

3、化简:ab bc a 2= 。

4、已知x +y =6,xy =4,则22xy y x +的值为 。

. 5、不等式3(x+1) ≥5x-3的解集是 。

6、在括号前面填上“+”或“-”号,使等式成立:22)()(y x x y -=-。

7、如图,已知函数和的图象交点为,则不等式的解集为 。

8、填空:2x + +49()27x =+。

9、不等式组48342x x x -⎧⎨->+⎩<0的解集是 。

10、当x 时,分式1051+-x x 的值为零。

11、一位老师说,他们班学生的一半在学习数学,14的学生在学习音乐,17的学生在学习英语,还剩不超过6名的同学在踢球,则这个球上最多有_______名学生。

12、在一次知识竞赛中共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,若这次竞赛获奖必须达到80分,则获奖的人至少要答对________道题。

二、选择题(每题3分,共24分。

) 13.下列分式中,一定有意义的是:( ). A.251x x -- B.211y y -+ C.213x x + D. 21x x + 14.不等式组的解集在数轴上表示正确的是( ) 15.下列各式从左到右,是因式分解的是( ) A .. (y -1)(y +1)=2y -1 B .. 1)(122-+=-+y x xy xy y xC ..(x -2)(x -3)=(3-x )(2-x )D . 22)2(44-=+-x x x第7题 八年级班学号姓名考号密封线内不得答题考号16.下列关系式中,一定成立的个数是:( ) ①.11x x y y +=+ ②.x xz y yz = ③ .221(1)x x y y =++ ④2233x y x y +=+ A.0个 B. 1个 C. 2个 D.3个;17.下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+;B 、mn m 2052-;C 、92+-x ;D 、22y x --;18.某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .519、若2249y kxy x +-是一个完全平方式,则k 的值为( )A 、6B 、±6C 、12D 、±1220.若不等式组有实数解,则实数的取值范围是( ) A 、53m > B 、53m < C 、53m ≤ D 、53m ≥ 三、计算题(每题6分,共36分)21、分解因式2()()x x y x y --- 22、分解因式22ab a b a ++23、化简:21111a a a a ++÷-- 24、先化简,再求值22444122--⨯+--a a a a a ,其中a =-1。

北师大数学八年级下第一次月考试卷

北师大数学八年级下第一次月考试卷

A.x< B.x>-
C.x<3
D.x≥
2、使不等式2x>x+1成立的值中,最小的整数是( )
A.0
B.1 C.2
D.3
3、在数轴上表示不等式≥-2的解集,正确的是( )
A.
B.
C. D
4、要使代数式有意义,则的取值范围是(

A、
B、
C、
D、
5、如右图,当时,自变量 的取值范围是(

A、
班级 一、填空
八年级数学月考试卷
姓名
考场
考号
1、用不等式表示:m的2倍与n的差是非负数:
2、当
时,代数式 x-5 的值是非负数。
3、不等式5x≥-10的解是
.
4、不等式x-1<2的正整数解是
5、不等式的解集是,则a的取值范围是

6、不等式组 的解集是

7、点A(-5,)、B(-2,)都在直线上,则与的关系是
(B)(a-2)(
m2-m)
(C)m(a-2)(m-1)
(D)m(a-2)(m+1)
8、若>,则下列不等式中正确的是:( )
A、-<0 B、 C、+8< -8 D、
9、下列多项式中,能用公式进行因式分解的是( )
A. B. C. D.
10、如果不等式组的解集是,则n的取值范围是( )
A、
B、
C、
D、
11、下列各分式中,最简分式是( )
A、
B、 C、
D、
12、=成立的条件是(

A、x≠0 B、x≠1 C、x≠0且x≠1 D、x为任意实数
13、若,则分式( )

最新北师版八年级数学下第一次月考试卷

最新北师版八年级数学下第一次月考试卷

2013-2014学年度第二学期第一次月考八年级数学试卷一.精心选一选(每小题只有一个正确答案,每题3分,共36分)1、不等式13≥-x 的解集是 ( )A 、3-≥xB 、3-≤xC 、31-≥xD 、31-≤x 2、如图1所示,在△ABC 中,AC=DC=DB ,∠ACD=100°则∠B 等于( )A 、50°B 、40°C 、 20°D 、 25°3、如图2所示,在△ABC 与△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC≌△DEF ,不能添加的条件是( )A 、∠B=∠E ,BC=EFB 、BC=EF ,AC=DFC 、∠A=∠D ,∠B=∠E , D 、∠A=∠D ,BC=EF4、下列各式中,一元一次不等式是 ( )A 、x ≥5xB 、2x>1-x 2C 、x+2y<1D 、2x+1≤3x 5、不等式组⎩⎨⎧->+<-25062x x 的解集是 ( ) A 、37<<-x B 、7->x C 、3<x D 、37>-<x x 或6、如果x x 2121-=-,则x 的取值范围是 ( )A 、21>xB 、21≥xC 、21≤xD 、21<x 7、如图3所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )E D 图2A 、6B 、7C 、8D 、98、如图4所示,在△ABC 中,CD 平分∠ABC ,∠A=80°,∠ACB=60°,那么∠BDC =( )A 、80°B 、90°C 、110°D 、100°9、不等式7215>-x 的正整数解的个数为( )A 、3个B 、4个C 、5个D 、6个10、不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( ) A 、0 B 、-1 C 、-2 D 、111、不等式组⎩⎨⎧><mx x 8有解,m 的取值范围是( )A 、8>mB 、m ≥8C 、8<mD 、m ≤8 12、满足不等式-1<312-x ≤2的非负整数解的个数是( ) A .5 B .4 C .3 D .无数个二.用心填一填(每题4分,共24分)13、“两直线平行,内错角相等”的逆命题是14、若不等式组⎩⎨⎧>-<-3212b x a x 的解集为-1<x <1,那么)1)(1(-+b a 的值等于 。

北师大版八年级下册数学第一次月考试卷

北师大版八年级下册数学第一次月考试卷

北师大版八年级下册数学第一次月考试卷第2页(共28页)北师大版八年级下册数学第一次月考试卷一.选择题(共10小题)1.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cm B.6cm C.9cm D.3cm或6cm2.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A m B.4 m C. 4 m D.8 m3.如图,在△ABC中,DE垂直平分AB,交边AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的周长为10,则BC的长为()A.2 B.4 C.6 D.84.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1 B.2 C D.45.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<07.当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax8.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2第3页(共28页)9.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.6010.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180° C.∠1+3∠2=180° D.3∠1﹣∠2=180°二.填空题(共10小题)11.等腰三角形的一个内角为40°,则顶角的度数为12.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为13.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF= 度.14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= 度.15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为16.如图,△ABC中,∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于度.第4页(共28页)17.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 cm..18.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=7cm,CD=3cm,则△ABD的面积是19.若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是20.关于x的两个不等式<1与1﹣3x>0的解集相同,则a=三.解答题(共10小题)21.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.22.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.23.如图,△ABC中,∠B=90°,AB=BC,AD是△ABC的角平分线,若BD=1,求DC的长.第5页(共28页)24.如图,△ABC的边BC的垂直平分线MN交AC于点D,若△ADB的周长是10cm,AB=4cm,求AC的长.25.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.26.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12.第6页(共28页)和15两部分,求这个三角形的三边长.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=5,求OM的长度.28.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E.若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△BDE的周长.第7页(共28页)29.如图,△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,PE⊥AB、PF⊥BC、PD⊥AC,垂足分别为E、F、D,求PD的长.30.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.第8页(共28页)北师大版八年级下册数学第一次月考试卷参考答案与试题解析一.选择题(共10小题)1.已知等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cm B.6cm C.9cm D.3cm或6cm【分析】分3cm是等腰三角形的腰或底边两种情况进行讨论即可.【解答】解:当3cm是等腰三角形的腰时,底边长=12﹣3×2=6cm,∵3+3=6,不能构成三角形,∴此种情况不存在;当3cm是等腰三角形的底边时,腰长==4.5cm..∴底为3cm,故选A.【点评】本题考查等腰三角形的性质、三角形三边关系定理等知识,解题的关键是学会分类讨论,注意三角形三边要满足三边关系定理,属于中考常考题型.2.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A m B.4 m C. 4 m D.8 m【分析】过C作CM⊥AB于M,求出∠CBM=30°,根据含30度的直角三角形性质求出CM即可.第9页(共28页)【解答】解:过C作CM⊥AB于M则CM=h,∠CMB=90°,∵∠ABC=150°,∴∠CBM=30°,∴h=CM=BC=4m,故选B.【点评】本题考查了含30度角的直角三角形性质的应用,构造直角三角形是解此题的关键所在,题目比较好,难度也不大.3.如图,在△ABC中,DE垂直平分AB,交边AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的周长为10,则BC的长为()A.2 B.4 C.6 D.8【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可..【解答】解:∵DE垂直平分AB,∴DA=DB,∴CD+BD+BC=10,∴CD+AD+BC=10,即AC+BC=10,∴BC=4,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.第10页(共28页)4.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1 B.2 C D.4【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个 B.2个 C.3个 D.4个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;第11页(共28页)∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0【分析】根据不等式的性质,可得答案.【解答】解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故选:A.【点评】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质求解是解题关键.7.当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax【分析】根据不等式的两边都除以或乘以同一个负数,不等式的符号要发生改变求出即可.【解答】解:∵x<a<0,∴两边都乘以x得:x2>ax,故选A.【点评】本题考查了对不等式性质的应用,注意:不等式的两边都除以或乘以同一个负数,不等式的符号要发生改变.8.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2【分析】先解不等式组,然后根据题意可得a>﹣2,由此求得a的取值.第12页(共28页)【解答】解:,解不等式x+a≥0得,x≥﹣a,由不等式4﹣2x>x﹣2得,x<2,∵不等式组:不等式组有解,∴a>﹣2,故选D.【点评】本题考查了不等式组有解的条件,属于中档题.9.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.60【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.第13页(共28页)10.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180° C.∠1+3∠2=180° D.3∠1﹣∠2=180°【分析】由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.【解答】解:∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即3∠1﹣∠2=180°.故选:D.【点评】主要考查了等腰三角形的性质及三角形的外角、内角和等知识;(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.二.填空题(共10小题)11.等腰三角形的一个内角为40°,则顶角的度数为 100°或40°【分析】已知等腰三角形的一个内角为40°,则这个角有可能是底角,也有可能是顶角,所以应该分情况进行分析,从而得到答案.【解答】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°﹣40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.第14页(共28页)【点评】此题主要考查等腰三角形的性质及三角形内角和定理的运用;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b .【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b..【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.第15页(共28页)13.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=55 度.【分析】首先求出∠C的度数,再根据等腰三角形的性质求出∠A,从而利用四边形内角和定理求出∠EDF.【解答】解:∵∠AFD=145°,∴∠CFD=35°又∵FD⊥BC于D,DE⊥AB于E∴∠C=180°﹣(∠CFD+∠FDC)=55°∵AB=AC∴∠B=∠C=55°,∴∠A=70°根据四边形内角和为360°可得:∠EDF=360°﹣(∠AED+∠AFD+∠A)=55°∴∠EDF为55°.故填55.【点评】本题考查的是四边形内角和定理以及等腰三角形的性质;解题关键是先求出∠A的度数,再利用四边形的内角和定理求出所求角.14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= 30 度.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相可得AD=BD,根据等边对等角的性质可得∠ABD=第16页(共28页)∠A,然后求解即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,等边对等角的性质,是基础题,熟记性质是解题的关键.15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为 3 .【分析】由垂直的定义得到∠DEB=90°,根据相似三角形的性质即可得到结论.【解答】解:∵DE⊥AB,∴∠DEB=90°,∴∠C=∠DEB,∵∠B=∠B,∴△BED∽△BCA,∴,即=,∴DE=3,故答案为:3.第17页(共28页)【点评】本题考查了相似三角形的判定和性质,垂直的定义,熟练掌握相似三角形的判定和性质是解题的关键.16.如图,△ABC中,∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于20 度.【分析】图中涉及两条垂直平分线,要根据其特点,转化为关于等腰三角形的知识解答.【解答】解:∵DF、EG分别是AB、AC的垂直平分线∴(1)DA=DB,则∠B=∠DAF,设∠B=∠DAF=x度(2)EA=EC,∠C=∠EAG,设∠C=∠EAG=y度因为∠BAC=100°所以x+y+∠DAE=100°根据三角形内角和定理,x+y+x+y+∠DAE=180°解得∠DAE=20°.【点评】主要考查线段的垂直平分线的性质和等腰三角形的性质.17.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19 cm..【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,第18页(共28页)∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm..故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.18.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=7cm,CD=3cm,则△ABD的面积是 cm2【分析】过点D作DE⊥AB,由角平分线的性质可知DE=CD=3,再根据S△ABD=AB?DE即可得出结论.【解答】解:过点D作DE⊥AB,∵AD平分∠BAC,∴DE=CD=3,S△ABD=AB×DE=×7×3=cm2.故答案为:cm2.【点评】本题考查的是角平分线的性质及三角形的面积公式,根据题意作出辅助线是解答此题的关键.第19页(共28页)19.若关于x的不等式(1﹣a)x>2可化为x<,则a的取值范围是 a> 1 .【分析】依据不等式的性质解答即可.【解答】解:∵不等式(1﹣a)x>2可化为x<,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.20.关于x的两个不等式<1与1﹣3x>0的解集相同,则a=1 .【分析】求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可.【解答】解:由<1得:x<,由1﹣3x>0得:x<,由两个不等式的解集相同,得到=,解得:a=1.故答案为:1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.三.解答题(共10小题)21.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.第20页(共28页)【分析】证明Rt△BOF≌Rt△COE,根据全等三角形的性质得到∠FBO=∠ECO,根据等腰三角形的性质得到∠CBO=∠BCO,得到∠ABC=∠ACB,根据等腰三角形的判定定理证明结论.【解答】证明:在Rt△BOF和Rt△COE中,,∴Rt△BOF≌Rt△COE,∴∠FBO=∠ECO,∵OB=OC,∴∠CBO=∠BCO,∴∠ABC=∠ACB,∴AB=AC.【点评】本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.22.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的读数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°﹣100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,第21页(共28页)∴∠B=(180°﹣140°)÷2=20°.【点评】此题很简单,考查了等腰三角形的性质,关键是根据三角形外角的性质及三角形的内角和定理解答.23.如图,△ABC中,∠B=90°,AB=BC,AD是△ABC的角平分线,若BD=1,求DC的长.【分析】过D作DE⊥AC于E,根据角平分线性质求出DE=1,求出∠C=45°,解直角三角形求出DC即可.【解答】解:过D作DE⊥AC于E,∵△ABC中,∠B=90°,AD是△ABC的角平分线,BD=1,∴DE=BD=1,∵∠B=90°,AB=BC,∴∠C=∠BAC=45°,在Rt△DEC中,sin45°=,∴DC==.【点评】本题考查了三角形内角和定理,等腰三角形的性质,角平分线的性质,解直角三角形的应用,主要考查学生综合运用性质进行推理和计算的能力.第22页(共28页)24.如图,△ABC的边BC的垂直平分线MN交AC于点D,若△ADB的周长是10cm,AB=4cm,求AC的长.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得BD=CD,然后根据△ADB的周长求出AC+AB=10cm,再求解即可.【解答】解:∵MN是线段BC的垂直平分线,∴BD=CD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm..∵AB=4cm,∴AC=6cm..【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出AC+AB是解题的关键.25.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE;再根据角平分线的定义求出∠BAC,然后利用直角三角形两锐角互余求解即可.【解答】解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,第23页(共28页)∴CD=DE=5cm,又∵AD平分∠BAC,∴∠BAC=2∠CAD=2×32°=64°,∴∠B=90°﹣∠BAC=90°﹣64°=26°.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的定义,熟记性质是解题的关键.26.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,+y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12,+y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=5,求OM的长度.第24页(共28页)【分析】作PH⊥MN于H,根据直角三角形的性质得到OH=OP=6,根据等腰三角形的性质求出MH,计算即可.【解答】解:作PH⊥MN于H,∵∠AOB=60°,∴∠OPH=30°,∴OH=OP=6,∵PM=PN,PH⊥MN,∴MH=NH=2.5,∴OM=OH﹣MH=3.5.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.28.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E.若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△BDE的周长.第25页(共28页)【分析】(1)根据角平分线上的点到角的两边距离相等可得DE=CD;(2)利用勾股定理列式求出AB的长度,再利用“HL”证明Rt△ACD和Rt △AED全等,根据全等三角形对应边相等可得AE=AC,然后求出BE,再根据三角形的周长的定义列式计算即可得解.【解答】解:(1)∵∠C=90°,AD平分∠CAB,DE⊥AB,∴DE=CD,∵CD=3,∴DE=3;(2)∵∠C=90°,AC=6,BC=8,∴AB===10,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6,∴BE=AB﹣AE=10﹣6=4,∴△BDE的周长=BD+DE+BE=BD+CD+BE=BC+BE=8+4=12.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记各性质是解题的关键,难点在于(2)三角形周长的转换.第26页(共28页)29.如图,△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,PE⊥AB、PF⊥BC、PD⊥AC,垂足分别为E、F、D,求PD的长.【分析】连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.【解答】解:连接AP,BP,CP.设PE=PF=PD=x..∵△ABC中,∠B=90°,两直角边AB=7,BC=24,∴AC=25.∵S△ABC=×AB×CB=84,S△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)?x=×56x=28x,则28x=84,x=3.故PD的长为3.【点评】本题考查了勾股定理,三角形的面积.注意构造辅助线,则直角三角形的面积有两种表示方法:一是整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即(AB+AC+BC)x,然后即可计算x的值.30.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;第27页(共28页)(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.第28页(共28页)。

北师大版八年级数学下第一次月考数学试卷

北师大版八年级数学下第一次月考数学试卷

北师大版八年级数学第一次月考数学试卷(考试时间:100分钟,分值:120分)一.选择题(3×10=30分)1.下列不等式中,属于一元一次不等式的是()A.x>1B.3x2﹣2<4C.<2D.4x﹣3<2y﹣7 2.如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处第2题第 4题第7题第8题3. 将不等式组{4x>−83x−5≤1的解集在数轴上表示出来,则下列选项正确的是()A.B.C.D.4.如图,BE=CF,AE⊥BC,DF⊥BC,要直接根据“HL”证明Rt△ABE≅Rt△DCF,则还要添加一个条件是()A.∠A=∠D B.∠B=∠C C.AE=BF D.AB=DC5. 下列不一定成立的是()A.若a<b,则 c−a>c−b .B. 若ac2<bc2,则 a<bC. 若a−c<b−c,则 a<b.D. 若a< b,则 ac2<bc2.6. 郑州市出租车的收费标准是:起步价10元(即行驶距离不超过3千米都需付10元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为18元,依题意,可列出不等式()A.10+2x<18 B.10+2x≤18 C.10+2(x-3)≤18 D.10+2(x-3)<18 7.如图,直线y1=kx+b,y2=mx﹣n交于点P(1,m),则不等式mx﹣b>kx+n的解集是()A.x>0 B.x<0 C.x>1 D.x<18. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=28°,则∠CBD=()A.15°B.16°C.18°D.20°9. 关于x的不等式组{x−a>02x−5<1−x有且仅有5个整数解,则a的取值范围是()A.﹣5<a≤﹣4B.﹣5≤a<﹣4C.﹣4<a≤﹣3D.﹣4≤a<﹣310.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9 C.6 D.3二、填空题(3×5=15分)11 . 假期里全家去旅游,爸爸开小型客车走中间车道,你给爸爸建议车速为km/h.12.已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设.13. 若(m-1)x>m-1的解集为x<1,则m的取值范围是.14.如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=15. 小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.第14题第15题二、解答题16(10分)下面是小明同学解不等式x−13≥x−32+1的过程.去分母,得2(x-1)≥3(x−3)+1.①去括号,得2x-2≥3x−9+1. ②移项、合并同类项得﹣x≥﹣6.③两边都除以﹣1,得x≥6.④(1)他的解题过程中在第步和第步有错误,请你分别指出错误原因:;。

八年级数学下册第一次月考试卷北师大版

八年级数学下册第一次月考试卷北师大版

八年级数学下册第一次月考试卷北师大版班级————————姓名__________一、选择题(共20分)1.用不等式表示“x2是非负数”正确的是()A.x2<0B.x2﹥0C.x2 ≤0D.x2≥0 2.下列各式是不等式的有()个。

①—3<0②4x+3y>0 ③x=4 ④x+y ⑤x≠5 ⑥x+2>y+3 A.1 B.2 C.3 D.43.已知x>y,下列不等式一定成立的是()A.x—6<y—6B.3x<3yC. —2x>—2yD.2x+1>2y+14.不等式组25xx>-⎧⎨⎩≤的解集在数轴上可表示为A B C D5. 下列各等式从左到右的变形是因式分解的是()A.6a2b=3a2·2b B.mx+nxy-xy=mx+xy(n-1) C.am-a=a(m-1) D.(x+1)(x-1)=x2-16.()是不等式x—4≥0的解。

A. 1B.2C.3D.47.长度为3,7,x的三条线段可以围成一个三角形,则x可以是()。

A. 3B.4C.5D.108.不等式x+3≥0,有()个负整数解。

A. 1B.2C.3D.49.19992+1999能被()整除。

A. 1995B.1996C.2000D.200110.已知ab=7,a+b=6,则多项式a2b+ab2的值是()。

A. 13B.1C.42D.14二.填空题。

(共20分)11.用不等式表示“x+1是负数”:___________。

12.已知a<b,则a—3______b—3.13. 不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。

14.将不等式x+3﹤—1化成“x>a”或“x<a”的形式:_____________。

15.不等式2x—3≤0的解集为_____________。

16.不等式4(x+1)≤64的正整数为_____________。

17.已知y1= —x+3,y2=3x—4,当x______时,y1>y2.18.多项式2x2+x3—x中各项的公因式是_____________。

新北师大版2013-2014学年八年级下册数学第一次月考试卷

新北师大版2013-2014学年八年级下册数学第一次月考试卷
二、填空题(每题4分,共32分)
11.不等式6-2x>0的解集是________.
12.如图,△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于D,若CD=2cm,则AC=.
13.“直角三角形的两个锐角相等”的逆命题是_____________________________.
14.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是.
22(4分).小王和小赵原有存款分别为 元和 元,从本月开始,小王每月存款 元,小赵每月存款 元,如果设两人存款时间为 (月),小王的存款额是 元,小赵的存款额是 元。(6分)
(1)试写出 与及 与 之间的关系式;(2)到第几个月时,小王的存款额超过小赵的存款额?
23(6分)(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.证明:DE=BD+CE.(5分)
15.已知⊿ABC中,∠A = ,角平分线BE、CF交于点O,则∠BOC =.
16.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了支.
17.Rt⊿ABC中,∠C=90º,∠B=30º,则AC与AB两边的等量关系是,
18如图所示,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC=cm.
三.解答题(52分)
19(4分).解不等式3x-1<7-x20(5分).解不等式组 并把解集在数轴上表示出来
21(5分).如图 中, 是腰 的垂直平分线,求 的度数。
(2)如图2,已知△ ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;

北师大八年级数学下册第一学月月考试卷.docx

北师大八年级数学下册第一学月月考试卷.docx

初中数学试卷 马鸣风萧萧八年级数学(下)第一学月月考试卷(满分:150分,时间:120分钟)A 卷 (共100分)一. 选择题(每小题3分,共30分)1.在下列图形中,既是轴对称图形又是中心对称图形的是( )2.下列从左边到右边的变形,是因式分解的是( )A . 29)3)(3(x x x -=+- B. x 2+1=x (x +x1) C . z yz z y z z y yz +-=+-)2(2242 D. a 2b +ab 2=ab (a +b ) 3.把不等式组⎩⎨⎧>-≤+0,01x x 的解集表示在数轴上,正确的是 ( ).4.如图,在△中,,点是斜边的中点,,且,则∠( )A.B. C. D.5.已知不等式组2112x x a-⎧⎪⎨⎪⎩≥,≥的解集是,则的取值范围为( )A. B. C. D.6.下列多项式中,能用完全平方公式法分解因式的是 ( ).A.x 2-yB.x 2+1C.x 2+y +y 2D.x 2-4x +4 7.如图,直径AB 为6 半圆,绕A 点逆时针旋转60°,此时点B 到了点B’,则图中阴影部分的面积是( )A. 6πB. 5πC. 4πD. 3π8.如图,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx+b>ax 的解集是( )-10-10-10-10(A) (B) (C) (D) E A C D B第4题图A .x>1B .x<1C .x>2D .x<27题 8题 10题 9.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c bB 、2,6=-=c bC 、4,6-=-=c bD 、6,4-=-=c b10.如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个 ( )(1) AD 平分∠EDF ;(2)△EBD ≌△FCD ; (3)BD=CD ; (4)AD ⊥BC .A.1个B.2个C.3个D.4个二.填空题(每小题4分,共20分)11. 如图,在△中,∠,是△的角平分线,于点,.则∠=_____ _.12.已知多项式-4x+a 有一个因式为x-1,则a=13. 如图,AB =AC ,FD ⊥BC 于D ,DE ⊥AB 于E ,若∠AFD =145°,∠EDF = .第13题14.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长度到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为________.15.是完全平方式,则m =三.解答题(共54分)16. 因式分解(每小题5分,共10分)(1) (2)1222-+-y xy x ;A B B ’EACDB 第11题D BC AEF17. 解不等式组(每小题6分,共18分) (1) 13.027.17.0≤+-x x(2)解不等式组 并写出该不等式组的整数解.(3)已知: 先化简,再求值:x(x-2y)-(x+y)2的值。

2014北师大版--超经典-八年级第一次月考

2014北师大版--超经典-八年级第一次月考

八年级数学月考试题第一题 选择题(每题3分 共45分)1. 不能确定两个三角形全等的条件是( )A.三条边对应相等B.两角和一条边对应相等C.两条边及其夹角对应相等D.两条边和一条边所对的角对应相等2. 等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A.7B.22C.13D.17或223。

到三角形各顶点距离相等的点是三角形三条( )A 。

中线的交点B 。

角平分线的交点C 。

高线的交点D 。

三边垂直平分线的交点4。

△ABC 中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,最长边AB 的长是( ) A 。

5cm B 。

6cm C. 7cm D 。

8cm5.已知等腰三角形一腰上的高等于腰长的一半,则该等腰三角形的底角为( )A.75º或15ºB.30º或60ºC.75ºD.30º6.如图,在△ABC 中,∠A =50°,AB =AC ,AB 的垂直平分线DE 交AC 于D ,则∠DBC 的度数是( )第9题图7.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF=AC ,则∠ABC 的大小是( )A.40°B.45°C.50°D.60°8.一个等腰三角形底边的长为5cm ,一腰上的中线把其周长分成的两部分的差为3 cm .则腰长为 ( ) (A ) 2 cm (B ) 8 cm (C )2cm 或8 cm (D ) 10 cm9.已知:如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数是( )(A ) 30° (B ) 36° (C ) 45° (D ) 54°10。

如图,∠AOP=∠BOP=15°,PC ∥OB,PD ⊥OB,若PC=8,则PD 等于( )A 。

八年级下册数学(北师大版)第一次月考试题及答案

八年级下册数学(北师大版)第一次月考试题及答案

八年级数学试卷一参考答案及评分标准北师版一、选择题:(每题3分,共30分)二、填空题:(每小题3分,共24分)11、50°或80° 12、3 13、x <-5 14、4∶3 15、60︒16、-120 17、x ≦1 18、85三、解答题(19——26题,共66分)19(每小题3分,共12分)⑴ 6x ≤ ⑴x ﹤1 ⑴12x >- ⑴ 3x <20. 解:原方程化简为:2(x+m )-3(2x -1)=6m …………2分2x+2m -6x+3=6mx=-434-m …………4分 ∵方程解的负数 ∴-434-m ﹤0 ∴ 34m >…………6分 21.(本题6分)证明:∵∠A=∠D=90°,∴Rt △BAC 和Rt △CDB 中…………1分AC=BD ,BC=BC ,∴Rt △BAC ≌Rt △CDB .…………4分∴∠ACB=∠DBC .∴∠OCB=∠OBC .∴OB=OC …………6分22.(本题6分)证明:∵ AB =AC ,∴ ∠B =∠C .…………1分∵ DE ⊥BC 于点E ,∴∠FEB=∠FEC=90°.∴∠B+∠EDB=∠C+∠EFC=90°.∴∠EFC=∠EDB.…………4分∵∠EDB=∠ADF,∴∠EFC=∠ADF.∴△ADF是等腰三角形.…………6分23.(本题8分)解:∵∠C=90°,∠A=30°,∴∠ABC=60°,…………1分又∵BD是角平分线,∴∠ABD=∠DBC=30°,…………3分在Rt△BCD中,BD=2CD=10,…………4分又∵∠A=∠ABD=30°,∴AD=BD=10,…………6分∴AC=AD+DC=10+5=15(cm)…………8分24.(本题8分)解:(1)120×0.95=114(元).…………2分所以若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;…………3分(2)设购买商品的价格为x元,…………4分由题意得:0.8x+168<0.95x,…………5分解得:x>1120.…………7分所以当购买商品的价格超过1120元时,采用方案一更合算.…………8分25、(本题10分)解:BE=EC,BE⊥EC.…………2分理由如下:∵AC=2AB,点D是AC的中点,∴AB=AD=CD.…………3分∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°.…………5分∵EA=ED,∴△EAB≌△EDC.…………7分∴∠AEB=∠DEC,BE=EC.…………8分∴∠BEC=∠AED=90°.∴BE⊥EC.…………10分26、(本题10分)(1)证明:∵D是AB的中点,∴AD=BD.∵AG∥BC,∴∠GAD=∠FBD.∵∠ADG=∠BDF,…………3分∴△ADG≌△BDF.∴AG=BF.…………4分(2)连接EG,∵△ADG≌△BDF,∴GD=FD.∵DE⊥DF,∴EG=EF.…………6分∵AG∥BC,∠ACB=90°,∴∠EAG=90°.…………7分在Rt△EAG中,∵EG2=AE2+AG2=AE2+BF2∴EF2=AE2+BF2且AE=9,BF=18.…………9分10分说明:以上各题如有其他解(证)法,请酌情给分。

【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

【新】北师大版八年级下册第一次月考数学试卷含答案 (2)

八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。

最新北师大版八年级数学下册第一次月考试题

最新北师大版八年级数学下册第一次月考试题

北师大版八年级数学下册第一次月考试题一.选择题(36分)1.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,72.等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17 B.22 C.13 D.17或223.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.64.如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠B=∠C D.∠BAD=∠BDA5.已知a>b,则在下列结论中,正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.|a|>|b| D.a2>b26.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道7.若x+a<y+a,ax>ay,则()A.x>y ,a>0 B.x>y,a<0 C.x<y,a>0 D.x<y,a<08.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条9.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=10,DE=2,AB=4,则AC 长是()A.9 B.8 C.7 D.610.如图,在△ABC中,边BC的垂直平分线l与AC相交于点D,垂足为E,如果△ABD的周长为10cm,BE=3cm,则△ABC的周长为()A.9 cm B.15 cm C.16 cm D.18 cm11.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a <0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④12.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.二.填空题(共4小题,12分)13.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是.14.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M在BC上,则∠EAN= .15.如图,在平面直角坐标系中,点B、A分别在x轴、y轴上,∠BAO=60°,在坐标轴上找一点C,使得△ABC是等腰三角形,则符合条件的等腰三角形ABC有个.16.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点,则不等式mx+2<kx+b<0的解集为.三.解答题(共8小题,72分)17.(8分)解下列不等式(组),并用数轴表示解集(1)(3y﹣1)﹣<y+1(2).18.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE的度数.(2)如果把原题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?为什么?19.(8分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE ⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.20.(8分如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D 的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.(8分)某公司保安部去商店购买同一品牌的应急灯和手电筒,查看定价后发现,购买一个应急灯和5个手电筒共需50元,购买3个应急灯和2个手电筒共需85元.(1)求出该品牌应急灯、手电筒的定价分别是多少元?(2)经商谈,商店给予该公司购买一个该品牌应急灯赠送一个该品牌手电筒的优惠,如果该公司需要手电筒的个数是应急灯个数的2倍还多8个,且该公司购买应急灯和手电筒的总费用不超过670元,那么该公司最多可购买多少个该品牌应急灯?22.(8分)如图,已知直线y=kx﹣3经过点M,直线与x轴,y轴分别交于A,B 两点.(1)求A,B 两点坐标;(2)结合图象,直接写出kx﹣3>1的解集.23.(8分)△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD 为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB 于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,判断△BEF的形状并说明理由.(2)若∠BAC=∠DAE≠60°如图2,当点D在线段BC上移动,判断△BEF的形状,不必说明理由24.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?。

北师大版2014—2015学年度第二学期八年级数学月考考试

北师大版2014—2015学年度第二学期八年级数学月考考试

八年级数学期中考试试卷 第2页(共2页)0 C 9.如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 交于D 点,则∠BDC 度数为( )。

A .60°B .70°C .50°D .80°10.不等式2x -1≥3x 一5的正整数解的个数为 ( )A .1B .2C .3D .4二、填空题(每题4分,共24分)用不等式表示为 。

5.不等式组⎩⎨⎧-><13x x 的解集是 _____。

6.有3个装修工人携带电线乘坐电梯,这3人的体重共210kg ,每捆电线重20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆电线.三、解答题(共46分)1.作图题(6分)已知线段a ,求作等腰三角形ABC ,使底BC=a ,底边上的高AD= 1a (不写作法)2.(10分)解下列不等式或不等式组,并把解集在数轴上表示出来:(1)2(x -3)≤5x (2)533322x x x -<-⎧⎪⎨--<⎪⎩八年级数学期中考试试卷 第3页(共4页) 八年级数学期中考试试卷 第4页(共4页)3.(6分)如图,∠A=∠D=90°,AC=DB.求证:(1)RT △ABC ≌RT △DCB (2)OB=OC4.(6分)函数y 1和y 2的图象如图所示, (1)求出y 1和y 2的函数关系式。

(2) 当x 取何值时,y 1>y 2 。

6.(6分)如图,在△ABC 中.AC=BC ,∠C=90°,AD 是∠BAC 的角平分线,DE ⊥AB ,垂足为E . (1) 求证:△ACD ≌△AED(2)已知CD=4 ,求AC 的长;(3)求证:AB=AC+CD .7.(6分)寒假期间,两名老师计划带领若干名学生去北京旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名老师全额收费,学生都按七折收费;乙旅行社的优惠条件是老师、学生都按八折收费.假设这两位老师带领x 名学生去北京旅游,他们应该选择哪家旅行社?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校 班级 考号 姓名
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
1
3{
x x ≥≤2013—2014(下学期)初二年级第一次月考试题
(新北师版)数学
一.选择题(24分)
1.下列条件中能判定△ABC ≌△DEF 的是 ( )
A .A
B =DE ,B
C =EF ,∠A =∠
D B .∠A =∠D ,∠B =∠
E ,∠C =∠
F C .AC =DF ,∠B =∠F ,AB =DE D .∠B =∠E ,∠C =∠F ,AC =DF 2.下列命题中正确的是 ( )
A .有两条边相等的两个等腰三角形全等
B .两腰对应相等的两个等腰三角形全等
C .两角对应相等的两个等腰三角形全等
D .一边对应相等的两个等边三角形全等 3.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作D
E ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )
A .5
B .6
C .7
D .8 4.至少有两边相等的三角形是( )
A .等边三角形
B .等腰三角形
C .等腰直角三角形
D .锐角三角形
5.函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).
A .x>0
B .x<0
C .x<2
D .x>2 6.已知x y >,则下列不等式不成立的是 ( ).
A .66x y ->-
B .33x y >
C .22x y -<-
D .3636x y -+>-+
7.将不等式组 的解集在数轴上表示出来,应是( ).
A
8.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx+b>ax 的解集是( ) A .x>1 B .x<1 C .x>2 D .x<2
二.填空题(18分)
1.在△ABC 中,AB =AC ,∠A =44°,则∠B = 度. 2.“直角三角形两条直角边的平方和等于斜边的平方”的逆定理是 .
3.不等式930x ->的非负整数解是 .
4.如图,AB =AD ,只需添加一个条件 ,就可以判定△ABC ≌△ADE. 5.如图,在△ABC 中,∠C =90°,D 为BC 上的一点,且DA =DB ,DC =AC .则∠B = 度.
(第4题图) (第5题图) (第6题图)
6.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D,∠A =30°,BD =1.5cm ,则 AB= cm . 三.解答题(58分) 1.(8分)解下列不等式(组),并把它们的解集在数轴上表示出来:
A C
B D 3(2)4
1213
{
x x x
x --≤+>-
(1)
1
1
2
x
x
-
+≥(2)
2.(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;
(2)顾客到哪家超市购物更优惠?说明你的理由.
3.(6分)有一个长方形足球场的长为x m,宽为70m.如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛.
(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间)4.(6分)已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.
求证:AD平分∠BAC.
学校 班级 考号 姓名
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
5.(6分)求证:等腰三角形两腰上的中线的交点到底边两个端点的距离相等.
6.(6分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.
7.(6分)如图,在△ABC 中,∠ACB =90°,BC =15,AC =20,CD 是高. (1)求AB 的长;
(2)求△ABC 的面积;(3)求CD 的长.
8.(6分)已知:如图,在Rt △ABC 中,∠C =90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合.
(1)当∠A 满足什么条件时,点D 恰为AB 的中点?写出一个你认为适当的条件,并利用此条件证明D 为AB 的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.
9.(8分)已知A、B两个海港相距180海里.如图表示一艘轮船和一艘快艇沿相同路线从A港出发到B港航行过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)。

根据图象解答下列问题:
(1)请分别求出表示轮船和快艇行驶过程的函数表达式(不要求写出自变量的取值范围);(2)快艇出发多长时间后能超过轮船?
(3)快艇和轮船哪一艘先到达B港?。

相关文档
最新文档