第11章全等三角形自我测试题
第11章《全等三角形》测试卷
![第11章《全等三角形》测试卷](https://img.taocdn.com/s3/m/dbea43dc84254b35eefd34f4.png)
第11章《全等三角形》全章测试班级: 姓名:一.选择题(3×10=30分) 1.下列说法正确的是( )A .形状相同的两个三角形是全等三角形B .面积相等的两个三角形是全等三角形C .三个角对应相等的两个三角形是全等三角形D .三条边对应相等的两个三角形是全等三角形2.如图,点C 落在AOB ∠边上,用尺规作OA CN //,其中弧FG 的( ) A .圆心是C ,半径是OD B .圆心是C ,半径是DMC .圆心是E ,半径是ODD .圆心是E ,半径是DM3.如右图,已知AC AB =,AE AD =,若要得到“ACE ABD ∆∆≌”,必须添加一个条件,则下列所添条件不.恰当..的是( ) A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠4.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别是对应顶点,且测得cm BC 5=,cm BF 7=,则EC长为( )A. cm 1B. cm 2C. cm 3D. cm 45.在第4题的图中,若测得o D A 90=∠=∠,3=AB ,1=DG ,2=AG ,则梯形CFDG 的面积是( )A. 5B. 6C. 7D. 86.如图,ABC ∆中,o C 90=∠,AD 平分BAC ∠,过点D 作AB DE ⊥于E ,测得9=BC ,3=BE ,则BDE ∆的周长是( ) A .15 B .12 C .9 D .67.根据下列各图中所作的“边相等、角相等”标记,其中不.能.使该图中两个三角形全等的是( )AAB C D E A D G α8. 如图,ABC ∆中,AC AB =,AD 平分CAB ∠,则下列结论中:①BC AD ⊥;②BC AD =; ③C B ∠=∠;④CD BD =。
正确的有( ) A .①②③ B .②③④ C .①②④ D .①③④9.如图, AC AB =,AE AD =,BE 、CD 交于点O ,则图中全等三角形共有( )A .四对B .三对C .二对D .一对10.如图,ABC ∆中,BM 、CM 分别平分ABC ∠和ACB ∠, 连接AM,已知o MBC 25=∠,o MCA 30=∠,则MAB ∠ 的度数为( )A. o 25B. o 30C. o 35D. o 40二.填空题(2×12=24分)11.如图,某同学将三角形玻璃打碎,现要到玻璃店 配一块完全相同的玻璃,应带 去。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
![八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)](https://img.taocdn.com/s3/m/2c41836f11661ed9ad51f01dc281e53a58025199.png)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
8年级数学上册第11章三角形测试题及答案人教版
![8年级数学上册第11章三角形测试题及答案人教版](https://img.taocdn.com/s3/m/5f2acdb4767f5acfa0c7cd32.png)
8年级数学上册第11章三角形测试题一、填空题1.在△ABC中,∠A=40°,∠B=∠C,则∠C=°.2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:,,(单位:cm).3.如果等腰三角形的一个底角是40°,它的顶角是.4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是.5.△ABC中,若∠A=35°,∠B=65°,则∠C=;若∠A=120°,∠B=2∠C,则∠C=.6.三角形三个内角中,最多有个直角,最多有个钝角,最多有个锐角,至少有个锐角.7.三角形按角的不同分类,可分为三角形,三角形和三角形.8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是三角形.9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=,∠B=,∠C=.10.若△ABC中,∠A+∠B=∠C,则此三角形是三角形.11.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为.12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为;②如果它的一边长为4cm,一边的长为6cm,则周长为.二、判断题.13.有一个角是钝角的三角形就是钝角三角形. (判断对错)14.一个等腰三角形的顶角是80°,它的两个底角都是60°.(判断对错)15.两个内角和是90°的三角形是直角三角形. (判断对错)16.一个三角形最多只能有一个钝角或一个直角. (判断对错)17.在锐角三角形中,任意的两个锐角之和一定要大于90°.(判断对错)18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形. (判断对错)三、选择题19.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形20.下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°22.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为( )A.10cm或6cmB.10cmC.6cmD.8cm或6cm24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A.4cmB.5cmC.9cmD.13cm25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个27.已知三角形的三边分别为2,a,4,那么a的取值范围是( )A.128.在△ABC中,∠A= ∠B= ∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形四、解答题29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;你选出的条件是.证明:30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.8年级数学上册第11章三角形测试题人教版参考答案一、填空题1.在△ABC中,∠A=40°,∠B=∠C,则∠C=70 °.【考点】三角形内角和定理.【分析】由三角形的内角和定理直接列式计算,即可解决问题.【解答】解:∵∠A+∠B+∠C=180°,且∠A=40°,∠B=∠C,∴∠C=(180°﹣40°)÷2=70°,故答案为70.【点评】该题主要考查了三角形的内角和定理及其应用问题;灵活运用是解题的关键.2.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是: 6 ,11 ,16 (单位:cm).【考点】三角形三边关系.【分析】首先得到每三根组合的情况,再根据三角形的三边关系进行判断.【解答】解:每三根组合,有5,6,11;5,6,16;11,16,5;11,6,16四种情况.根据三角形的三边关系,得其中只有11,6,16能组成三角形.【点评】此题要特别注意看是否符合三角形的三边关系.3.如果等腰三角形的一个底角是40°,它的顶角是100°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,根据三角形的内角和即可解决问题.【解答】解:180°﹣40°×2=100°,答:顶角是100°.故答案为:100°【点评】此题考查了等腰三角形的性质和三角形内角和的应用,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.4.三角形的一边为5cm,一边为7cm,则第三边的取值范围是2cm【考点】三角形三边关系.【分析】设第三边长为xcm,再由三角形三边关系即可得出结论.【解答】解:设第三边长为xcm,∵三角形的一边为5cm,一边为7cm,∴7﹣5故答案为:2cm【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.5.△ABC中,若∠A=35°,∠B=65°,则∠C=80°;若∠A=120°,∠B=2∠C,则∠C=20°.【考点】三角形内角和定理.【分析】根据三角形内角和定理,求得∠C的度数和∠B+∠C=60°,进而得出∠C的度数.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣35°﹣65°=80°;∵∠A=120°,∴∠B+∠C=60°,又∵∠B=2∠C,∴∠C=20°.故答案为:80°,20°.【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是180°.6.三角形三个内角中,最多有 1 个直角,最多有 1 个钝角,最多有3 个锐角,至少有 2 个锐角.【考点】三角形内角和定理.【分析】依据三角形的内角和是180度,假设一个三角形中可以有多于1个的钝角或直角,则会得出违背三角形内角和是180度的结论,假设不成立,从而可以得出一个三角形中最多有1个钝角或直角,如果一个三角形中只有1个锐角,也就是出现2个或3个直角,再加上第三个角,那么三角形的内角和就大于180°,也不符合三角形内角和是180°.【解答】解:因为三角形的内角和等于180°,所以在三角形内角中,最多有1个直角;最多有1个钝角,最多有3个锐角,至少有2个锐角.故答案为:1,1,3,2【点评】本题主要考查了三角形内角和定理,属于基础题,关键是掌握三角形内角和为180度.7.三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.【考点】三角形.【分析】根据三角形的分类方法进行填空即可.【解答】解:三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.故答案为:锐角;直角;钝角.【点评】此题主要考查了三角形,关键是掌握三角形分类一种是按边分类,一种是按角分类.8.一个三角形三个内角度数的比是2:3:4,那么这个三角形是锐角三角形.【考点】三角形内角和定理.【专题】计算题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,4k°.则2k°+3k°+4k°=180°,解得k°=20°,∴2k°=40°,3k°=60°,4k°=80°,所以这个三角形是锐角三角形.故答案是:锐角.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.9.在△ABC中,∠A﹣∠B=36°,∠C=2∠B,则∠A=72°,∠B= 36°,∠C=72°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理可得出∠A+∠B+∠C=180°,再与∠A﹣∠B=36°,∠C=2∠B,联立列出方程组,即可求得答案.【解答】解:由题意得,解得,故答案为72°,36°,72°.【点评】本题考查了三角形的内角和定理,解题的关键是利用三角形内角和定理和已知条件列方程组求解计算.10.若△ABC中,∠A+∠B=∠C,则此三角形是直角三角形.【考点】三角形内角和定理.【分析】由三角形内角和定理和直角三角形的判定可知.【解答】解:∠A+∠B+∠C=2∠C=180°,∴∠C=90°,∴此三角形是直角三角形.【点评】本题考查了三角形内角和定理.三角形的内角和是180°.11.已知等腰三角形的两个内角的度数之比为1:2,则这个等腰三角形的顶角为36°或90°.【考点】等腰三角形的性质;三角形内角和定理.【分析】先可求出两角,然后分两种情况:顶角与底角的度数比是1:2或底角与顶角的度数比是1:2.根据三角形的内角和定理就可求解.【解答】解:当顶角与底角的度数比是1:2时,则等腰三角形的顶角是180°× =36°;当底角与顶角的度数比是1:2时,则等腰三角形的顶角是180°×=90°.即该等腰三角形的顶角为36°或90°.故填36°或90°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.已知△ABC为等腰三角形,①当它的两个边长分别为8cm和3cm时,它的周长为19cm ;②如果它的一边长为4cm,一边的长为6cm,则周长为14cm 或16cm .【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①当腰长为8cm时,三边是8cm,8cm,3cm,符合三角形的三边关系,此时周长是19cm;当腰长为3cm时,三角形的三边是8cm,3cm,3cm,因为3+3<8,应舍去.②当腰长为4cm时,三角形的三边是4cm,4cm,6cm,符合三角形的三边关系,此时周长是14cm;当腰长为6cm时,三角形的三边是6cm,6cm,4cm,符合三角形的三边关系,此时周长是16cm.故答案为:19cm,14cm或16cm.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.二、判断题.13.有一个角是钝角的三角形就是钝角三角形. √(判断对错)【考点】三角形.【分析】根据三角形的分类:有一个角是钝角的三角形,叫钝角三角形;进行解答即可.【解答】解:根据钝角三角形的定义可知:有一个角是钝角的三角形是钝角三角形;所以“有一个角是钝角的三角形是钝角三角形”的说法是正确的.故答案为:√.【点评】此题考查了根据角对三角形分类的方法:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.14.一个等腰三角形的顶角是80°,它的两个底角都是60°.×(判断对错)【考点】等腰三角形的性质.【分析】三角形的内角和是180°,等腰三角形的两个底角相等,先用“180°﹣80°”求出两个底角的度数和,然后除以2进行解答即可.【解答】解:(180°﹣80°)÷2,=100°÷2,=50°;它的一个底角度数是50°;故错,故答案为:×【点评】此题考查等腰三角形的性质,解答此题的关键:根据三角形的内角和、等腰三角形的两底角和顶角三个量之间的关系进行解答即可.15.两个内角和是90°的三角形是直角三角形. 对(判断对错)【考点】三角形.【分析】根据三角形内角和为180°可得两个内角和是90°的三角形,第三个角是90°,是直角三角形.【解答】解:两个内角和是90°的三角形是直角三角形,说法正确;故答案为:对.【点评】此题主要考查了三角形,关键是掌握三角形内角和为180°.16.一个三角形最多只能有一个钝角或一个直角. 正确(判断对错)【考点】三角形.【分析】这个结论正确,可以利用反证法证明.【解答】解:一个三角形最多只能有一个钝角或一个直角.理由:假如一个三角形有两个钝角或两个直角,那么这个三角形的内角和大于180°,这与三角形内角和为180°矛盾,所以假设不成立,所以一个三角形最多只能有一个钝角或一个直角.故答案为正确.【点评】本题考查三角形,三角形的内角和、反证法等知识,解题的关键是灵活运用三角形内角和定理,属于中考常考题型.17.在锐角三角形中,任意的两个锐角之和一定要大于90°.正确(判断对错)【考点】三角形.【分析】这个结论是正确的,可以用反证法证明.【解答】解:这个结论是正确的.假如两个锐角之和小于等于90,那么第三个角是90°或钝角,这个三角形是钝角三角形,与已知条件矛盾,所以假设不成立,故在锐角三角形中,任意的两个锐角之和一定要大于90°.【点评】本题考查三角形内角和定理,反证法等知识,解题的关键是学会利用反证法证明,属于中考常考题型.18.一个三角形,已知两个内角分别是85°和25°,这个三角形一定是钝角三角形. 错(判断对错)【考点】三角形内角和定理.【分析】根据三角形内角和定理,求得第三个内角,进而判定三角形的形状.【解答】解:∵一个三角形的两个内角分别是85°和25°,∴第三个内角为70°,∴这个三角形一定是锐角三角形.故答案为:错【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.三、选择题19.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【考点】三角形内角和定理.【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.20.下列说法正确的是( )A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°【考点】三角形内角和定理.【专题】探究型.【分析】根据三角形内角和定理对各选项进行逐一分析即可.【解答】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.21.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°【考点】三角形内角和定理.【分析】根据三角形的内角和定理和已知条件即可得到∠A的方程,从而求解.【解答】解:∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°,∴∠A+ ∠A=180°,∠A=120°.故选B.【点评】此题考查了三角形的内角和定理.22.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【考点】三角形内角和定理.【分析】设三角形三个内角分别为∠A、∠B、∠C,且∠A﹣∠B=∠C,则∠B+∠C=∠A,根据三角形内角和定理得到∠A+∠B+∠C=180°,于是可计算出∠A=90°,由此可判断三角形为直角三角形.【解答】解:设三角形三个内角分别为∠A、∠B、∠C,且∠A﹣∠B=∠C,则∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴∠A+∠A=180°,∴∠A=90°,∴这个三角形为直角三角形.故选C.【点评】本题考查了三角形内角和定理:三角形内角和是180°.利用三角形内角和可直接根据两已知角求第三个角或依据三角形中角的关系,用代数方法求三个角,也可在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.23.等腰三角形的底边BC=8cm,且|AC﹣BC|=2cm,则腰长AC的长为( )A.10cm或6cmB.10cmC.6cmD.8cm或6cm【考点】等腰三角形的性质;三角形三边关系.【分析】根据绝对值的性质求出AC的长即可.【解答】解:∵|AC﹣BC|=2cm,∴AC﹣BC=2cm或﹣AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8﹣2)cm,即10cm或6cm.故选A【点评】本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.24.在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是( )A.4cmB.5cmC.9cmD.13cm【考点】三角形三边关系.【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.25.已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C=3∠A,则此三角形( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形【考点】三角形内角和定理.【分析】由三角形内角和定理知.【解答】解:∵∠B+∠C+∠A=180°,∠B+∠C=3∠A,∴∠B+∠C+∠A=4∠A=180°,∴∠A=45°.故选A.【点评】本题利用了三角形内角和为180°求解.26.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B= ∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【考点】三角形内角和定理.【分析】根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C= ×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B= ∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选D.【点评】本题考查了三角形内角和定理的应用,能求出每种情况的∠C的度数是解此题的关键,题目比较好,难度适中.27.已知三角形的三边分别为2,a,4,那么a的取值范围是( )A.1【考点】三角形三边关系.【专题】应用题.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【解答】解:由于在三角形中任意两边之和大于第三边,∴a<2+4=6,任意两边之差小于第三边,∴a>4﹣2=2,∴2故选B.【点评】本题考查了构成三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,难度适中.28.在△ABC中,∠A= ∠B= ∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】三角形内角和定理.【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A= ∠B= ∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,所以,∠B=2×30°=60°,∠C=3×30°=90°,所以,此三角形是直角三角形.故选B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.四、解答题29.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;你选出的条件是②.证明:【考点】全等三角形的判定.【分析】要证明△ADB≌△CEB,两三角形中已知的条件有BD=BE,有一个公共角,那么根据三角形的判定公理和推论,我们可看出①不符合条件,没有SSA 的判定条件,因此不正确.②AE=CD,可得出AB=BC,这样就构成了SAS,因此可得出全等的结论.③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.【解答】解:选择②,证明:∵AE=CD,BE=BD,∴AB=CB,又∵∠ABD=∠CBE,BE=BD∴△ADB≌△CEB(SAS).故答案为:②【点评】本题考查了全等三角形的判定公理及推论.注意SSA和AAA是不能得出三角形全等的结论的.30.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.【考点】直角三角形全等的判定.【专题】证明题;开放型.【分析】本题考查三角形的全等知识.第(1)小题是根据对图形的直观判断和一定的推理可得结果,要求考虑问题要全面.第(2)个问题具有一定的开放性,选择证明不同的结论,判定方法会有不同,这里根据HL(斜边直角边定理)来判断两个直角三角形全等.【解答】解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△C DF(HL).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.做题时要结合已知条件与全等的判定方法逐一验证.31.如图所示,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.【考点】全等三角形的判定与性质.【分析】已知∠1=∠2,∠DAC是公共角,从而可推出∠DAE=∠BAC,已知AB=AD,AC=AE,从而可以利用SAS来判定△ABC≌△ADE.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(SAS).【点评】此题主要考查全等三角形的判定方法,常用的判定方法有:SSS,SAS,AAS,HL等,做题时注意灵活运用.32.如图,BF⊥AC,CE⊥AB,BE=CF,BF、CE交于点D,求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先由条件可以得出△BED≌△CFD就有DE=DF,就可以得出结论.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.∵DF⊥AC,DE⊥AB,∴AD平分∠BAC.【点评】本题考查了全等三角形的判定及性质的运用,角平分线的判定及性质的运用,解答时证明三角形全等是关键.33.如图,已知∠A=∠B,CE∥DA,CE交AB于点E.求证:CE=CB.【考点】等腰三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据平行线的性质可以得到∠A=∠CEB,则∠CEB=∠B,根据等角对等边即可证得.【解答】证明:∵CE∥DA,∴∠A=∠CEB,∵∠A=∠B,∴∠CEB=∠B,∴CE=CB.【点评】本题考查了平行线的性质以及等腰三角形的判定定理,理解定理是关键.34.如图,∠BDA=∠CEA,AE=AD.求证:AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由已知条件加上公共角相等,利用ASA得到三角形ABD与三角形ACE全等,利用全等三角形对应边相等即可得证.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴AB=AC.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.。
部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案
![部编数学八年级上册第11章《三角形》全章检测题(含答案)含答案](https://img.taocdn.com/s3/m/66e2648429ea81c758f5f61fb7360b4c2e3f2ae9.png)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十一章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为( C )A.3 B.4 C.5 D.6 ,第3题图) ,第6题图) 2.(2015·泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形B.锐角三角形C.直角三角形D.以上都有可能5.(2015·广元)一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于( A )A.16 B.14 C.12 D.10,第7题图) ,第9题图) ,第10题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形B.八边形C.九边形D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△F MN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.(2015·南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图) ,第13题图) ,第18题图) 12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.(2015·烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°_ _.16.一个等腰三角形的底边长为5cm,一腰上的中线把这个三角形的周长分成的两部分之差是3cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C 点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB=2∠B ,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠A CD=2x°=36°20.(8分)如图,在△ABC中,AD是高,AE是角平分线,∠B=70°,∠DAE=18°,求∠C的度数.解:∵∠BAD=90°-∠B=20°,∴∠BAE=∠BAD+∠DAE=38°.∵AE是角平分线,∴∠CAE=∠BAE=38°,∴∠DAC=∠DAE+∠CAE=56°,∴∠C=90°-∠DA C=34°21.(9分)已知等腰三角形的周长为18 cm,其中两边之差为3 cm,求三角形的各边长.解:设腰长为x cm,底边长为y cm,则{2x+y=18,x-y=3,或{2x+y=18,y-x=3,解得{x=7,y=4,或{x=5,y=8,经检验均能构成三角形,即三角形的三边长是7 cm,7 cm,4 cm或5 cm,5 cm,8 cm22.(9分)如图,小明从点O出发,前进5 m后向右转15°,再前进5 m后又向右转15°……这样一直走下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=10 cm,BC=8 cm,AC=6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC=12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB=__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°。
重难点解析人教版八年级数学上册第十一章三角形专项测试试卷(含答案详解)
![重难点解析人教版八年级数学上册第十一章三角形专项测试试卷(含答案详解)](https://img.taocdn.com/s3/m/b56b790c54270722192e453610661ed9ad5155d8.png)
人教版八年级数学上册第十一章三角形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( )A .2B .3C .4D .62、如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°3、如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°4、下列多边形中,内角和与外角和相等的是( )A .三角形B .四边形C .五边形D .六边形5、如图,一束太阳光线平行照射在放置于地面的正六边形上,若119∠=︒,则2∠的度数为( )A .41︒B .51︒C .42︒D .49︒6、如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A .2 B . C .3 D .7、如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°8、已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为( )A .9B .10C .11D .129、下列说法中错误的是( )A .三角形的一个外角大于任何一个内角B .有一个内角是直角的三角形是直角三角形C .任意三角形的外角和都是360D .三角形的中线、角平分线,高线都是线段10、BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )A .30°B .40°C .50°D .60°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多3cm ,已知AB =4cm ,则AC 的长为 _____.2、如图,在ABC 中,2AB AC ==,P 是BC 边上的任意一点,PE AB ⊥于点E ,PF AC ⊥于点F .若ABC S =PE PF +=______.3、如图,AE CF ∥,ACF ∠的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②∥AC BG ;③与DBE ∠互余的角有2个;④若A α∠=,则1808BDF α∠=︒-.其中正确的是________.(请把正确结论的序号都填上)4、如图,将等边三角形、正方形和正五边形按如图所示的位置摆放.1230∠=∠=,则3∠=___.5、如图,在△ABC 中,∠A=60°,BD 、CD 分别平分∠ABC、∠ACB,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分∠MBC、∠BCN,BF 、CF 分别平分∠EBC、∠ECQ,则∠F=________.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.2、已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数.3、若一个多边形的内角和的14比一个四边形的内角和多90°,那么这个多边形的边数是多少? 4、一个多边形,除了一个内角之外,其余内角之和为2680°,求这个内角的大小.5、如图,点E 在DA 的延长线上,CE 平分∠BCD ,∠BCD =2∠E ,(1)求证:BC ∥DE ;(2)点F 在线段CD 上,若∠CBF =∠ABD =40°,∠BFC =∠ADB ,求∠BDC 的度数.-参考答案-一、单选题1、A【解析】【详解】试题解析:∵AE 是△ABC 的中线,EC=4,∴BE=EC=4,∵DE=2,∴BD=BE -DE=4-2=2.2、B【解析】【详解】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.3、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【详解】∵DE是AC的垂直平分线,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.【考点】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.5、A【解析】【分析】先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.【详解】解:∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD =120°-∠1=101°,∠ADB =60°,∴∠ABD =101°-60°=41°∵光线是平行的,∴2∠=∠ABD =41︒,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.6、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知45B EAF ∠=∠=︒,所以可求出∠AFB=90°,再直角三角形的性质可知12EF AB =,所以AB AC =,的长可求,再利用勾股定理即可求出BC 的长. 【详解】解:E B A 沿过点的直线折叠,使点与点重合,B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒点为中点,且,1EF AB 2∴=, 3EF 2=, 3AB 2EF 232∴==⨯=, ΔRtABC 在中, AB =AC ,AB 3,=BC ∴==故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.7、C【解析】【分析】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .【考点】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.8、D【解析】【分析】依题意,多边形的外角和为360°,该多边形的内角和与外角和的总和为2160°,故内角和为1800°.根据多边形的内角和公式易求解.【详解】解:该多边形的外角和为360°,故内角和为2160°-360°=1800°,故(n-2)•180°=1800°,解得n=12.故选:D.【考点】本题考查的是多边形内角与外角的相关知识,掌握多边形的内角和公式是解题的关键.9、A【解析】【分析】根据三角形的性质判断选项的正确性.【详解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确.故选:A.【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质.10、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,∵∠PCM 是△BCP 的外角,∴∠P =∠PCM −∠CBP =50°−20°=30°,故选:A .【考点】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.二、填空题1、7cm##7厘米【解析】【分析】根据中线的定义知CD BD =,结合三角形周长可得3AC AB cm -=,根据题意,即可得出AC 的长度.【详解】解:如图所示:∵AD 是BC 边上的中线,∴D 为BC 的中点,CD BD =,∵3ADC ABDC C cm -=,4AB cm =, 即()()3AC CD AD AB DB AD cm ++-++=,∴3AC AB cm -=,∴37AC AB cm =+=.故答案为:7cm .【考点】本题考查了三角形的中线性质,理解题意,作出图形是解题关键.2【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅,结合已知条件,即可求得PE PF +的值. 【详解】解:如图,连接APPE AB ⊥于点E ,PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC ==,ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【考点】本题考查了三角形的高,掌握三角形的高的定义是解题的关键.3、①②【解析】【分析】由BD ⊥BC 及BD 平分∠GBE ,可判断①正确;由CB 平分∠ACF 、AE ∥CF 及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE ∥CF 及AC ∥BG 、三角形外角的性质可求得∠BDF ,从而可对④作出判断.【详解】∵BD 平分∠GBE∴∠EBD =∠GBD =12∠GBE∵BD ⊥BC∴∠GBD +∠GBC =∠CBD =90°∴∠DBE+∠ABC=90°∴∠GBC=∠ABC∴BC平分∠ABG故①正确∵CB平分∠ACF∴∠ACB=∠GCB∵AE∥CF∴∠ABC=∠GCB∴∠ACB=∠GCB=∠ABC=∠GBC∴AC∥BG故②正确∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC ∴与∠DBE互余的角共有4个故③错误∵AC∥BG,∠A=α∴∠GBE=α∴12 GBDα∠=∵AE∥CF∴∠BGD=180°-∠GBE=180°−α∴∠BDF=∠GBD+∠BGD=1+18018022ααα︒-=︒-故④错误即正确的结论有①②故答案为:①②【考点】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.4、42︒##42度【解析】【分析】利用多边形的外角和定理,即360︒减去等边三角形的一个内角的度数,减去正五边形的一个内角的度数,减去正方形的一个内角的度数,再减去1∠和2∠的度数,最后得出答案.【详解】等边三角形的内角的度数是60︒,正方形的内角的度数为90︒,正五边形的内角的度数是(52)1801085-⨯︒=︒, 则336060901081242∠=︒-︒-︒-︒-∠-∠=︒.故答案为:42︒【考点】此题考查了多边形外角和定理,正多边形内角和公式,熟练掌握相关知识及正确运算是解题关键. 5、15°【解析】【分析】先由BD 、CD 分别平分∠ABC、∠ACB 得到∠DBC=12∠ABC,∠DCB=12∠ACB,在△ABC 中根据三角形内角和定理得∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=60°,则根据平角定理得到∠MBC+∠NCB=300°;再由BE 、CE 分别平分∠MBC、∠BCN 得∠5+∠6=12∠MBC,∠1=12∠NCB,两式相加得到∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,在△BCE中,根据三角形内角和定理可计算出∠E=30°;再由BF、CF分别平分∠EBC、∠ECQ得到∠5=∠6,∠2=∠3+∠4,根据三角形外角性质得到∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,利用等量代换得到∠2=∠5+∠F,2∠2=2∠5+∠E,再进行等量代换可得到∠F=12∠E.【详解】解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=12∠ABC,∠DCB=12∠ACB,∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=12×(180°-60°)=60°,∴∠MBC+∠NCB=360°-60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=12∠MBC,∠1=12∠NCB,∴∠5+∠6+∠1=12(∠NCB+∠NCB)=150°,∴∠E=180°-(∠5+∠6+∠1)=180°-150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=12∠E=12×30°=15°.故答案为:15°.【考点】本题考查了三角形内角和定理:三角形内角和是180°.也考查了三角形外角性质.三、解答题1、(1)证明见解析;(2)78°【解析】【分析】(1)因为CAF BAE ∠=∠,所以有BAC EAF ∠=∠,又因为AE AB AC AF ==,,所以有()BAC EAF SAS △≌△,得到EF BC =;(2)利用等腰三角形ABE 内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到28F C ∠=∠=︒,从而算出∠FGC【详解】解:(1)证明:CAF BAE ∠=∠,BAC EAF ∴∠=∠,AE AB AC AF ==,,()BAC EAF SAS ∴△≌△,EF BC ∴=;(2)65AB AE ABC =∠=︒,,18065250BAE ∴∠=︒-︒⨯=︒,50FAG ∴∠=︒,BAC EAF △≌△,28F C ∴∠=∠=︒,502878FGC ∴∠=︒+︒=︒.【考点】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,解题的关键是掌握全等三角形证明.2、(1)80C ∠=︒;(2)120C ∠=︒.【解析】【分析】(1)如图1,过点C 作CH∥DF,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=12∠CDM,∠EBC=12∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【考点】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.3、见解析【解析】【分析】设这个多边形的边数是n ,再列方程()12180360904n -⨯︒=︒+︒,解方程即可得到答案. 【详解】解:设这个多边形的边数是n , 由题意得:()12180360904n -⨯︒=︒+︒, 解得:12.n =答:这个多边形的边数是12.【考点】本题考查的是多边形的内角和定理,掌握利用一元一次方程解决多边形的内角和问题是解题的关键.4、解得:n =【考点】此题主要考查了多边形的内角和和外角和,解题的关键是掌握多边形的内角和公式与外角和定理.8.20°.【解析】【分析】n 边形的内角和是(n-2)•180°,因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要大,大的值小于1.则用内角的和除以180所得值,加上2,比这个数大的最小的整数就是多边形的边数.【详解】设多边形的边数为x ,由题意有(x﹣2)•180=2680,解得x=1689,因而多边形的边数是17,则这一内角为(17﹣2)×180°﹣2680°=20°.【考点】考查了多边形内角与外角,正确理解多边形的内角和是180度的整数倍,以及多边形的角的范围,是解题的关键.5、 (1)见解析(2)40°【解析】【分析】(1)只需要证明∠BCE=∠E,即可得到BC DE∥;(2)先证明∠BFC=∠CBF+∠DBF,再由BFC是△BFD的外角,得到∠BFC=∠DBF+∠BDC,即可推出∠BDC=∠CBF=40°.(1)解:∵CE平分∠BCD,∴∠BCD=2∠BCE,∵∠BCD=2∠E,∴∠BCE=∠E,∴BC DE∥;(2)解:∵BC DE∥,∴∠ADB=∠DBC,∵∠DBC=∠CBF+∠DBF,∴∠ADB=∠CBF+∠DBF,∵∠BFC=∠ADB,∴∠BFC=∠CBF+∠DBF,∵∠BFC是△BFD的外角,∴∠BFC=∠DBF+∠BDC,∴∠DBF+∠BDC=∠CBF+∠DBF,∴∠BDC=∠CBF=40°.【考点】本题主要考查了平行线的性质与判定,三角形外角的性质,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.。
2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)
![2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)](https://img.taocdn.com/s3/m/63475d3ba7c30c22590102020740be1e650eccc6.png)
2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。
第11章:全等三角形 证明题专项练习(含答案) 人教版八年级数学上册
![第11章:全等三角形 证明题专项练习(含答案) 人教版八年级数学上册](https://img.taocdn.com/s3/m/010acffe76c66137ef0619ef.png)
人教版数学八年级上册《全等三角形》证明题专项练习1.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.2.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.3.如图,已知△ABC中,∠1=∠2,AE=AD,求证:DF=EF.4.如图,已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:①AC=AD;②CF=DF.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE. (1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.求证:(1)△ADC≌△CEB. (2)AD=5cm,DE=3cm,求BE的长度.7.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.8.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.9.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.10.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.11.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD.求证:∠C=2∠B12.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.13.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F. (1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.14.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.参考答案1.证明:(1)过O点作OE⊥AC于点E.∵∠ABD=90°且OA平分∠BAC∴OB=OE,又∵O是BD中点∴OB=OD,∴OE=OD,∵OE⊥AC,∠D=90°∴点O在∠ACD 的角平分线上∴OC平分∠ACD.(2)在Rt△ABO和Rt△AEO中∵∴Rt△ABO≌Rt△AEO(HL),∴AB=AE,在Rt△CDO和Rt△CEO中∵∴Rt△CDO≌Rt△CEO(HL),∴CD=CE,∴AB+CD=AE+CE=AC.2.证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=F C(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.3.证明:在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∵AE=AD,∴AB﹣AD=AC﹣AE,即BD=CE,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴DF=EF.4.证明:①∵AB=AE,BC=ED,∠B=∠E,∴△ABC≌△AED(SAS),∴AC=AD,②∵AF⊥CD,AC=AD,∴CF=FD(三线合一性质).5.解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,∠1=∠D,∠3=∠5,BC=CE,∴△ABC≌△DEC(AAS),∴AC=CD;(2)∵∠ACD=90°,AC=CD,∴∠2=∠D=45°,∵AE=AC,∴∠4=∠6=67.5°,∴∠DEC=180°-∠6=112.5°.6.(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB,∠CAD=∠BCE,AC=BC,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE-DE,∴BE=AD-DE=5-3=2(cm),即BE的长度是2cm.7.证明:CD=BE,CD⊥BE,理由如下:因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,所以∠BEA+∠DFE=90°.即CD⊥BE.8.(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;∵AD⊥BC,CE⊥AB,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB,在Rt△AEF和Rt△CEB中∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA)(2)∵△ABC为等腰三角形,AD⊥BC,∴AF=CB=2CD.9.证明:做BE的延长线,与AP相交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC.10.证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠B=∠CAF.11.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B.12. (1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.13.解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD,∴AE=AF,∴∠ADF=∠ABE=60°,∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,∴BC=CE+BE=6,∴四边形AECD的面积=△ABC的面积+△ACD的面积=10.14.(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中BD=CD,BE=CF.∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.。
2019-2020学年八年级数学《第十一章全等三角形》综合测试A新人教版.docx
![2019-2020学年八年级数学《第十一章全等三角形》综合测试A新人教版.docx](https://img.taocdn.com/s3/m/1a58c0d058fafab068dc0201.png)
2019-2020 学年八年级数学《第十一章全等三角形》综合测试A新人教版一、选择题(每题 3 分,共 30 分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号12345678910答案1.下列判断中错误的是()..A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等E C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等D2.如图,△DAC和△EBC均是等边三角形,AE,BD分别与N CD, CE 交于点 M , N ,有如下结论:A M BC①△ ACE ≌△ DCB ;② CM CN ;③ AC DN .其中,正确结论的个数是()(第 2 题)A.3 个B. 2 个C. 1 个D. 0 个3.某同学把一块三角形的玻璃打碎了 3 块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去(第 3 题)C.带③去D.带①②③去4.△ABC≌△DEF, AB=2,AC=4,若△DEF的周长为偶数,则 EF的取值为()A .3B .4C .5D .3 或 4 或 55.如图,已知,△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙6.三角形ABC的三条内角平(第 5 题)分线为 AE、 BF、CG、下面的说法中正确的个数有()①△ ABC的内角平分线上的点到三边距离相等②三角形的三条内角平分线交于一点③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分(第 7 题)A .1 个B . 2 个C . 3 个D . 4 个7.如图,长方形 沿 AE 折叠,使 D 点落在边上的 F 点处,∠=600,那么∠等于()ABCDBCBAFDAEA .150B .300C . 450D . 6008.如图所示, △ ABE 和△ ADC 是△ ABC 分别沿着 AB ,AC 边翻折 180°形成的,若∠ 1∶∠ 2∶∠ 3=28∶ 5∶ 3,则∠ α 的度数为()A .80°B .100°C .60°D .45°9. 在△ ABC 和△ A B C 中 , 已知 A A , ABAB , 在下面判断中错误的(第 8 题)是 ( )A. 若添加条件 ACA C , 则△ ≌△A B CABC B. 若添加条件 BCB C , 则△ ABC ≌△ A B C C. 若添加条件 BB , 则△ ABC ≌△ A B CD. 若添加条件CC , 则△ ABC ≌△ A B C10. 如图 , 在△ ABC 中 , ∠ C = 90 , AD 平分∠ BAC ,DE ⊥ AB 于 E ,则下列结论 : ① AD 平分∠ CDE ;②∠ BAC =∠ BDE ;③ DE 平分∠ ADB ;④ BE +AC =AB . 其中正确的有 ()A.1 个B.2 个C.3 个D.4个二、填空题(每题3 分,共 30)第 10 题11.如图, AB , CD 相交于点 O , AD = CB ,请你补充一个条件,使得△AOD ≌△ COB .你补充的条件是 ______________________________ .12.如图, AC ,BD 相交于点 O , AC =BD , AB =CD ,写出图中两对相等的角 ______ .13.如图,△ ABC 中,∠ C = 90°, AD 平分∠ BAC , AB = 5, CD =2,则△ ABD 的面积是 ______.BDACADE OOCDAD B B C ABC的面 14.如图(,第直11线题)AE ∥ BD ,点 C 在(BD 第上12,题若) AE =4, BD (=第8,13△题ABD )的面积为 (16第,14则题△)ACE 积为 ______. 15.在△ ABC 中,∠ C =90°, BC =4CM ,∠ BAC 的平分线交 BC 于 D ,且 BD :DC =5:3,则 D 到 AB 的距离为 _____________ .16.如图,△ ABC 是不等边三角形, DE =BC ,以 D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ ABC全等,这样的三角形最多可以画出_____个.(第 16 题)17.如图,AD, A D 分别是锐角三角形ABC 和锐角三角形 A B C 中 BC , B C 边上的高,且AB A B , AD A D .若使△ ABC ≌△ A B C ,请你补充条件___________.(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.A A'ADBCB''C'D DBE C(第 17、 18 题)(第 19 题)19.如图,已知在ABC 中, A 90 , AB AC , CD平分ACB , DE BC 于 E ,若BC 15cm ,则△ DEB 的周长为cm .20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900, E 是 BC的中点, DE平分∠ ADC,∠CED=350,如图16,则∠ EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是 ______.三、解答题(每题9 分,共 36 分)21.如图,O为码头,A,B两个灯塔与码头的距离相等,OA, OB为海岸线,一轮船从码头开出,计划沿∠ AOB的平分线航行,航行途中,测得轮船与灯塔A,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.AOB22.如图,在△ABC中,BD=DC,∠ 1=∠ 2 ,求证:AD⊥BC.23.如图,OM平分∠POQ,MA⊥OP, MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠ OAB=∠ OBA24.如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交 AP于 D.求证:AD+BC=AB.PCEDA B四、解答题(每题10 分,共 30 分)25.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠ C=2∠ BACD B26.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于 E,BF⊥AC于F,若AB=CD,AF=CE,BD交 AC于点 M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC∥ AB,且 DC=AE, E 为 AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):AE O DB C五、(每题12 分,共24 分)28.如图,△ABC中,∠BAC=90 度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于,直线交的延长线于.E CE BA F求证: BD=2CE.FAEDB C29.已知 : 在△ABC中 , ∠BAC= 90 , AB=AC, AE是过点A的一条直线 , 且BD⊥AE于D, CE⊥AE于 E.(1)当直线 AE 处于如图①的位置时,有 BD=DE+CE,请说明理由;(2)当直线 AE处于如图②的位置时,则 BD、DE、 CE的关系如何?请说明理由;(3)归纳 (1) 、(2), 请用简洁的语言表达BD、DE、CE之间的关系 . 第十一章全等三角形综合测试 A 参考答案。
最新版2019-2020年人教版八年级上册数学第十一章三角形综合自测题及答案-精编试题
![最新版2019-2020年人教版八年级上册数学第十一章三角形综合自测题及答案-精编试题](https://img.taocdn.com/s3/m/eef58779fad6195f312ba66c.png)
第十一章 三角形综合自测题一.选择题1.如图中三角形的个数是( ) A.3 B.4 C.5 D.62.如图,已知CD AC BD AB ⊥⊥、,︒=∠45A ,则D ∠的度数为( ) A.︒45 B.︒55 C.︒65 D.︒353.如果三条线段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5, 其中能构成三角形的有( ) A.1个 B.2个 C.3个 D.4个 4. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60° 5.下列图形中具有稳定性有 ( )A. 2个B. 3个C. 4个D. 5个6.一个多边形的内角和等于它的外角和2倍,这个多边形是 ( )A .三角形 B. 四边形 C. 五边形 D. 六边形7.在△ABC中,∠A=12∠B=13∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定8.若一个正多边形的每一个外角为20°,则这个多边形的边数为()A.9 B.10 C.11 D.189.四边形ABCD中,∠A,∠B,∠C,∠D的度数之比为2:3:4:3,则∠D等于()A.60°B.75°C.90°D.120°10.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )A.三角形B.矩形C.正八边形D.正六边形二.填空题11.如图,工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.12.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了米.13.如图,△ABC中,D在AC上,E在BD上,则∠1,∠2,∠A之间的大小关系用“<•”表示为_________.14.一个多边形的内角和等于它的外角和,这个多边形是边形. 15.如果一个多边形的每一外角都是240,那么它边形.三.解答下列各题16.对下面每个三角形,过顶点A 画出中线,角平分线和高 17.如图,飞机要从A 地飞往B 地,因受大风影响,一开始就偏离航线(AB )180(即∠A=1800)飞到了C 地,已知∠ABC=100,问飞机现在应以怎样的角度飞行才能到达B 处?(即求∠BCD 的度数)18.已知一个多边形的每一个外角都等于72,求这个多边形的内角和.(1)C BACBA(2)CBA(3)第(12)题D CBA19.如图,在△ABC 中,AD 是∠BAC 的平分线,∠2=350,∠4=65°, 求∠ADB 的度数.4321D CBA20.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(12分)(1)请你计算出图1中的∠ABC 的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.第十一章综合自测题答案一、选择题CABDBDBDCC二、填空题11.稳定12.120米13.∠2< ∠1<∠A14.四15.十五三,解答题16.略17.28°18.540°19.105°20、解:(1)∵∠F=30°,∠EAC=45°,∴∠ABF=∠EAC﹣∠F=45°﹣30°=15°,∵∠FBC=90°,∴∠ABC=∠FBC﹣∠ABF=90°﹣15°=75°;(2)∵∠B=60°,∠BAC=90°,∴∠C=30°,∵AE∥BC,∴∠CAE=∠C=30°,∴∠AFD=∠CAE+∠E=30°+45°=75°.。
第11章全等三角形单元测试
![第11章全等三角形单元测试](https://img.taocdn.com/s3/m/b89396a6f524ccbff1218489.png)
第2题《全等三角形》单元测试卷班级 __姓名 得分____________一、选择题(每题5分,共30分)1.下列条件中,不能判定两个直角三角形全等的是( )A .一锐角和斜边对应相等B .两条直角边对应相等C .斜边和一直角边对应相等D .两个锐角对应相等2.如图,∠A =∠D ,AB 与DF 、AC 与DE 是对应边,则书写最规范的是( )A .△ABC ≌△DEFB .△ABC ≌△DEF C .△BAC ≌△DEFD .△ACB ≌△DEF3.如图,AB =AD ,BC =CD ,则全等三角形共有( )A .1对;B .2对;C .3对;D .4对; 4.如图,AB ∥FC ,DE =EF ,AB =15,CF =8,则BD =( )A .8;B .7;C .6;D .5;5.如图,O A B △绕点O 逆时针旋转80 到O C D △的位置,已知45AOB?,则A O D Ð等于( )A.55B.45C.40D.356.根据下列已知条件,能惟一画出三角形ABC 的是( ) A.AB =3,BC =4,AC =8; B.AB =4,BC =3,∠A =30; C .∠A =60,∠B =45,AB =4 D .∠C =90,AB =6 二、填空题(每题4分,共20分)1. 如果△ABC≌△DEF ,若AB =DE ,∠B=50°,∠C=70°,则∠D = °2.如图,如果△ABC ≌ △CDA ,则对应边是___________________________________,对应角是__________________________________BACDEF第4题第2题AFB第5题3.如图,AB 与CD 交与O ,∠C=∠D ,再添加条件 ,则△AOD ≌△BOC ,理由是 .4.在△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2, 且△ABC ≌△DEF ,则∠DEF =______.5. 如图所示,已知∠A=90°,BD 是∠ABC 的平分线, AC=10,DC=6,则点D•到BC 的距离DE=_______. 三、证明题(共50分)1.(10分)如图所示在△ABC 中,AB=AC , D 是BD 的中点,求证:△ABD ≌△ACD .2.(10分)如图所示,AE=AD , AB=AC ,求证:△EAB ≌△DAC .3.(15分)已知:∠BAE =∠DAC ,∠E=∠C, AC=AE ,求证:AB=AD .EDCB A4.(15分)如图所示,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC .FE D CB AD A CBE第5题。
2024-2025学年人教版八年级数学上学期《第11章 三角形》测试卷及答案解析
![2024-2025学年人教版八年级数学上学期《第11章 三角形》测试卷及答案解析](https://img.taocdn.com/s3/m/588d16ad0408763231126edb6f1aff00bed570cc.png)
A.70°
B.80°
C.90°
D.100°
19.满足下列条件的△ABC 不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5
B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠C
D.BC=3,AC=4,AB=5
二.填空题(共 18 小题)
20.如图,伸缩晾衣架利用的几何原理是四边形的
.
21.在 Rt△ABC 中,∠C=90°,∠A=70°,则∠B=
2024-2025 学年人教版八年级数学上学期《第 11 章 三角形》测
试卷
一.选择题(共 19 小题)
1.已知三角形两边的长分别是 5 和 12,则此三角形第三边的长可能是( )
A.6
B.7
C.15
D.18
2.已知,如图,D、B、C、E 四点共线,∠ABD+∠ACE=230°,则∠A 的度数为( )
A.50°
B.100°
C.70°
D.80°
6.长度分别是 2,5,x 的三条线段能组成一个三角形,x 的值可以是( )
A.1
B.2
C.5
D.7
7.将一副常规的三角尺按如图方式放置,则图中∠1 的度数为( )
第 1 页 共 31 页
A.95°
B.100°
C.105°
D.115°
8.在△ABC 中,∠A=75°,∠B=65°,则下列关于∠C 的说法正确的是( )
A.40°
B.45°
C.50°
D.60°
11.长度分别为 3,8,x 的三条线段能组成一个三角形,x 的值可以是( )
A.4
B.5
C.6
D.11
12.一个多边形的每一个外角都等于 45°,那么这个多边形的内角和为( )
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版
![八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版](https://img.taocdn.com/s3/m/3a8116663a3567ec102de2bd960590c69fc3d857.png)
八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。
数学:第11章《全等三角形》自我测试题2(人教版八年级上)
![数学:第11章《全等三角形》自我测试题2(人教版八年级上)](https://img.taocdn.com/s3/m/4578661f08a1284ac9504382.png)
数学:第11章《全等三角形》自我测试题2(人教版八年级上)(满分100分,时间60分钟)一、填空题(每题5分,共40分):1、能够____ 的两个图形叫做全等图形.2、判定两个三角形全等除用定义外,还有几种方法,它们分别可以简写成_______;_______;_______;_______;_________.3、已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.4、如图,△ABC ≌△ADE ,则,AB = ,∠E =∠ .若∠BAE =120°,∠BAD =40°,则∠BAC = .5、如图,已知AC =BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________.6、如图,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___ = ___.7、如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件, = ,使△AFC ≌△DEB .8、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 .二、解答题(共60分):9、(8分)如下左图,AB 与CD 交于点O ,OA =OC ,OD =OB ,∠AOD =________,•根据__________可得到△AOD ≌△COB ,从而可以得到AD =_________.ODCBACBAED第3题图 第4题图A DEBFCBCADABCD12第6题图 第7题图 第8题图BCD○1 ○2○3O DCBADCBA10、(8分)如上右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中∵⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( )11、(8分)已知:如图,点D 、E 在BC 上,且BD=CE ,AD=AE ,求证:AB=AC .12、(9分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.654321E D CBAABCDE13、(9分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .14、(9分)已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .ACB DEF15、(9分)已知:∠AOB =90°,OM 是∠AOB 的平分线,将三角板的直角顶P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .PC 和PD 有怎样的数量关系,证明你的结论.MBADOPC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章全等三角形自我测试题 (满分100分,时间60分钟) 集备时间 测试时间___________ 案型 实施案 成绩________ 一、选择题(每小题5分,共25分): 1、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A .线段CD 的中点 B .OA 与OB 的中垂线的交点 C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点 2、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等 C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC 3、如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°, ∠ADB =30°,则∠BCF = ( ) A .150° B .40° C .80° D .90° 4、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( ) A .25° B .27° C .30° D .45° 5、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A .SSS B .SAS C .AAS D .ASA
主备人
授课
人___
_______
八年级:
学生姓名
考号
密
缝
线
A B C E F D A E D A C B O D C B A
A
B C
E
F
A B
C
D
F
E
O
6、如图,BAC ABD
∠=∠,请你添加一个条件:,使OC OD
=(只添一个即可).
7、如图,在△ABC中,AB=AC,BE、是中线,则由可得△AFC≌△AEB.
8、如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,
若∠ADB=60°,EO=10,则∠DBC,FO=.
9、如图,AB∥CD,AD∥BC,OE=OF
10、如图,AD,A′D′分别是锐角三角形ABC和锐角三角形A′B′C′中BC,B′C′边上的高,且
AB=A′B′,AD=A′D′.若使△ABC≌△A′B′C′,请你补充条件________.(填写一个你认为适当的条件即可)
D
O
C
B
A
A
B C
D
A′
B′D′
C′
11、如图,∠DCE=90o,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,
试说明AD+AB=BE.
12、如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个
刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;
③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的.他的这种做
法合理吗?为什么?
13、要将如图中的∠MON平分,小梅设计了如下方案:在射线OM,ON上分别取OA=OB,
过A作DA⊥OM于A,交ON于D,过B作EB⊥ON于B交OM于E,AD,EB交于点C,过O,C作射线OC即为MON的平分线,试说明这样做的理由.
A
D
E
C
B
F
G
14、如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,
若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.
15、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG
于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF .
(1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.
G D F A C B E G D F
A C
B E F E D
C B A
G。