对截面有效宽度的理解
midas操作例题资料-钢箱梁-新OK
midas操作例题资料-钢箱梁-新OKCivil&Civil Designer⼀、钢箱梁操作例题资料1概要钢桥是⾼强、轻型薄壁结构,截⾯和⾃重⽐混凝⼟桥⼩,跨越能⼒⼤,因⽽在实际⼯程中有⼴泛应⽤。
钢桥按形式可⼤致分为钢箱梁、钢板梁(⼯字钢)、钢桁梁、组合梁桥等类型。
钢桥在使⽤时不仅要求钢材具有较⾼的强度,⽽且还要求具有良好的塑性。
钢桥的刚度相对⽐较⼩,变形和振动⽐混凝⼟桥⼤。
为了保证车辆⾏驶安全和舒适性、避免过⼤的变形和振动对钢桥结构产⽣不利的影响,钢桥必须有⾜够的整体刚度[2] 。
钢桥缺点除容易腐蚀影响耐久性外,另⼀缺点是疲劳。
影响疲劳的因素很多,除钢材品质、连接的构造与⽅法等外,与荷载性质、疲劳细节关系也很⼤。
钢箱梁除钢材等⼒学特性外,还具有箱梁的受⼒特点,⼴泛应⽤于市政⾼架、匝道、⼤跨度斜拉桥、悬索桥、拱桥加劲梁、⼤跨连续钢箱梁及⼈⾏桥钢箱梁等⽅⾯。
本专题将通过介绍⼯程概况、结合规范构造检查、midas Civil详细建模过程以及midas Civil Designer设计平台及结果查看等操作流程,希望能为读者结合实际项⽬学习程序,通过程序了解钢箱梁提供帮助。
钢箱梁操作例题资料2 钢桥概况及构造检查2.1 钢桥概况主梁为20+30+40+30m单箱单室正交钢箱梁,钢材为Q345;桥⾯宽8m,梁⾼2.335m,翼缘板长1.8m;顶板、腹板、翼缘板均厚16mm,底板标准段厚16mm,⽀座两侧3~3.5m范围内加厚为24mm;顶板设置闭⼝U型加劲肋;翼缘板、腹板均设置板型加劲肋;底板标准段设置板型加劲肋,桥墩两侧5~7m范围内设置T型加劲肋;横隔板等设置距离详见图1~图3所⽰。
建模之前,应按照《公路钢结构桥梁设计规范》(JTG D64—2015)[1] (以下简称规范)对钢桥⾯板、加劲肋、翼缘板及腹板等尺⼨进⾏构造检查。
2.2构造检查2.2.1钢桥⾯板近年来正交异性钢桥⾯板出现疲劳和桥⾯铺装损伤的现象较为普遍,为保证钢桥⾯板具有⾜够的刚度,需对最⼩厚度有要求;为减⼩应⼒集中和避免采⽤疲劳等级过低的构造细节,需对纵向闭⼝加劲肋尺⼨进⾏规定[1]。
轻型门式刚架设计与施工论文
浅谈轻型门式刚架的设计与施工摘要:近几年来,大量的轻钢结构建筑拔地而起,而在西部大开发的浪潮中,我国轻钢结构的发展更是如火如荼,由于轻钢结构施工周期短、工程造价相对较低等原因,大量的工业厂房、超市、汽车展厅等等都采用了轻钢结构的形式。
对轻型门式刚架而言,通常以h型钢,采用焊接连接作为梁柱,以c形或z形轻钢板作檩条,屋盖系统或楼面系统用压型彩色钢板作面层,面围护也可采用单层或夹层压型钢板,夹层板内部可充填各种保温层。
然而,在此类工程迅速发展的同时,也时常见到一些令人触目惊心的场面:房屋被压坏,漏水严重等现象,以下就门式刚架设计及施工,浅谈几点体会。
关键词:轻型门式刚架;屋面活荷载取值;现场施工中图分类号:tu7文献标识码:a 文章编号:1 设计方面1.1 屋面活荷载取值gb50009-2012《建筑结构荷载规范》不上人屋面活荷载取0.5kn/m2。
gb50017-2003《钢结构设计规范》规定支撑轻屋面的构件或结构,当仅有一个可变荷载且受载水平投影面积超过60m2时,屋面的活荷载为0.3kn/m2。
框架结构一般符合此条件,但取活荷载为0.3kn/m2时,应同雪荷载比较,取大值。
国外这类,要考虑0.15~0.5kn/m2的附加荷载,而我们无此规定,所以设计的时候可适当提高一些,绝对不允许在有限的活荷载中做文章。
1.2 内力和侧移计算对于变截面门式刚架,应采用弹性分析方法确定各种内力,只有当刚架的梁柱全部为等截面时才允许采用塑性分析方法。
变截面门式刚架的内力通常采用杆系单元的有限元法(直接刚度法)编制程序上机计算。
地震作用的效应可采用底部剪力法分析确定。
根据不同荷载组合下的内力分析结果,找出控制截面的内力组合,控制截面的位置一般在柱底、柱顶、柱牛腿连接处及梁端、梁跨中等截面。
变截面门式刚架的柱顶侧移应采用弹性分析方法确定,计算时荷载取标准值,不考虑荷载分项系数。
如果最后验算时刚架的侧移刚度不满足要求,需采用下列措施之一进行调整:放大柱或(和)梁的截面尺寸,改铰接柱脚为刚接柱脚;把多跨框架中的个别摇摆柱改为上端和梁刚接。
工字形构件的有效截面
工字形构件的有效截面工字形构件是现代工程中常用的一种构件,其形状如同一个“工”字,具有良好的承载能力和加工易度。
工字形构件的有效截面是指在承载过程中起主要作用的截面,也称为抗弯截面或抗剪截面。
在工程设计和使用中,了解并正确计算工字形构件的有效截面至关重要。
本文将介绍工字形构件的有效截面,并探讨其计算方法和应用。
一、工字形构件的剖面结构工字形构件的剖面结构由上盖板、下底板和中央翼缘三部分组成。
上盖板和下底板连接着中央翼缘,构成一个张力或压力载荷下的梁。
工字形构件的中央翼缘一般为等边矩形或等距梯形,翼缘与上盖板和下底板之间的距离称为截面高度h,上盖板和下底板的厚度分别为tf和tw。
由于工字形构件在受载过程中的受力形式较为复杂,因此其有效截面的计算较为繁琐。
二、工字形构件的有效截面分类根据工字形构件在受载过程中的不同受力方式,其有效截面可分为以下几种类型。
1. 抗弯截面工字形构件在纵向受力情况下,上盖板和下底板承担的主要作用是抵抗弯矩。
因此,在纵向受力情况下,工字形构件的有效截面可按照抵抗弯矩能力划分为上盖板、下底板和翼缘三种部分。
一般情况下,上盖板和下底板的有效截面形状为矩形,中央翼缘的有效截面形状则为梯形或直角三角形。
2. 抗剪截面工字形构件在横向受力情况下,中间翼缘承担的主要作用是抵抗剪力。
因此,工字形构件的抗剪截面通常为梯形或等距矩形。
在设计时,应根据结构的要求和受力情况正确地选择有效的抗剪截面,以保证整个结构的稳定性和安全性。
3. 抗扭截面工字形构件在承受扭矩时,其受力状态比较复杂,因此有效截面的计算也受到很大的影响。
计算抗扭截面应综合考虑中央翼缘的宽度、高度、腹板厚度、夹板宽度等多个因素,以确保整个结构的强度和稳定性。
三、工字形构件的有效截面计算方法在实际工程中,计算工字形构件的有效截面时,需要综合考虑其受力情况、材料的强度和稳定性等多种因素。
常用的有效截面计算方法主要包括弯曲底线法、弯矩比法和刚度比法等。
t形截面受压翼缘的有效宽度
t形截面受压翼缘的有效宽度【知识文章】T形截面受压翼缘的有效宽度1. 简介T形截面在工程实践中被广泛应用,其具备较高的强度和刚度。
在设计和分析中,了解T形截面受压翼缘的有效宽度是至关重要的。
本文旨在深入探讨T形截面受压翼缘的有效宽度,为读者提供有价值的知识和理解。
2. T形截面的构造和特性T形截面由一个纵向的翼缘和一个横向的腹板组成。
其特点是翼缘具有较高的抗弯刚度,而腹板则主要承受剪力作用。
由于受力特性的不同,翼缘和腹板在设计和分析中需要分别考虑。
3. T形截面受压翼缘的概念当T形截面受到纵向压力时,翼缘处于压缩状态。
为了准确计算翼缘的受压性能,引入了有效宽度的概念。
有效宽度是指受压翼缘的有效部分,在计算弯曲和稳定性时起到关键作用。
4. 受压翼缘的有效宽度计算方法为了计算受压翼缘的有效宽度,我们可以采用不同的方法。
其中较常用的是弧长法、等效直角支撑法和解析法。
这些方法的原理和适用条件各有不同,根据具体情况可以灵活选择。
5. 弧长法弧长法是一种较为简便的方法,适用于较为简单的T形截面。
该方法基于压力分布的近似计算,将翼缘的净截面面积与等效受压翼缘的宽度联系起来。
通过一系列计算和修正,可以得到较为准确的结果。
6. 等效直角支撑法等效直角支撑法是一种更为精确的计算方法,适用于更复杂的T形截面。
该方法基于对受压翼缘的支撑情况进行模拟,将其等效为一组直角支撑。
通过对这组支撑的性能进行计算和分析,可以得到更准确的有效宽度。
7. 解析法解析法是一种较为精细的计算方法,适用于复杂且要求较高精度的T形截面。
该方法基于对T形截面受压翼缘的边界条件进行数学建模和求解。
通过使用适当的数学方法和工具,可以得到更准确的有效宽度。
8. 对T形截面受压翼缘有效宽度的个人观点和理解对于T形截面受压翼缘的有效宽度计算,个人认为需要综合考虑结构的实际情况和设计要求。
在选择计算方法时,需要根据截面形状、材料性质和受力状态进行合理的判断。
桥梁钢箱梁计算书
某钢箱梁复核计算报告目录1概述 (1)1.1钢箱梁概况 (1)1.2钢梁的安装及顶推 (1)2计算模型与方法 (2)2.1计算参数 (2)2.1.1材料 (2)2.1.2计算荷载 (2)2.2荷载组合 (2)2.3计算模型 (3)3主梁内力 (4)3.1.1顶推施工阶段 (4)3.1.2(恒载+活载)组合一 (5)3.1.3(恒载+活载+支座沉降+温度)组合二 (6)4主梁应力 (8)4.1控制断面内力 (8)4.1.1顶推施工阶段 (8)4.1.2(恒载+活载)组合一 (8)4.1.3(恒载+活载+支座沉降+温度)组合二 (8)4.2截面有效宽度 (8)4.3局部稳定系数 (9)4.4控制截面应力 (10)5加劲肋验算 (13)5.1主梁顶底板加劲肋 (13)5.2主梁腹板加劲肋 (15)5.3支座加劲肋 (16)5.3.1支座反力 (16)5.3.2支座加劲肋构造 (16)5.3.3支座加劲肋验算 (17)5.3.4顶推施工加劲肋验算 (20)6中间横隔板验算 (21)6.1横隔板构造 (21)6.2横隔板的开口率 (21)6.3横隔板最小刚度 (22)7挠度 (27)7.1恒载挠度 (27)7.2活载挠度 (27)1概述1.1钢箱梁概况主梁为四跨一联的连续钢箱梁,两幅桥错孔布置,位于半径R=1190m的平面圆曲线上,跨径布置为(25+35+35+25)m,每幅桥顶面宽17.25m,箱梁顶板为单向横坡2%,箱梁中心线位置梁高 1.8m,采用单箱三室闭合截面。
桥面铺装为防水粘结层(环氧粘结层+5mm碎石覆盖)+3.0cm环氧沥青混凝土+4cm高弹改性沥青SMA13钢箱梁为正交异性板,一般截面:顶面板厚14mm,底面板厚14mm,设4道竖直腹板,厚度12mm,顶板采用U型加劲肋,厚8mm、高260mm、间距600mm,底板采用T型加劲肋,竖肋厚8mm、高120mm;水平肋厚10mm、100mm宽,腹板加劲肋厚度14mm、高度160mm,横隔板采用板结构, 间距2m,板厚为10mm。
高等桥梁结构理论--剪力滞后
(x)--截面转角
在这里的ห้องสมุดไป่ตู้导中,放弃了直法线假定,采用了截面转角这样的广 义位移。
为建立分析方程,引入以下四条假定: (1) T形梁在竖向荷载作用下,截面中和轴仍位于初等梁理论计算 的位置;
(2) 翼缘板纵向位移 u( x, y ) 沿宽度方向按三次抛物线变化(作此 假设的前提一般是根据过去的试验和经验,通过理论分析与实际比较 相符)
1 x2 3 9 9G 2 2 2 E I f [( ) U (U ) U ]dx 2 x 1 2 2 14 5Eb
I
f
2tb h 2
1
将外荷载势能、腹板应变能和翼板应变能合并,得结构的总势能
I I f Iw
3.4.5 基本微分方程的建立 写出了结构的总势能后,利用最小势能原理就可以建立利用变分法计 算结构剪力滞的基本微分方程。 根据变分法则,对包含三个广义位移的能量泛函式Π 求一阶变分,再
根据虎克定律,引入应力应变关系
根据材料力学,上翼缘等效板中的剪力可表示为
由此我们得到了剪力与剪切变形的关系,对两边取导数,于是对q1有
一般式为
将上式两边各微分一次,并将各杆的平衡方程代入,可以得到
式中各参数符号代表的意义如下
q1(x)、q2(x):两块板中的待定剪力流; q0(x) :腹板顶面上那根杆的已知剪力流函数; 建立了上面的方程组以后,通过求解方程组,就能计算出各板 上的剪力。 在求解方程组之前,我们需要先研究对应于各种实际状态的边 界条件。
1 2 dydx 1 2tE 2 [ (1 2 tE xu x 1 0 x 1 0 h 1 2 2
x2 b x2 b x2 b 2 x1 1 0
冷弯型钢结构有效截面计算讲解学习
6
板件屈曲后应力分布(Stress Distribution)
•板件屈曲后应力分布不均匀,二支承边处大于中央部位,直 至板边缘应力达屈服强度Fy,板件达到极限强度。
应力分布图
(Stress Distribution)
λ>0.673
be b (部分截面有效)
1 .0 0 .2 2
1.052
b t
fy
k
E
25
•算例: 试确定均压加劲板及非加劲板全截面有效的宽厚比限值
(1).均压加劲板 由式5
1.052
b t
fy
k
E
全截面有效条件λ≤0.673 及 k=4.0 代入上式得:
b t 1.28 E
4 x w 4 2 x 2 4 w y 2 4 y w 4 D t y 2 F 2 2 x w 2 2 x 2 F y x 2 w y x 2 F 2 2 y w 2
fx 2 F y 2, fy 2 F x 2, xy 2 F x y
3
板件弹性局部屈曲临界应力 c r
根据薄板弹性理论,板件局部屈曲时的临界应力 c r为:
cr
12
k2E
12 b
t2
(1-1)
• k = 板件稳定系数,与板的支承条件、受力状态等有关如
均压、二边支承板k=4.0;一边支承、一边自由板k=0.425
• = 泊松比,取 ≈0.3 ,b/t= 板件宽厚比;
26
小结: AISI规范96版统一法则计算板件有效宽度程序:
1.由板件受力状况,荷载支承条件确定 k , 板件的实际b/t及
钢结构设计中几个问题论文
钢结构设计中的几个问题探讨【摘要】建筑钢结构的经济性能一直是大家最为关注的一个问题,同时如何控制工程造价,充分发挥钢结构建筑技术经济上的综合优势,钢结构的设计阶段是关键。
可以说,钢结构设计质量的高低、设计是否优化会对整个工程会产生直接的影响。
本文就钢结构设计中的几个关键问题做一分析。
【关键词】钢结构设计;特点;关键问题1 钢结构的特点钢结构与钢筋混凝土结构相比具有以下优点:一是钢结构可工厂化制作,减少现场施工的工作量,施工周期短;二是由于钢结构自重轻、结构荷载小,减少了地基处理的工作量和费用;三是钢结构利于抗震,给投资方带来较好的经济效益和社会效益;四是钢结构由于其材料本身的性能好,强度高,与钢筋混凝土结构相比结构断面小,可以节省一部分空间,更容易满足工艺灵活布置的要求。
根据《钢结构设计规范》(cb50017-20 03)的规定,承重结构应进行承载能力极限和正常使用极限状态的设计。
成功的钢结构设计必须解决好其稳定设计及构造措施的问题,且在使用规范过程中还应避免孤立或片面地对规范条文进行理解。
2 钢结构设计的内容2.1 概念设计在钢结构设计的整个过程中都应该被强调的是“概念设计”,它在结构选型与布置阶段尤其重要。
对一些难以做出精确理性分析或规范未规定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来确定控制结构的布置及细部措施。
运用概念设计可以在早期迅速、有效地进行构思、比较与选择,所得结构方案往往易于手算、概念清晰、定性正确,并可避免结构分析阶段不必要繁琐运算。
同时,它也是判断计算机内力分析输出数据可靠与否的主要依据。
2.2 钢结构设计分析2.2.1 构件设计。
构件的设计首先是材料的选择,通常主结构使用单一钢种以便于工程管理,也可以选择不同强度钢材的组合截面。
构件设计中,现行规范使用的是弹塑性的方法来验算截面,这和结构内力计算的弹性方法并不匹配。
冷弯薄壁型钢[知识研究]
刘木禾
业界荟萃
1
冷轧简介
• 1、定义 • 2、优缺点 • 3、与热轧的区别 • 4、工艺 • 5、用途
业界荟萃
2
冷轧的定义
• 冷轧:用热轧钢卷为原料,经酸洗去除氧化皮后进行冷连 轧,其成品为轧硬卷,由于连续冷变形引起的冷作硬化使 轧硬卷的强度、硬度上升、韧塑指标下降,因此冲压性能 将恶化,只能用于简单变形的零件机械性能比较差,必须 经过退火才能恢复其机械性能,没有退火的叫轧硬卷
16
对有效截面的理解:
屈曲前应力均匀分布
屈曲后应力沿宽度b不均匀分布,且随N增大而愈不均匀
等效应力分布
有效宽度
计算薄而宽板的受压承载力
业界荟萃
17
谢谢观赏
THANK YOU
业界荟萃
18
冷轧与热轧力学性能对比
• 1、 冷轧成型钢允许截面出现局部屈曲,从而可以充 分利用杆件屈曲后的承载力;而热轧型钢不允许截面 发生局部屈曲
• 2、热轧型钢和冷轧型钢残余应力产生的原因不同, 所以截面上的分布也有很大差异。冷弯薄壁型钢截面 上的残余应力分布是弯曲型的,而热扎型钢或焊接型 钢截面上残余应力分布是薄膜型。
筑材料 • 是生产有机涂层钢板的最佳选材 • 随着经济发展,冷轧钢板已被称为现代社会的必须材
料
业界荟萃
10
冷弯薄壁型钢特点简介
• 成型特点
冷弯型钢是用较薄的钢板或带ቤተ መጻሕፍቲ ባይዱ经过冷轧或冲压等加工 手段形成的钢材。其宽厚比不受到限制,可以做的既薄又 宽,截面不大却具有较好的刚度,因此适用于荷载不大的 轻型结构中
• 冷轧型钢样式一般为开口截面,使截面的自由扭转刚度较 低,在受弯时容易出现扭转,受压时容易出现弯扭屈曲, 抗扭性能较差
浅谈箱梁混凝土质量通病治理措施
分段浇筑箱梁混凝土 , 每层混凝土不超过 3 。 0c 首 m
21 年 第 4 02 期
常
诚: 箱梁截 面有效宽度在《 梁博士》 桥 中的编程计算
度, 以满 足工程 设计 的要求 。
4 结语
・3 7.
表6 基本组 合下承载能力极限状态的 抗力 极限 k ‘ Nm
节点
1
- .O O 45 E+ 4
545 . E+O 4 -4 4 E十 4 .7 0
一
在质量方面有针对性地建立质量保证体系 , 编
制 质量计 划 , 与各 科室 、 并 各工 段层层 签订 质量 目标
次拼装 、 打磨 刷油 , 确定 符合要 求后 支模使 用 。 当梁 体 混 凝 土 达 到 设 计 强度 6 %以上 【 混 凝 0 ” ,
责任书, 做到各尽其责 , 从而强化职工质量意识 , 提 高职工 主观能动性 ; 按规范施工 , 按程序办事 , 完善 各项施工记录, 做到齐全 、 准确、 及时。 3 加强技术培训 做好技术交底工作 . 3 加强现场作业人员的培训和施工技术人员技术 交底 。要深入落实层层设计交底和施工技术交底制 度, 把通病治理的责任明确落实到施工一线 。 加强一 线参建人员的针对性 岗位业务培训 ,让一线工程人 员 了解质 量通 病 的名 称 、危害 、产生 原 因和表现 形
收稿 日期 :0 2 0 — 1修 回日期 :0 2 0 — 3 2 1— 6 0 : 2 1 —6 1
作者简 介: 丁宇冬 (94 18 一 )女 , , 山西太原人 , 助理工程 师 ,0 5年毕业于山西省交通职业技术学院土木工程与材料质 20
量 检测 专 业 。
21 0 2年 第 4期
钢箱梁截面有效分布宽度的计算分析
钢箱梁截面有效分布宽度的计算分析摘要:超大截面钢箱梁的桥位制造过程中,以基准控制、公差控制等措施,减小了钢箱梁的误差,确保了精度的控制,从而减少了实际装配中的失误。
节段预拼装的操作,有效确保了整体线型及端口匹配平顺,减少了后续的调整,大幅度提高了制造效率。
而提梁站与步履式顶推方式的选择,能有效进行施工控制,减小钢箱梁损伤及主体结构的整体受力,减少现场施工的工期流程与额外的运输等消耗,为以后相似类型的超大截面钢箱梁桥位的流水线设计提供了宝贵的经验。
本文主要分析钢箱梁截面有效分布宽度的计算。
关键词:钢箱梁;有效宽度;单箱宽度引言进行钢箱梁桥设计时首先要确定桥梁截面布置型式。
钢箱梁的截面设计要充分考虑翼缘有效分布宽度,尽可能使截面翼缘受力时全宽有效,减小剪力滞效应对翼缘板应力计算结果的影响。
钢箱梁截面单箱宽跨比不宜过大,否则截面不经济,容易造成钢材浪费。
以跨径30m~50m的多跨连续钢箱梁桥为例,对钢箱梁截面有效分布宽度进行分析研究。
1、设计主要过程(1)考虑地形、地质及道路总体要求,结合工程区域近远期规划等要素,合理确定连续梁的平面和跨径布置。
(2)根据桥梁周边场地、交通运输条件等合理拟定桥梁的施工工艺。
(3)根据该布置情况及相应受荷计算要求确定跨中及支点截面梁高,及梁底曲线,初步确定梁体构造。
(4)建立桥梁模型,对桥梁结构进行计算,根据计算结果调整梁截面尺寸、钢板厚度、连接方式、加劲肋等的布置位置、大小及方式,进一步确定梁体构造。
(5)对全桥结构进行核算,并满足各项构造措施要求。
2、钢箱梁桥位现场节段拼装现场组装钢箱梁节段,由多个且不同的板单元进行装配,最终在胎架上组成梁段。
胎架应使用专用胎架,提交设计要求并进行计算,之后通过马板对板单元进行固定。
为避免暴力拆卸对母材造成损伤,产生咬边及弧坑,现场人员应对马板相关的拆除进行监督,严禁以锤击的方式拆除马板,应在距母材表面1~3mm处用气割切除,并在切割完成后,对该位置进行打磨。
压型钢板计算手册(内容充实)
本软件针对压型钢板、铝合金板进行截面承载力、挠度、施工荷载及排水能力进行验算。
在计算过程中,压型板按受弯构件考虑,主要遵循GB50018-2002《冷弯薄壁型钢结构技术规范》中关于压型钢板计算的条文规定、GB 50429-2007 《铝合金结构设计规范》中关于铝合金压型板相关的计算条文规定及《冷弯薄壁型钢结构设计手册》中关于屋面排水计算的相关条文。
压型板截面计算过程中,考虑到其实际的受力情况,所以选择了在一个波距范围内进行验算。
因为无论是屋面板、墙面板或者是楼承板其实际作用过程中,均是多块板横向搭接成为整体,所以选择其中一个波距来进行计算更贴近于压型板实际工作状态下的受力情况。
压型板根据《建筑结构静力计算手册》计算各验算点的弯矩及剪力情况。
压型板的计算过程主要包含以下几个方面:毛截面惯性矩的计算、加劲肋是否有效的判别、腹板剪应力承载能力计算、支座处腹板局部受压承载力验算、跨中位置最大正负弯矩和剪力作用下截面承载力验算、支座位置最大负正弯矩和支座反力下截面承载力验算、最大正负挠度验算、屋面板排水能力验算。
上述承载力验算过程中均包含该种情况下该位置的有效截面宽度的验算。
计算采用的组合情况如下:1.2恒+1.4活;1.0恒-1.4负风吸;1.2恒+1.4正风压;1.2恒+1.4活+0.84正风压;1.0恒+1.4活-0.84负风吸;1.2恒+0.98活+1.4正风压;1.0恒+0.98活-1.4负风吸;1.2恒+1.0施工(屋面板);1.2恒+1.4活载(楼面均布施工荷载)(楼承板);1.2恒+1.4施工(楼面集中施工荷载)(楼承板)。
一:压型钢板一)板材力学参数的确定对于规范中已给出抗拉、抗剪强度设计值的材料牌号,我们按规范中数值采用,如Q235、Q345等。
对现今压型板常用的冷轧板牌号如G300、G550等,规范没有给出明确的抗拉、抗剪强度设计值,厂家在供货的时候仅提供材料的屈服强度为300 N/mm2、550 N/mm2,所以我们根据《冷弯薄壁型钢结构技术规范》4.1.4条规定,取抗力分项系数,计算其抗拉强度设计值,抗剪强度设计值按抗拉强度设计值除以计。
钢结构专业术语和符号
钢结构专业术语和符号,全方面覆盖一、术语1、强度:构件截面材料或连接抵抗破坏的能力。
强度计算是防止结构构件或连接因材料强度被超过而破坏的计算。
2、承载能力:结构或构件不会因强度、稳定或疲劳等因素破坏所能承受的最大内力;或塑性分析形成破坏机构时的最大内力;或达到不适应于继续承载的变形时的内力。
3、脆断:一般指钢结构在拉应力状态下没有出现警示性的塑性变形而突然发生的脆性断裂。
4、强度标准值:国家标准规定的钢材屈服点(屈服强度)或抗拉强度。
5、强度设计值:钢材或连接的强度标准值除以相应抗力分项系数后的数值。
6、一阶弹性分析:不考虑结构二阶变形对内力产生的影响,根据未变形的结构建立平衡条件,按弹性阶段分析结构内力及位移。
7、二阶弹性分析:考虑结构二阶变形对内力产生的影响,根据位移后的结构建立平衡条件,按弹性阶段分析结构内力及位移。
8、屈曲:杆件或板件在轴心压力、弯矩、剪力单独或共同作用下突然发生与原受力状态不符的较大变形而失去稳定。
9、腹板屈曲后强度:腹板屈曲后尚能继续保持承受荷载的能力。
10、通用高厚比:参数,其值等于钢材受弯、受剪或受压屈服强度除以相应的腹板抗弯、抗剪或局部承压弹性屈曲应力之商的平方根。
11、整体稳定:在外荷载作用下,对整个结构或构件能否发生屈曲或失稳的评估。
12、有效宽度:在进行截面强度和稳定性计算时宽度。
假定板件有效的那13、有效宽度系数:板件有效宽度与板件实际宽度的比值。
14、计算长度:构件在其有效约束点间的几何长度乘以考虑杆端变形情况和所受荷载情况的系数而得的等效长度,用以计算构件的长细比。
计算焊缝连接强度时采用的焊缝长度。
15、长细比:构件计算长度与构件截面回转半径的比值。
16、换算长细比:在轴心受压构件的整体稳定计算中,按临界力相等的原则,将格构式构件换算为实腹构件进行计算时所对应的长细比或将弯扭与扭转失稳换算为弯曲失稳时采用的长细比。
17、支撑力:为减小受压构件(或构件的受压翼缘)的自由长度所设置的侧向支承处,在被支撑构件(或构件受压翼缘)的屈曲方向,所需施加于该构件(或构件受压冀缘)截面剪心的侧向力。
矩形截面设计
=
f y As α1 fcbh0
(
x
=
ξ h0 )
2. 判别:判别ξ 与ξb
a) 如果ξ ≥ ξb , Mu = α1 fcbh02ξb (1− 0.5ξb ) ;
b) 如果ξ < ξb , Mu = α1 fcbh02ξ (1− 0.5ξ ) ;。
1. 比较: M > Mu ,不安全; M ≤ Mu ,安全。
⎛
⎜
( ) ( ) ⎜
另法:
x
=
h0
⎜1 ⎜
−
⎡ 2 ⎢M 1− ⎢⎣
− α1 fc
b'f − b h'f α1 fcbh02
⎛ ⎜⎜⎝
h0
−
h'f 2
⎞⎤ ⎟⎟⎠⎥⎥⎦
⎞ ⎟ ⎟ ⎟ ⎟
,
x
≤
xb
时,
As
= α1 fcbx + α1 fc fy
b'f − b h'f
⎜⎜⎝
⎟⎟⎠
x > xb 时,截面超筋,应加大截面或提高混凝土强度等级。
2.
比较
M1
与
M
:
M1
=
α1
fcbxb
⎛ ⎜⎝
h0
−
xb 2
⎞ ⎟⎠
a) 如果 M1 ≥ M ,只需配单筋;
b) 如果 M1 < M ,应配双筋。
3.
求
As1
=
α1
fcbxb fy
ቤተ መጻሕፍቲ ባይዱ
4. 求 M 2 、 As' 、 As2
M2 = M − M1
( ) As'
=
f
桥梁博士常见问题整理
桥梁博士常见问题整理0、桥博内裂缝输出单位为mm,内力输出单位为KN,弯矩输出单位KN*m,应力输出单位Mpa1、从CAD中往桥博里面导入截面或者模型时,CAD里面的坐标系必须是大地坐标系。
2、桥博里面整体坐标系是向上为正,所以我们在输荷载的时候如果于整体坐标系相反就要输入负值。
3、从CAD往桥博里导截面时,将截面放入同一图层里面,不同区域用不同颜色区分之。
4、桥博使用阶段单项活载反力未计入冲击系数。
5、桥博使用阶段活载反力已计入1.2的剪力系数。
6、计算横向力分布系数时桥面中线距首梁距离:对于杠杆法和刚性横梁法为桥面的中线到首梁的梁位线处的距离;对于刚接板梁法则为桥面中线到首梁左侧悬臂板外端的距离,用于确定各种活载在影响线上移动的位置。
7、当构件为混凝土构件时,自重系数输入1.04.8、桥博里通过截面修改来修改截面钢筋时,需将“添加普通钢筋”勾选去掉,在截面里输入需要替换的钢筋就可以把钢筋替换掉。
9、在施工阶段输入施工荷载后,可以通过查看菜单中的“显示内容设定”将显示永久荷载勾选上,这样就可以看看输入的荷载位置、方向是否正确。
10、桥博提供自定义截面,但是当使用自定义截面后,显示和计算都很慢,需要耐心。
11、桥博提供材料库定义,建议大家定义前先做一下统一,否则模型拷贝到其他电脑上时材料不认到那时就头疼了。
12、有效宽度输入是比较繁琐的事情,大家可以用脚本数据文件,事先在excel中把有效宽度计算好,用Ultraedit列选模式往里面粘贴,很方便!!14、当采用直线编辑器中的抛物线建立模型时,需要3个控制截面,第一个控制截面无所谓,第二个控制截面向后抛,第三个控制截面向前抛,桥博里面默认的是二次抛物线!!15、当采用直线编辑器建立模型时,控制截面要求点数必须一致,否则告诉你截面不一致。
16、修改斜拉索面积时用斜拉索单元编辑器,在拉锁面积里需要输入拉索个数*单根拉索的面积。
17、挂篮操作的基本原理:挂篮的基本操作为:安装挂篮(挂篮参与结构受力同时计入自重效应)、挂篮加载(浇筑混凝土)、转移锚固(挂篮退出结构受力、释放挂篮内力及转移拉索索力)和拆除挂篮(消除其自重效应)。
混凝土结构设计原理复习知识点
混凝土结构设计原理复习资料==填空题1. 我国以 立方体抗压强度 该值作为混凝土强度的基本指标;我国混凝土结构设计规范规定:混凝土强度等级依据( 立方体抗压强度标准值)确定。
2. 我国混凝土结构设计规范规定:对无明显流幅的钢筋,在构件承载力设计时,取极限抗拉强度的( 85% )作为条件屈服点。
3. (荷载标准值 )是结构按极限状态设计时采用的荷载基本代表值,是现行国家标准《建筑结构荷载规范》(GB 50009-2001)中对各类荷载规定的设计取值。
4.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的 30% 5.对无明显屈服点的钢筋,《混凝土结构设计规范》取用的条件屈服强度为 极限抗拉强度的0.85倍 6.对钢筋进行冷加工的目的是 提高屈服强度 7.对于钢筋混凝土受弯构件,提高混凝土等级与提高钢筋等级相比,对承载能力的影响为 提高钢筋等级效果大 8.对先张法和后张法的预应力混凝土构件,如果采用相同的张拉控制应力,则 先张法所建立的钢筋有效预应力比后张法小 9. 材料强度设计值是 材料强度标准值除以分项系数 10. 结构可靠度的定义中所提到的结构的规定时间一般应为 50年11. 结构的 可靠性 是:结构在规定的时间内,在规定的条件下,完成预定功能的能力。
12. 结构的功能要求不包括( 经济性)13. 结构上的作用可分为直接作用和间接作用两种,下列不属于间接作用的是( 风荷载)。
14. 下列各项预应力损失类型中,不属于后张法预应力损失的是( 温差损失 )15. 下列关于钢筋混凝土超筋梁正截面极限承载力的说法正确的是 钢筋混凝土超筋梁截面极限承载力与混凝土强度等级有关16. 在下列关于混凝土徐变的概念中,正确的是 水灰比越大,混凝土徐变越大17. 下列有关钢筋混凝土单筋梁ρmax 值得说法正确的是 混凝土等级低,同时钢筋等级高,ρmax 小18. 下列几项中,说法错误的是 受压构件破坏时,受压钢筋总是受压屈服的19. 下列哪种状态应按正常使用极限状态设计? 影响耐久性能的局部损坏20. 下列关于钢筋混凝土结构的说法正确的是 钢筋混凝土结构施工比较复杂,建造耗工较多,进行补强修复也比较困难21. 下列关于钢筋混凝土结构的说法错误的是 钢筋混凝土结构自重大,有利于大跨度结构、高层建筑结构及抗震22. 以下破坏形式属延性破坏的是 大偏压破坏23. 梁内钢筋的混凝土保护层厚度是指 纵向受力钢筋的外表面到构件外表面的最小距离24. 梁斜坡截面破坏有多种形态,且均属脆性破坏,相比之下,脆性稍小一些的破坏形态是 剪压破坏25. 梁的破坏形式为受拉钢筋先屈服,然后混凝土受压区破坏,则这种梁称为 适筋梁26. 梁的破坏形式为受拉钢筋的屈服与受压区混凝土破坏同时发生,则这种梁称为( 平衡配筋梁 )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
箱梁截面有效宽度的理解和应用鲁金玉摘要本文从分析截面产生的剪力滞效应开始,阐述了考虑截面有效宽度的原因、介绍了“新桥规”对有效宽度的计算的妥善方法,以及使用中的使用场合、计算过程以及介绍了现行桥梁设计通用程序《桥梁博士》对截面有效宽度的考虑。
关键词剪力滞有效宽度桥规桥梁博士1、剪力滞与箱梁有效宽度T梁、箱梁、Π行等带肋梁结构在外力作用下产生弯曲内力和变形,通过梁肋的剪切变形传递给翼板。
剪应变在向翼板内横向传递的过程中是不均匀的,在梁肋与翼缘板的交接处最大,随着与梁肋距离的增加而逐渐减小,使翼板远离肋板处的纵向位移滞后于肋板边缘处,使弯曲应力的横向分布呈曲线形状(如图1)。
图1 翼缘的剪力分布这就与初等梁的弯曲理论所得到的均匀分布的弯曲应力的平截面假定不一致。
由翼板的剪切变形而造成的弯曲正应力沿着梁宽度方向不均匀分布。
这种现像称为“剪力滞(后)效应(shear-lag effect)”。
而这个应力峰值通常大于我们按初等梁理论计算出来的值。
早在二十世纪初就有人进行这方面的研究,认为剪力滞后效应可能导致钢箱梁截面的严重破坏。
因此工程设计人员提出了“有效宽度”的概念,即将翼缘实际宽度按某个系数或者某种规律折减为计算宽度,使折减后的宽度按初等梁理论算得的应力值和实际的峰值接近,以确保结构的安全。
2、有效宽度的几何计算方法有效分布宽度问题, 实质上是以剪力滞理论为基础。
用精确的理论来分析翼缘应力的不均匀分布规律是比较复杂的, 尤其不便于工程中的应用。
为了既能利用简单的初等梁理论公式, 又能得到接近于翼缘实际应力的最大值, 便提出“翼缘有效宽度”的概念,并且由T.V.卡曼首先解决, 一直沿用至今。
翼缘有效宽度的简单定义是按初等梁理论的公式也能算得与真实应力峰值接近相等的那个翼缘折算宽度。
它的几何解释是:如图二中的真实应力峰值σmax为高度的阴影矩形面积等于真实的应力曲线所包围的面积,即阴影线矩形面积的边长,便是翼缘的有效宽度,数学表达式为:式中:be为每侧翼缘的有效宽度,b为每侧翼缘的净宽度,t为翼缘的厚度,σmax为腹板与翼板连接处的应力峰值,x为沿跨长方向的坐标,y为沿横截面宽度方向的坐标。
图二截面有效宽度计算示意图从式中可知, 翼缘有效宽度是根据翼缘内的应力体积与折算截面的翼缘内应力体积相等的原理换算得来的。
有效宽度与实际宽度之比称为有效宽度比, 即φ=be/b, 它反映翼板应力分布的不均匀程度。
因此, 工程设计应该采用这一折减后的截面抗弯模量, 按初等梁的弯曲理论去计算其纵向弯曲应力与挠度。
从上所述, 要确定箱梁翼缘的有效宽度, 必须事先准确获得沿翼缘分布的应力函数σ(x,y)。
目前, 关于这个问题的分析方法主要有①以有限条法为基础的数值解法;②以折板理论为基础的经典解析法;③以简化结构图式为基础的比拟杆法;④以能量原理为基础的变分法。
用这些方法计算等截面箱梁的翼缘应力, 具有方便、适应性好的特点, 许多学者都以这些方法为理论依据来确定有效宽度。
根据上述原理, 学着们发现了翼缘宽度和梁跨之比、支撑条件、截面形状和尺寸、截面材料、截面在跨内所处位置等对有效宽度的影响规律, 并编制了有效宽度的实用计算方法。
其中《德国规范(DIN1075)》就是比较通用的一种方法,我国《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中对有效宽度计算的条文就是借鉴其而来的。
3、我国桥梁设计规范对有效宽度计算方法的规定我国桥梁设计规范JTG023-85,以下称“旧桥规”,第3.2.2条对形梁的计算宽度有若干规定,考虑到影响结构剪力滞后效应的原因当然很多,如翼缘宽度和梁跨之比、支撑条件、截面形状和尺寸、截面材料、截面在跨内所处位置等。
不难发现“旧桥规”存在以下几点的不足之处:1)认为翼板计算宽度只在一定的范围内与跨径有关, 但无直接的函数关系强调2)当计算超静定力时, 取全宽作为计算宽度,不合理3)对于箱形梁, 没有列出相应的算法, 只规定如无更精确算法, 箱形梁也可参照形梁的规定处理,分析表明次条对箱梁截面,特别是大悬臂的薄壁箱梁截面,是不适合的。
介于“旧规范”诸多的不妥之处,《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004),以下称“新桥规”,对截面有效宽度的计算有了全新的算法,基本就是借鉴《德国规范(DIN1075)》改编而来,不过加了一些修正,这不仅填补了我国规范在计算箱梁翼缘有效宽度方面的不足之处,而且对有效宽度的使用场合进行了规定,对实际设计起到指导性的作用。
“新规范”条文的汲取了国外先进规范的精髓,并加以了补充:1)将箱梁、T梁计算有效宽度的方法有所区分,使箱梁有效分布宽度的计算更合理、准确。
2)考虑了翼缘宽度与梁跨之比对有效宽度的影响。
图二是“新规范”中查求ρs 、ρf 的表格,横坐标为i mi b b ,纵坐标为i il b ,通过观察曲线,我们不难发现i il b 越小,截面有效宽度系数ρs 、ρf 就越大,这说明截面应力分布的不均匀性就越小。
这与我们分析剪力滞时的结果是一致的。
图三:ρs 、ρf 曲线图3)“新规范”中考虑了截面在跨处的位置的影响。
4)修正了《德国规范(DIN1075)》中对不等跨径桥梁理论计算跨径的取法。
5) 在计算弯曲应力和纵向力产生的应力时, 采用不同的共同作用宽度。
总的来说,“新桥规”的规定的方法比以往计算截面有效宽度的方法更严密、周全、合理。
4、“新桥规”有效宽度使用场合简述。
根据个人对规范的理解,规范此条考虑的有效宽度,主要运用于以下以下情况: 梁处于受弯状态。
规范明确规定:预应力混凝土梁在计算预加力引起的混凝土应力时,预加力作为轴向力产生的应力可用实际翼缘全宽计算;由预加力偏心引起的弯矩产生的应力可按翼缘有效宽度计算。
在工程实际中构件,绝大多数情况应该是两种或两种以上受力方式组合,比如拉弯、压弯或弯扭等,此时,我们应该将“受弯”的部分单独提出来考虑,而轴力部分还是按全截面考虑,如下列公式中,An 应该取全截面宽度,而计算In 时,必须考虑有效宽度的影响。
值得一提的是,根据规定“新桥规”公路桥涵结构应按承载能力极限状态和正常使用极限状态进行设计。
在条文说明中着意强调我国规范规定有效宽度可用于两种极限状态。
这一点上同别国规范是有所区别的。
对于“受弯”引起的承载能力极限状态下的材料破坏、正常使用阶段由弯矩、或者预应力偏心引起的弯矩等“受弯”现象,我们均应该考虑有效宽度,这个我们可以从根本上来理解,受弯必引起剪力,有剪力就会有“剪力滞”效应的产生,存在“剪力滞”效应时,我们可以通过用考虑“有效分布宽度的方法”来对实际截面宽度进行折减。
5、桥梁博士对截面有效宽度的考虑的验证《桥梁博士》程序是目前在国内桥梁设计领域中运用广泛,下面通过一个简单模型用验证一下《桥梁博士》软件对有效宽度的考虑方法是否与规范的一致。
拟建如下模型两个模型,模型一:10个1米的单元,单元截面为1×1M2,结构自重系数设为0.04,模型张拉一根钢束,张拉后产生的永存轴力为137KN,考虑全截面宽度为有效宽度。
模型二:10个1米的单元,单元截面为1×1M2,结构自重系数设为0.04,模型张拉一根钢束,张拉后产生的永存轴力为137KN,考虑截面顶底宽度有效宽度为0.5米。
图四桥博模型简图然后我们查看程序组合三作用下,6单元左截面的即6号节点的应力情况。
模型一结果:模型二结果:下面我们取两个点来手算一下:模型一6号截面顶缘应力:σ=AN y I M 0=0.125*1*10*10*0.5/(1/12)+137/1=212KPa 根据规范的理解,此时取A 考虑的全截面特性A=1M 2,Io 取有效截面特性Io =1/12bh 3,b=1m 。
模型二6号截面顶缘应力:σ=AN y I M 0=0.125*1*10*10*0.5/(1/24)+137/1=287KPa 根据规范的理解,此时取A 考虑的全截面特性A=1M 2,Io 取有效截面特性Io =1/12bh 3,b=0.5m 。
通过以上简单模型可以看出《桥梁博士》软件在计算应力时,可以考虑规范对“弯曲应力按截面有效宽度计算”的要求。
6、总结本文从带肋的梁结构的剪力滞效应对梁的结构响应进行了归结,并进结合规范,探讨了有效分布宽度的取值方法,并简述了“新桥规”有效宽度使用场合,并对规范的部分条文在通用软件《桥梁博士》中得到了验证。
通过学习可以总结对梁的有效宽度的计算形成如下认识:1) 有效宽度的概念是针对受弯构件的受“压”冀缘提出的。
2) 承载能力极限状态对构件进行承载能力计算时,弯效应考虑有效宽度,压效应不考虑有效宽3) 正 常 使用极限状态对构件的抗裂、裂缝宽度和挠度进行验算时不考虑有效宽度。
使用阶段正截面混凝土法向压应力计算时,弯效应考虑有效宽度,压效应不考虑有效宽度。
4) 横 梁 范围内的有效宽度系数全部取ps 过于偏保守。
由于水平有限,文中难免有纰漏之处,忘多指教。
参考文献:[1]范立础,桥梁工程(上),人民交通出版社,2003.11;[2]项海帆,高等桥梁结构理论,人民交通出版社,2001.4;[3] E.C.汉勃利,桥梁上部构造性能,1982.5;[4]中华人民共和国交通部标准,公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004),人民交通出版社,2004;[5]孙广华,德国关于桥梁翼板计算宽度的规定.公路,1997,Vol3;[6]罗旗帜,变截面箱梁翼缘有效宽度计算,公路,1999,Jul;[7]邵旭东、鲍卫刚等,变截面长悬臂宽箱梁桥翼缘有效宽度研究,重庆交通学院学报Apr.2004[8]于淑兰,对翼缘有效宽度的理解,北方交通,第十期;[9]程祥云、项怡强,国外关干宽翼缘梁的剪力滞及其有效宽度的规定湖南大学土木系[10]方志、张志田,钢筋混凝土变截面箱梁横向受力有效分布宽度分析湖南大学学报Dec.2003。