一阶线性电路暂态分析的三要素法.

合集下载

电路的暂态分析

电路的暂态分析

第3章电路的暂态分析本章教学要求:1.理解电路的暂态和稳态、零输入响应、零状态响应、全响应的概念,以及时间常数的物理意义。

2.掌握换路定则及初始值的求法。

3.掌握一阶线性电路分析的三要素法。

4.了解微分电路和积分电路。

重点:1.换路定则;2.一阶线性电路暂态分析的三要素法。

难点:1.用换路定则求初始值;2.用一阶线性电路暂态分析的三要素法求解暂态电路;3.微分电路及积分电路的分析。

稳定状态:在指定条件下电路中电压、电流已达到稳定值。

暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。

换路: 电路状态的改变。

如:电路接通、切断、短路、电压改变或参数改变。

电路暂态分析的内容:(1) 暂态过程中电压、电流随时间变化的规律。

(2) 影响暂态过程快慢的电路的时间常数。

研究暂态过程的实际意义:1. 利用电路暂态过程产生特定波形的电信号,如锯齿波、三角波、尖脉冲等,应用于电子电路。

2. 控制、预防可能产生的危害,暂态过程开始的瞬间可能产生过电压、过电流使电气设备或元件损坏。

3.1 电阻元件、电感元件及电容元件3.1.1 电阻元件 描述消耗电能的性质。

根据欧姆定律:u = R i ,即电阻元件上的电压及通过的电流成线性关系。

电阻的能量: 表明电能全部消耗在电阻上,转换为热能散发。

电阻元件为耗能元件。

3.1.2 电感元件描述线圈通有电流时产生磁场、储存磁场能量的性质。

电流通过一匝线圈产生 (磁通),电流通过N 匝线圈产生(磁链),电感: ,L 为常数的是线性电感。

自感电动势:其中:自感电动势的参考方向及电流参考方向相同,或及磁通的参考方向符合右手螺旋定则。

根据基尔霍夫定律可得:0d d 00≥==⎰⎰t Ri t ui W t2tΦN Φψ=tiL t ψe d d d )d(d )d(d d -=-=-=-=t Li t N ΦL 21ti将上式两边同乘上 i ,并积分,则得:磁场能W =即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。

三要素法

三要素法
uc (V)
1A 2 + 3F 1 uC
2
0.667 0

uC (0 ) uC (0 ) 2V
t

uC (t ) uC () [uC (0 ) uC ()]e
uC 0.667 (2 0.667)e
0.5t
2 uC () (2 // 1) 1 0.667 V ReqC 3 2 s 3 t
i(t ) 2 2e
5t
A
S2(t=0.2s)
返 回
上 页
下 页
t > 0.2s
i(0.2 ) 2 2e
50.2
1.26
S1(t=0) 2 i + 10V 3 S2(t=0.2s)
i (0.2 ) 1.26 A 2 L / R 1 / 2 0.5 i () 10 / 2 5A
一阶电路过渡过程的求解方法: (一). 经典法: 用数学方法求解微分方程;

(二). 三要素法: 求
初始值 稳态值 时间常数
……………...

本节重点: 三要素法
1
7.4 一阶线性电路暂态分析的三要素法
K 根据经典法推导的结果: + _U
R
C
t
i
uC (t ) u'C u"C
uC
uC () [uC (0 ) uC ()] e
uC 0 uC 0 6V
C
uC
K
t =0
稳态值: R1C 2ms
t
uC (t ) uC () uC (0 ) uC () e 10 4e
t 0.002

《电工电子》问答题答案

《电工电子》问答题答案

电工电子问答题答案1、电位的定义答:电位是指电路中各点相对于参考点之间的电压。

电路中各点的点位与参考点有关,参考点不同,电路中各点点位随之而异。

2、负载从电源获得最大功率的条件是什么?答:当负载电路RL 等于信号源内阻时,max P P =有最大值,电路中的电流LS R U I 2=,负载上得到的最大功率LS L L S R U R R U P 4)2(22max == 3、R 、L 、C 元件的特性方程是什么?4、应用叠加原理时,要注意的事项有哪些?答:①叠加原理不适用于非线性电路;②多个电源共同作用时,可将多个电源单独作用,对于不作用的电压源用短路线代替,不作用的电流源做开路处理;③叠加原理只能求支路电路和电压,不能用来求解功率;④在使用叠加原理前,必须标明各支路电流、电压的方向。

5、用戴维宁定理解题的步骤是什么?答:①断开原电路中要求电流或电压的负载支路;②求开路电压U0;③求无源二端网络的入端电阻;④画出等效电压源支路,接上断开的负载,用等效电路求解。

6、何为换路定则?7、暂态过程初始值的求解步骤有哪些?答:①求出)0()0(--L C i u 或②依据换路定则,得出)0()0(++L C i u 或③画出0+的等效电路,求出)0()0()0()0(++++R R L C u i u i 、、、等其他电压、电流的初始值。

8、什么是一阶电路暂态分析的三要素法?答:在直流电源作用下,一阶线性电路任一之路的电压或电流均有如下的解:一般式 τte f f f t f -+∞-+∞=)]()0([)()( 其中:f(∞)是电路新的稳态值,f(0+)为初始值,τ为换路后电路的时间常数。

f(∞)、f(0+)、τ称之为一阶电路的三要素。

9、正弦交流电常采用哪四种表示法?举例说明答:①三角函数 )sin(ψω+=t U u m ②波形图 例如(略)③相量图 例如(略) ④复数式 ψψ∠==+=•U Ue jU U U j b a10、确定一个正弦量需要哪些要素?答:最大振幅A 、角频率ω、初相ψ为确定一个正弦量的三要素。

一阶线性电路暂态分析的三要素法课件

一阶线性电路暂态分析的三要素法课件

状态变量 iL、uC
独立初始值 iL(0+)、uC(0+) 6
第一章 电路及其分析方法
【例3.1】设: 开关S闭合前L元件和C元件均未储能。 试: 确定S闭合后电路中各电流与电压的初始值。
解: 由t=0-的电路得:
S R1 i
R3
uC(0-)=0 iL(0-) =0
+ Ut =0
— ቤተ መጻሕፍቲ ባይዱV
由换路定则得:独立初始值
后, 在 储能元件两端所求得的 无源二端网络的等效电 阻。类似于应用戴维宁定理解题时, 等效电阻的方法
29
t=0 S R1
R1
+
U
R2
R3 除去电源和
-
C 除储能元件
R2
R3
R0
R0
+
- U0
C
R 0(R 1//R2)R3
R0C
R0的计算: 从储能元件两端看进去
的等效电阻。
30
[例] 在下图中, 已知U1=3V, U2=+6V, R1=1k , R2=2k , C= 3 F , t<0时电路已处于稳态。用三要素法求t ≥ 0 时 的 uC(t),并画出变化曲线。
0.368U
0
uC t
uC 从初始值按指数规律衰减
快慢由 = R C 决定。
17
同理可推导: iL零输入响应表达式: iLiL(0)et t0
零输入响应曲线 i I0
时间常数 =L/R
0.368I0
i
0
当t= 时, iL=36.8%I0 。
t
电路中 uR和uL可根据电阻和电感元件两端的电压电流
关系确定。

《电工电子技术基础》第5章 一阶电路暂态分析

《电工电子技术基础》第5章 一阶电路暂态分析
第5章 一阶电路暂态分析
教学目标
1. 掌握换路定则及暂态过程初始值的确定方法。 2. 理解一阶电路的零输入响应、零状态响应和 全响应分析方法。 3. 明确一阶电路的暂态响应与时间常数关系。
4. 熟练掌握RC一阶电路的响应。 5. 熟练掌握RL一阶电路的响应。
6. 熟练掌握三要素法求解一阶电路的方法。
时间常数 等于电压 uC 衰减到初始值U的36.8% 所需的时间。
章目录 节首页 上一页 下一页
第5章 一阶电路暂态分析——RC电路的响应
时间常数 的物理意义
t
Байду номын сангаас
t
uC Ue RC Ue
uC
U0
0.368U
O
1 2 3
1 2 3 t
越大,曲线变化越慢, uC达到稳态所需要的时间越长。
章目录 节首页 上一页 下一页
由初始值确定积分常数A
根据换路定律
uC (0 ) uC (0 ) 0V uC (0) U Ae0
则 A U
uC (t)
t
U (1 e )
(t ≥ 0)
章目录 节首页 上一页 下一页
第5章 一阶电路暂态分析——RC电路的响应
3)电容电压uC的变化规律
t
t
uC (t) U (1 e ) uC ()(1 e )
uC
U
(1
e
t RC
)
uR
U
e
t RC
4.时间常数的物理意义
U
uC
U
R
uR i
t
0
当t= 时,uC ( ) U (1 e1) 63.2%U
表示电容电压uC从初始值上升到稳态值的63.2%时所需时间

阶线性电路暂态分析的三要素法

阶线性电路暂态分析的三要素法
04
在计算时间响应时,需要注意叠加原理的应用条件,即输入信号必须 是线性的。
三要素法的实例分析
04
一阶电路的实例
初始条件
电容初始电压为V0,初始电流 为0。
三要素
初始值、稳态值和时间常数。
电路
一个简单的RC电路,由一个电 阻和一个电容组成。
时间常数
时间常数T=RC。
分析
在t=0时,电容开始充电,电 流和电压随时间变化,最终达 到稳态值。
01
初始值是指电路在换路瞬间各 变量的值,可以通过对电路进 行初始状态分析得到。
02
对于一阶电路,初始值可以通 过求解电路的微分方程得到, 对于多阶电路,需要分别对每 个独立的一阶电路进行分析。
03
在计算初始值时,需要注意换 路瞬间电容电压和电感电流不 能突变。
时间常数的计算
1
时间常数是决定电路暂态过程持续时间的重要参 数,其大小与电路的元件参数和结构有关。
THANKS.
三要素法的改进方向
06
理论改进
完善数学模型
01
针对阶线性电路暂态分析的三要素法,进一步完善数学模型,
提高模型的精度和稳定性。
引入新理论
02
将现代控制理论、非线性理论等引入阶线性电路暂态分析中,
以更全面地描述电路的动态行为。
深入研究电路特性
03
深入研究和理解阶线性电路的特性,包括电路元件的动态响应、
二阶电路的实例
电路
一个简单的RLC串联电路,由一个电 阻、一个电感和一个电容组成。
01
02
初始条件
电容初始电压为V0,电感初始电流为 I0。
03
时间常数
时间常数T=sqrt(L/R)。

电路的暂态分析基础知识讲解

电路的暂态分析基础知识讲解

E
u2 R2
u2 (0) uC (0) 0 V
i2
i2(0) 0A u1(0) E
返回
上一节
上一页
下一页
第2章 电路的暂态分析
u1 i1
R1
S
iC
E
u2 R2 C
uC
i 2
iC () 0
E i1() i2 () R1 R2
uC
()
u2 ()
E
R2 R1 R2
u1 ( )
E
uC / V iL / A
4
1
4
1
iC / A uL / V
00
1 11
3
3
换路瞬间,uC、iL 不能跃变,但 iC、uL可以跃变。
第2章 电路的暂态分析
2.5 一阶电路暂态分析的三要素法
一阶电路:凡是含有一个储能元件或经等效简化 后含有一个储能元件的线性电路,在进行暂态分析 时,所列出的微分方程都是一阶微分方程式。
者在内部储能的作用下产生的电压和电流。
响应分类:
产生 原因
零输入响应 零状态响应
全响应
全响应 = 零输入响应 + 零状态响应
激励 波形
阶跃响应 ——阶跃激励
u
正弦响应 脉冲响应
0, t 0 U u(t) U , t 0 O
t
返回
下一节
上一页
下一页
第2章 电路的暂态分析
2.2 换路定律
电容电压、电感电流在换路瞬间不能突变。
+ u_c
R
R2 iL R3 + 2 i1
4
4
U
C
+ u_ L L
_ 8V

三要素法

三要素法

R1 R3
i
+ _U2
R2 uC
t =∞时等效电路
uC i R2 1.25 10 2 10 2.5V
3 3
(3)求时间常数 R1 S 1 2
+ U1_

R1
R3
+
i
uC
R3
i
+ _U2
R2 C
R2
C
U2_
t≥0时的等效电路
R0 ( R1 R3 ) / / R2 2 / /2 1kΩ
2. 稳态值
f ( ) 的计算
作出换路后 ( t ) 的等效电路(电容开路, 电感短路),求出 f ( )
求稳态值举例
t=0
+
t =0 4 kΩ
C
2
iL
3 L
4 kΩ
10V 3 kΩ
4mA 3
uc
10 uC ( ) 3 3 4 / /4 6V
3 iL ( ) 4 3 3 2mA
5. 由电路的初始值确定积分常数
1.7.2.2 三要素法 一. 求解一阶电路的公式 根据经典法推导的结果
t
uC ( t ) uC ( ) [uC (0 ) uC ( )]e

可得一阶电路微分方程的解的通用表达式
f (t ) f ( ) [f (0 ) f ( )] e
uC US USe
ቤተ መጻሕፍቲ ባይዱ

1 t RC
US (1 e )

t
3. 全响应:换路后,既有电源激励,储能元件 的初始状态又不为零时的电路响应。 t=0 1 S
US1

电路的暂态分析_一阶线性电路暂态分析的三要素法

电路的暂态分析_一阶线性电路暂态分析的三要素法
C uC(0+)电压源; L iL(0+)电流源 2.求稳态值f ()
在直流电源作用下, C 开路; L 短路。
第三章 电路的暂态分析
3.3 一阶线性电路暂态分析的三要素法
3.求时间常数
RC电路: =RoC
RL电路:
L
Ro
等效电阻Ro的求解方法 :
换路后将电路除源,从储能元件两端看进去的等效电阻。
t
f () e
三要素法
第三章 电路的暂态分析
3.3 一阶线性电路暂态分析的三要素法
3.3 一阶线性电路暂态分析的三要素法
一阶线性电路指只含有一个储能元件或者可以等效为一
个储能元件的电路。
一阶线性电路在恒定输入激励作用下,全响应的一般
表达式为:
f (t)
f () f (0 )
t
f () e
L uL 1H −
R1
R3
Is R2
iL(0-)
R1
R3
iL(0+)
+
Is
R2
−uL(0+)
第三章 电路的暂态分析
3.3 一阶线性电路暂态分析的三要素法
(2)求uL()
画t =时等效电路 ,uL() =0V
(3)求
3A Is
Ro R1 // R2 R3 2
L 1 0.5 s
Ro 2
Is
(4)求uL(t)
t
uL uL () [uL (0 ) uL ()] e
4e2t V (t 0)
R1 2
R2 2
R3
1 L
1H
+ −uL
R1
R3
+
R2

电工学:第9讲电路暂态分析之三要素法

电工学:第9讲电路暂态分析之三要素法

C
_
Page 36
6-36
解:第一阶段 (t = 0 ~ 20 ms,K:31) 初始值
3
K R1 1k
1
+ 3V
E1 _
R1
i
+i
+
2k 3μ +
R2
uC
C_
E1 _ 3V
R2
_uC
uC 0 uC 0 0 V
i0 E 3 mA R1
Page 37
6-37
第一阶段(K:31) 稳态值
2
1
R1
K R2
IS 3A t=0 2
R3 +
L 1H
uL
_
uL () 0 V
Page 32
R1
R3
R2
+
_ uL
t=时等 效电路
6-32
第三步:求时间常数
2
1
R1
K R2
IS
3A
t=0 2
R3
+
u L
1H
L
_
R R1 || R2 R3
L 1 0.5(s)
R' 2
Page 33
R1
uR
uL
t
Page 21
RL 电路的零输入响应
2 t=0 + uR-
+1 U-
S
R
L +-uiLL
(1) iL 的变化规律
iL iL () [iL (0 ) iL ()] e t (三要素公式)
1) 2) 3)
确定初始值 iL(0 ) iL(0 ) iL(0
确定稳态值iL() iL() 0

5.5 一阶电路的全响应和三要素法

5.5 一阶电路的全响应和三要素法
8
+
24V –
S(t=0)
4 iL 0.6H
解 (1)第一种方法 iL (0 ) iL (0- ) 24 / 4 6A L R 0.6 12 1 20s
零输入响应: iL (t) 6e-20tA
第8 页
8
+
24V –
S(t=0)
4 iL 0.6H
iL() 24 / 4+8 2A
全解为: uC(t) = uC' + uC"
特解 uC' = US t -
通解 uC Ae
由初始值定A uC (0-)=U0
uC (0+)=A+US=U0 A=U0 - US
-t
t
-
uC US Ae US (U0 - US)e t 0
= RC
第2 页
(3)全响应的两种分解方式
uC 2
0.667 0
t
第 16 页
例题 t=0时 ,开关闭合,求t >0后的iL 、 i1 、 i2
i1 +
10V –
5
5
iL
0.5H
i2 +
20V

解 iL 0 iL 0- 10 / 5 2A
iL 10 / 5 20 / 5 6A
L R 0.5 5 / /5 0.2s
i() 10 / 2 5A
u =0
i t 5 - 3.74e-2t-0.2 A
S1(t=0) 2 i u
+ 10V
-
3
S2(t=0.2s)
1
u
t
0
7.48
-
0
-
e

一阶电路暂态分析的三要素法

一阶电路暂态分析的三要素法

-t/RC
iC= -uC(t)/R
e t/ =-(US/R) - RC
ri = US / r
返回
例5、图示电路中U=20V,R=50KΩ,C=4μF,
u 1 2 1 在t=0时闭合S ,在T=0.1秒时闭合S ,试求S2闭合后的 C(t),并画出曲线,设S 闭合前 uC=0.
S1
解:S1闭合后:
u u C(0+)= C(0-)=0 uC(∞)= U = 20V
t = 6+(12-6)e-114 V t τ= [(R=16//+R62)e+-R131]4 ·CV=8.8×10-3s
返回
例4、图中电路原已稳定,求开关闭合后的 uC 和 iK 。
ir iC
r
u u 解:
( )= ( ) C 0+
C 0- = US
iK
uC(∞)= 0
+C
uC
-US
R
τ = RC uC(t)=USe
因此将初始值、稳态值、时间常数τ 称为一阶电路的三要素。
返回
二、求解一阶电路的三要素法
全响应= 稳态分量+暂态分量
用f (t)表示电路中的某一元件的电压或电流, f (∞)表示稳态值, f (0+)表示初始值,τ
为时间常数。
f (t)=f (∞)+Ae-t/τ
e f (t)=f (∞) +[ f (0+) -f (∞)] -t/τ
R2=3kΩ,R3=1kΩ,R=5kΩ ,E=10V,换路前处于
稳态,在t 线。
=
0时将S由1打向2uC,(V试) 求uC(t),画出曲
1 S R1
解:

电子电工技术第四章 电路的暂态过程分析

电子电工技术第四章 电路的暂态过程分析

设一阶线性电路中所求变量为 f (t) ,变量的初始值为 f (0 ) ,变量在过渡过程结束后的稳态值为 f () ,时间常
数为 ,则我们可直接写出全响应的表达式为
f (t)
f ' (t)
f "(t)
f () [ f (0 )
t
f ()]e
式中,f '(t) 和 f "(t) 分别表示全响应中对应齐次方程的解和对 应非齐次方程的特解。
uC
t
E(1 e
)
3(1
t
e 2106
)
3(1
e5105 t
)
三、RC电路的全响应
由电容元件的初始储能和外接激励共同作用所产生的电路
响应,称为RC电路的全响应。
在图示电路中,电容元件
已具有初始储能 uC (0 ) U0 <U S
当开关S在 t 0 时刻合向电路 ,根据KVL,列出t ≥ 0 的电路
0
从理论上讲电容二端的电压经过无限长时间才能衰减至零
,但在工程上一般认为换路后,经过4 ~ 5 时间过渡过程即结
束。如图所示曲线分别为 uC 、i 、uR 随时间变化的曲线。
uC,uR
i
U
uC
t
t
uR
-U
US R
例 4-3 在图中,开关S长期合在位置1上,当t 0 时把它
合在位置2上,求换路后电容元件上电压uC和放电电流 i 。
第一节 储能元件和换路定则
由于电路结构(例如电路的接通、断开、短路等)或参
数的变化而引起电路从一种状态转变到另一种状态称之为换路

当初始时刻无储能,电容、电感中储存的能量与任一时刻
电压与电流的关系为

电工电子技术基础知识点详解5-4-三要素法

电工电子技术基础知识点详解5-4-三要素法

试求电流 iL 和 i,并作出它们的变化曲线。
1 5V
i 1
2 5V
1
iL + 2 u_L 2H
【解】(1)求初始值
iL
(0
)
iL
(0
)
1
//
5 2
1
1
2
2
A
2
A
5
2
54 1
i(0 ) 1 2 A 1 2 iL (0 ) 3 A 3 A 3 A
应用三要素法得
t
5t
iL (t) iL () [iL (0 ) iL ()]e 2 A 4e 6 A
一阶电路瞬态分析三要素法
当电路中只含有一个储能元件(或能等效为一个储能元件)时,
描述电路的方程为一阶线性常微分方程,这种电路称为一阶电路。
一般表达式为
t
f (t) f () ( f (0 ) f ()) e
f (t) 为电压或电流,f () 为电路达到稳定状态时的稳态值,f (0 ) 为电路
(3)在 t 3tp 时间段,输出电压
u2 (3t p ) 4.75 V
u2() 0
应用三要素法
u2 (t) 4.75e105 (t 3t p ) V
u1
U
u 2 8.65V
0
tp
-U/2
3t p t
- 4.75V
输出电压u2 的变化曲线图
一阶电路瞬态分析三要素法
【例7.3】电路如图所示,在换路前已处于稳态,当开关从1位置合到2位置后,
i(t)
iL
(t)
i1 (t )
iL
(t)
u1 (t ) 2
iL
(t
)

电工技术第三章 电路的暂态分析习题解答

电工技术第三章 电路的暂态分析习题解答

第三章 电路的暂态分析含有电感或电容储能元件的电路,在换路时会出现暂态过程。

本章研究了暂态过程中电压与电流的变化规律。

主要内容:1.暂态过程的基本概念。

2.换路定则:在换路瞬间,电容电流和电感电压为有限值的情况下,电容电压 和电感电流在换路前后的瞬间保持不变。

3.RC 电路的零输入响应、零状态响应和全响应。

4.RL 电路的零输入响应、零状态响应和全响应。

5.一阶线性电路暂态分析的三要素法:一阶线性电路在直流激励下的全响应零、 输入响应和零状态响应都可以用三要素法τte f f f t f -+∞-+∞=)]()0([)()(来求出。

6.暂态过程的应用:对于RC 串联电路,当输入矩形脉冲,若适当的选择参数 和输出,可构成微分电路或积分电路。

[练习与思考]解答3-1-1什么是稳态?什么是暂态?解:当电路的结构、元件参数及激励一定时,电路的工作状态也就一定,且电流和电压为某一稳定的值,此时电路所处的工作状态就称为稳定状态,简称为稳态。

在含有储能元件的电路中,当电路的发生换路时,由于储能元件储的能量的变化,电路将从原来的稳定状态经历一定时间变换到新的稳定状态,这一变换过程称为过渡过程,电路的过渡过程通常是很短的,所以又称暂态过程。

3-1-2什么是暂态过程?产生暂态过程的原因是什么?解:含有储能元件的电路从一个稳态转变到另一个稳态的所需的中间过程称为电路的暂态过程(过渡过程)。

暂态过程产生的内因是电路中含有储能元件,外因是电路发生换路。

3-2-1 初始值和稳态值分别是暂态过程的什么时刻的值?解:初始值是暂态过程的+=0t 时刻的值,稳态值是暂态过程的∞=t 时刻的值。

3-2-2 如何求暂态过程的初始值?解:求暂态过程初始值的步骤为:⑴首先画出换路前-=0t 的等效电路,求出-=0t 时刻电容电压)0(-C u 和电感电流)0(-L i 的值。

对直流电路,如果换路前电路处于稳态,则电容相当于开路,电感相当于短路。

3一阶电路的过渡过程-暂态分析

3一阶电路的过渡过程-暂态分析

15:50
稳定状态:电路中电压、电流已达到稳定值,或者是 时间上的周期函数。 当一个稳态电路的结构或元件参数发生改变时, 电路原稳态被破坏而转变到另一种稳态所经历的过程, 称为电路中的过渡过程。由于过渡过程经历的时间很 短,所以又称为暂态过程或暂态。
电路暂态分析的内容
(1) 暂态过程中电压、电流随时间变化的规律。 (2) 影响暂态过程快慢的电路的时间常数。
S t=0
流等于零,这是一种稳态。 + 若开关在t = 0 时接通,
电路中的电流逐渐增加,

US
R L
UR UL
最终达到I=U/R,这是一种
稳态。
15:50
产生暂态过程的必要条件: (1) 电路中含有储能元件 (内因) (2) 电路发生换路 (外因) 换路: 电路状态的改变。如: 电路接通、切断、 短路、电压改变或参数改变 产生暂态过程的原因: 由于物体所具有的能量不能跃变而造成 在换路瞬间储能元件的能量也不能跃变
R1 U 4 U iL (0 ) 1A R1 R3 R R1 || R3 4 4 2 2
uC (0 ) R3 i L (0 ) 4 1 4 V
15:50
R 2
i i1
R1
R
2
+
_
U 8V
iC
+ u C 4 _
R2 4 C
iL + u _L
1
\ 时间常数 等于电压 uC衰减到初始值U0 的36.8 0 0
所需的时间。
15:50

uC
时 uC Ue
36.8
0 0
U
暂态时间: 理论上认为 t
t

2.1--2.3三要素法

2.1--2.3三要素法
f(∞): — 稳态值 f(0+): — 初始值 τ : — 时间常数

t
三要素
用三要素公式求解一阶电路的方法, 即为一阶电路暂态分析的三要素法。
2.3.2 三要素的求解方法
一、 初始值f(0+) 的计算
1、画t =0-时的等效电路,求uC(0-)和iL(0-)
t =0-时,电容等效为开路,电感等效为短路。 2、 根据换路定则,求uC(0+)和iL(0+) 3、 画t=0+时的等效电路,求其它初始值 t =0+时, 电容用恒压源uC(0+)代替; 电感用恒流源iL(0+)代替。 【例】 图示电路,换路前电路处于稳态,
1A iL (0 )
+
8V _ uC (0 ) _ 5V
+
= - 2V
结论
1.换路瞬间,uC、 iL 不能跃变, 但其它电量均可以跃 变。 2.换路前, 若储能元件没有储能, 换路瞬间(t=0+的等 效电路中),可视电容元件短路,电感元件开路。 3.换路前, 若uC(0-)0, 换路瞬间 (t=0+等效电路中), 电容元件可用一理想电压源替代, 其电压为uc(0+); 换路前, 若iL(0-)0 , 在t=0+等效电路中, 电感元件 可用一理想电流源替代,其电流为iL(0+)。
产生暂态过程的必要条件: (1) 电路中含有储能元件 (内因) (2) 电路发生换路 (外因)
换路: 电路状态的改变。如: duC 则 iC 电路接通、切断、 短路、电压改变或参数改变 dt 一般电路不可能! 产生暂态过程的原因: 由于物体所具有的能量不能跃变而造成 在换路瞬间储能元件的能量也不能跃变

第4章 一阶线性电路的暂态分析

第4章  一阶线性电路的暂态分析
表示换路后的初始瞬间。 换路定律:在 t 0 到 t 0 的换路瞬间,电容元件的 电压和电感元件的电流不能突变。即
uC (0 ) uC (0 ) iL (0 ) iL (0 )
含有储能元件的电路在换路时产生过渡过程的根本原因 是能量不能突变。由于电阻不是储能元件,因而纯电阻电路 不存在过渡过程。
US U 0 US 式中 L iL (t ) iL () [iL (0 ) iL ()]e ( )e R R R R (3)时间常数 (秒),或 L(秒) RC R 时间常数 影响动态电路的变化过程,反间越长,τ小则过渡过程时间越 短。
(1)直流电源激励的RC电路
图示电路,开关S原处于a端且已 稳定。在t=0时发生换路,开关S从a 端切换到b端。 由换路定律,有初始值
uC (0 ) uC (0 ) U 0
4(12)
第4章
一阶线性电路的暂态分析
当电路达到新的稳定状态时,有稳态值
uC () US
通过定性分析可知,当初始值大于稳 态值(U0>US)时,电容发生放电,如图 (b);当初始值小于稳态值(U0<US)时, 电容发生充电,如图(c)。电容电压uC(t)按
4(4)
第4章
一阶线性电路的暂态分析
4.1.2 动态电路初始值的确定 分析暂态过程的变化规律,首先要确定电路中待求量的 初始值。电路初始值的确定可按照以下步骤进行。
(1)由t=0-时的电路求uC(0-)或iL(0-)。
(2)由换路定律,有uC(0+)=uC(0-)、iL(0+)=iL(0-)。 (3)由t=0+的电路及uC(0+)或iL(0+)求其他待求电压、电流 的初始值。 注意:在换路瞬间, uC或iL不能突变,但电路中其他电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 电路及其分析方法
【例3.1】设:开关S闭合前L元件和C元件均未储能。 试:确定S闭合后电路中各电流与电压的初始值。 S R1 i R3 解:由t=0-的电路得: R2 i 2 + L uC(0-)=0 iC t =0 4 U 4 + + iL(0-) =0 6V u — L
C
由换路定则得: 独立初始值
-
t
0
零状态响应曲线
t
[小结]
1)直流一阶电路的零状态响应中,所有支路电压、电流均 从初始值开始按相同的指数规律变化,最后达稳态值。
2)达稳态值的快慢取决于时间常数。( =RC 或=GL) 3)当直流动态电路达到稳定状态时,电容相当于开路,电感相 当于短路。其等效电路为电阻性电路。 4)零状态线性:当输入增大倍,其零状态响应也增大倍。
根据KVL
充电储能过程 S 1
t=0 2
i + R uR – + C uC –
t
≥ 0时电路的微分方程为: +
duC U Ri uC RC uC dt

U
+补函数 uC 通解=特解 uC
特解取换路后的稳态值,即 uC uC ( ) U
duC uC 0 的通解 补函数是齐次微分方程 Rc dt
(三要素)
第3章 电路的暂态分析
3.1 储能元件和换路定则
3.2 一阶线性电路暂态分析的三要素法
3.1 储能元件和换路定则
动态元件:是指在电容元件和电感元件的电压和电流约束关系 是通过导数或积分来表达的。 稳态:是指电路的结构和参数一定时,电路中电压、电流恒定 或周期性变化。
换路发生很长时间后重新达到稳态。 换路:指电路接通、断开或结构和参数发生变化。 暂态:电路从一个稳定状态变化到另一个稳定状态所经过的过渡 状态。
1 S + – t=0 2
+ R u –R + L uL –
i
U
若S在1位置时,在t=0时将开关S合到2的位置。 电感初始储能为零,电路响应仅由外加电源引起,为RL电 路的零状态响应。 电路中外加激励为零,电路的响应是由电感的初始储能 引起的,故为RL电路的零输入响应。
一、零状态响应
设:S在2位置时C已放电完毕,在t=0时将开关S合到1的位置。 ⒈RC电路零状态响应
第三章
电路的暂态分析
第 3章
电路的暂态分析
第一章 讨论电路的基本概念和基本定律 。
如:电路模型、电压和电流的参考方向、基尔霍夫定律、 电源的工作状态及电路中电位的计算等。这些内容是分析与 计算电路的基础。
第二章 介绍几种常用的电路分析方法。
有:支路电流法、节点电位法、实际电源模型的等效变 换、叠加原理、和戴维宁定理。
Ae pt 形式为: uC
推导整理得:
uC零状态响应表达式:
t
1 S
稳态+暂态
i + R uR – + C uC –
t=0 2 +τ时间常数 --S U –
t
uc U Ue

U (1 e )

τ物理意义:
当t =τ时
决定电路暂态过程变化的快慢。 0.632U
u U 0
R3
U 6 i (0 ) ic (0 ) A 1A R1 R2 24
uL (0) R2iC (0 ) 4 1 V 4V
3.2 电路的暂态分析
1. 零状态响应
充电储能过程。
换路前动态元件未储存能量 ,即uc(0-)=0或iL(0-)=0 , 换路时,由电源激励所产生的电路响应。
第三章 讨论直流一阶电路的暂态分析。
介绍:用“三要素法”分析暂态过程。
直流一阶电路暂态过程的求解方法:
一阶电路: 描述电路的方程是一阶微分方程,仅含一个储能元件或可 等效为一个储能元件的线性电路。 求解方法: 1. 经典法:根据激励(电源电压或电流),通过求解电路的 微分方程得出电路的响应(电压和电流)。 初始值 2. 三要素法 求: 稳态值 时间常数
uC
零状态响应曲线
uc U (1 e1 ) 0.632 U
t
是电压uc增长到稳态值U的63.2%所需的时间。
2.RL 电路的零状态响应 根据KVL t0时电路微分方程为:
di U Ri L dt
1 S
+
i
+
t=0 2
R L
U–
– +
uR

uL
通解=特解 +补函数 推导整理得: τ时间常数--S uC零状态响应表达式:
y(t ) y(0 )e

t

二、零输入响应
U iL (1 e ) R t
L R
稳态+暂态
iL零状态响应表达式:
U iL (1 e ) R t
1 S + U –
t=0
i 2
+ R uR – + L uL –
i 此时,通过电感的电流iL由初始值I0向稳态值零衰减,其随 U 时间变化表达式为: R i
i I 0e
2. 零输入响应
放电释能过程。
换路前动态元件已储存能量,换路时,无电源激励,输 入信号为零 。由初始储能引起的的电路响应。 3. 全响应 指电源激励和动态元件的初始储能引起的均不为零时的 电路响应。 即:是零状态响应与零输入响应两者的叠加。
电路的暂态分析
若S在2位置时,在t=0时将开关S合到1的位置。

C
uL

uC(0+)=0 iL (0+) =0
电容元件短路。 电感元件开路
t=0-
则:画出t=0+时的等效电路
第一章 电路及其分析方法 由t=0+的等效电阻电路 求出各独立初始值 +

R1
2
i (0+)
iC (0+)
U
6V
R2 i L 4 (0+) + + uC(0+) uL(0+) — — t=0+
先讨论暂态过程产生的原因---动态元件、换路定律。
后讨论暂态过程中电压、电流随时间变化的规律。
3.1 储能元件和换路定则
含有储能元件的电路,在换路瞬间储能元件的能量 不能跃变,即: 电容元件的储能 电感元件的储能
WC 1 2 CuC 2
不能跃变
WL
1 2 LiL 2
不能跃变
换路瞬间:设为 t=0。 换路前终了瞬间:以 t=0–表示。 换路后初始瞬间:以 t=0+表示。 在直流电路换路瞬间,电容电压保持不变,电感电流保持不变。 换路定则: iL(0+)= iL(0–) uC(0+)= uC(0–) 状态变量 iL、uC 独立初始值 iL(0+)、uC(0+)
相关文档
最新文档