对数函数PPT教学课件
合集下载
4.4 对数函数及其性质 课件【共13张PPT】
x
a)
是奇函数,
求f(x)<0的解集.
{x | 1 x 0}
巩固练习
5.已知 loga(3a-1)恒为正,求 a 的取值范围.
解:由题意知 loga(3a-1)>0=loga1. 当 a>1 时,y=logax 是增函数, ∴33aa--11>>10,, 解得 a>23,∴a>1; 当 0<a<1 时,y=logax 是减函数, ∴33aa--11<>10,, 解得13<a<23.∴13<a<23. 综上所述,a 的取值范围是13,32∪(1,+∞).
(2)若函数 f(x)的最小值为-4,求 a 的值.
解:(1)要使函数有意义,则有1x-+x3>>00,, 解得-3<x<1,所以函数的定义域为(-3,1).
(2)函数可化为:f(x)=loga(1-x)(x+3)=loga(-x2-2x+3) =loga[-(x+1)2+4],
因为-3<x<1,所以 0<-(x+1)2+4≤4.
[解] (1)由 loga12>1 得 loga12>logaa. ①当 a>1 时,有 a<21,此时无解; ②当 0<a<1 时,有12<a,从而12<a<1.∴a 的取值范围是12,1.
(2)∵函数 y=log0.7x 在(0,+∞)上为减函数,
2x>0, ∴由 log0.7(2x)<log0.7(x-1),得x-1>0,
则x1+ -1x> >00, , 即-1<x<1,所以 F(x)的定义域为{x|-1<x<1}. (2)F(x)=f(x)-g(x),其定义域为(-1,1),且 F(-x)=f(-x)-g(-x) =loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-F(x),所 以 F(x)是奇函数.
《对数函数及其性质》课件
THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用
。
《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时
。
对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。
对数函数及其性质课件ppt
统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。
对数函数(汇报课)课件
挑战练习题3
请计算log(5) (125)。
挑战练习题2
请计算log(3) (27)。
挑战练习题4
请计算log(6) (729)。
感谢观看
THANKS
总结词
对数函数图像与指数函数图像的关系
详细描述
对数函数和指数函数互为反函数,它们的图像关于直线 y=x对称。因此,可以通过指数函数的图像得到对数函数 的图像。
对数函数的单调性
总结词
对数函数的单调性判定
详细描述
对于底数大于1的对数函数,它在定义域内是单调递增的 ;对于底数在(0,1)之间的对数函数,它在定义域内是单调 递减的。
总结词
对数函数单调性的应用
详细描述
单调性在对数函数的应用中非常重要,例如在解决不等式 问题、求最值问题以及解决一些实际问题中都有广泛的应 用。
总结词
如何利用对数函数的单调性解题
详细描述
利用对数函数的单调性可以简化不等式的解法,也可以通 过求导等方式来求解最值问题。同时,在解决一些实际问 题时,也可以利用对数函数的单调性来简化问题的求解过 程。
基础练习题3
请计算以5为底7的对数。
基础练习题4
请计算以6为底8的对数。
进阶练习题
进阶练习题1
请计算log(2) (32)。
进阶练习题2
请计算log(3) (9)。
进阶练习题3
请计算log(5) (25)。
进阶练习题4
请计算log(6) (36)。
挑战练习题
挑战练习题1
请计算log(2) (8)。
对数函数的奇偶性
总结词
对数函数的奇偶性判定
详细描述
对于底数为正数的对数函数,它是非奇非偶函数;对于 底数为负数的对数函数,它是奇函数。
请计算log(5) (125)。
挑战练习题2
请计算log(3) (27)。
挑战练习题4
请计算log(6) (729)。
感谢观看
THANKS
总结词
对数函数图像与指数函数图像的关系
详细描述
对数函数和指数函数互为反函数,它们的图像关于直线 y=x对称。因此,可以通过指数函数的图像得到对数函数 的图像。
对数函数的单调性
总结词
对数函数的单调性判定
详细描述
对于底数大于1的对数函数,它在定义域内是单调递增的 ;对于底数在(0,1)之间的对数函数,它在定义域内是单调 递减的。
总结词
对数函数单调性的应用
详细描述
单调性在对数函数的应用中非常重要,例如在解决不等式 问题、求最值问题以及解决一些实际问题中都有广泛的应 用。
总结词
如何利用对数函数的单调性解题
详细描述
利用对数函数的单调性可以简化不等式的解法,也可以通 过求导等方式来求解最值问题。同时,在解决一些实际问 题时,也可以利用对数函数的单调性来简化问题的求解过 程。
基础练习题3
请计算以5为底7的对数。
基础练习题4
请计算以6为底8的对数。
进阶练习题
进阶练习题1
请计算log(2) (32)。
进阶练习题2
请计算log(3) (9)。
进阶练习题3
请计算log(5) (25)。
进阶练习题4
请计算log(6) (36)。
挑战练习题
挑战练习题1
请计算log(2) (8)。
对数函数的奇偶性
总结词
对数函数的奇偶性判定
详细描述
对于底数为正数的对数函数,它是非奇非偶函数;对于 底数为负数的对数函数,它是奇函数。
对数函数的性质与图象ppt课件
D)
C. (1, 4)
D. (4, )
解析:令 t x2 3x 4 0 ,解得 x 4 或 x 1 .由于函数 t x 2 3x 4 在 (, 1)
上单调递减,在 (4, ) 上单调递增,且 y ln t 在 (0, ) 上单调递增,所以
2
> 0 ,即 ≠ 0,
在 GeoGebra 中,只要输入对数函数的表达式,就可以得到对应的图象,如图
所示是用 GeoGebra 作出的 ( ) = log2 , ( ) = log1 ,
ℎ( ) = log0.3 , ( ) = ln ,
2
( ) = lg 的图象,你能从中得出什么规律吗?
事实上 ,利用指 数运算和对 数运算的关 系,可以把 上述关系式 改写为
x log
1
1 5 730
2
示为 y log
y ,如果仍用 x 表示自变量,y 表示因变量,那么这一函数关系可以表
1
1 5 730
2
x ,其中自变量在真数的位置上,我们称这样的函数为对数函数.
.
根据以上信息可知,函数 y=log2x 的图
象都在 y 轴右侧,而且从左往右图象是逐渐
上升的. 通过描点,可以作出函数 y=log2x
的图象,如图所示.
下面我们来研究对数函数 y log 1 x 的性质与图象.
2
注意到 y log 1 x log 21 x log 2 x ,因此不难看出 y log 1 x 和 y log 2 x 之间
1
log2 a 2 ,即 2 log 2 a 2 ,解得 a 4 .故选 D.
《对数函数》PPT课件
(2)值域为R, 求a的取值范围
例1:求函数
y
(log
1 2
x)2
1 2
log 1
2
x
5
的值域
练:求函数 y (log 2x)2 2 log 2 x 1的值域
例1:求函数 f (x) log1 (x2 9) 的单调区间
3
例2:已知函数y log 1 (x2 ax a) 在区间 (, 2) 上是增函数,求实
数a的取值范围
2
例3:已知函数 y loga (2 ax) 在【0,1】上是关于x的减函数,则实数
a的取值范围是:
练1:求函数 f (x) log 2 (x2 x 2) 的单调区间
2:已知 y log1 (x2 ax 3a) 在区间 (2,)上是减函数,则a的取值范围
为:
3
3:函数 y log a (ax 3) 在【1,3】上单调递增,则a的取值范围为:
比较下列各组数的大小:
1. log 0.5 6与log 0.5 4 2. log6 4与log7 4
3. log3 2与log2 0.8 4. log3 5与log5 3
5.
a
log 3
2, b
log 3
1 2
,
c
1
32
6.
a
1
23
,b
log
1 4
1 5
,c
log 3
1 4
1.函数 f (x) lg( x2 1) 是( )函数
已知定义在R上的函数 f (x) 2 xm 1(m为
实数)为偶函数,记
a f (log 0.5 3) b f (log 2 5) c f (2m)
则a,b,c的大小关系为:
例1:求函数
y
(log
1 2
x)2
1 2
log 1
2
x
5
的值域
练:求函数 y (log 2x)2 2 log 2 x 1的值域
例1:求函数 f (x) log1 (x2 9) 的单调区间
3
例2:已知函数y log 1 (x2 ax a) 在区间 (, 2) 上是增函数,求实
数a的取值范围
2
例3:已知函数 y loga (2 ax) 在【0,1】上是关于x的减函数,则实数
a的取值范围是:
练1:求函数 f (x) log 2 (x2 x 2) 的单调区间
2:已知 y log1 (x2 ax 3a) 在区间 (2,)上是减函数,则a的取值范围
为:
3
3:函数 y log a (ax 3) 在【1,3】上单调递增,则a的取值范围为:
比较下列各组数的大小:
1. log 0.5 6与log 0.5 4 2. log6 4与log7 4
3. log3 2与log2 0.8 4. log3 5与log5 3
5.
a
log 3
2, b
log 3
1 2
,
c
1
32
6.
a
1
23
,b
log
1 4
1 5
,c
log 3
1 4
1.函数 f (x) lg( x2 1) 是( )函数
已知定义在R上的函数 f (x) 2 xm 1(m为
实数)为偶函数,记
a f (log 0.5 3) b f (log 2 5) c f (2m)
则a,b,c的大小关系为:
对数函数PPT课件
04 对数函数与其他函数的比 较
与指数函数的比较
指数函数和对数函数是互为反函数, 它们的图像关于直线y=x对称。
当a>1时,指数函数和对数函数都是 增函数,但它们的增长速度不同,对 数函数的增长速度更慢。
指数函数y=a^x(a>0且a≠1)的图 像总是经过点(0,1),而对数函数 y=log_a x(a>0且a≠1)的图像则 总是经过点(1,0)。
对数函数和三角函数的应用领域也不同。对数函数主要用于解决与对数运算相关的问题,如 对数的换底公式、对数的运算性质等;而三角函数则主要用于解决与三角形的边角关系、周 期性等问题相关的问题。
05 对数函数的学习方法与技 巧
学习方法
1 2 3
理解对数函数的定义
首先需要理解对数函数的基本定义,包括对数函 数的定义域、值域以及其变化规律。
对数函数ppt课件
目录
• 对数函数的定义与性质 • 对数函数的运算性质 • 对数函数的应用 • 对数函数与其他函数的比较 • 对数函数的学习方法与技巧
01 对数函数的定义与性质
定义
自然对数
以e为底的对数,记作lnx,其中e是自然对数的底数,约等于 2.71828。
常用对数
以10为底的对数,记作lgx。
当0<a<1时,指数函数和对数函数都 是减函数,但它们的下降速度也不同, 对数函数的下降速度更快。
与幂函数的比较
幂函数y=x^n(n为实数)的图像在 第一象限和第三象限都存在,而对数 函数y=log_a x(a>0且a≠1)的图像 只存在于第一象限。
幂函数的增长速度与指数和对数函数 不同,当n>0时,幂函数的增长速度 比对数函数更快;当n<0时,幂函数 的增长速度比对数函数更慢。
人教A版必修第一册4.4对数函数的概念(教学课件)
函数的定义域是(0,+)
。
①底数a为大于0且不等于1的常数.
②自变量x在真数的位置上,且x的系数是1.
③logax系数是1.
1. 对数函数的定义域
典例
例1.求下列函数的定义域:
(1)y log 3 x 2
(2)y log a (4 x) (a 0, 且a 1).
解:
(1) x 2 0 x 0
( x 0)得到
2
x = log
5730
1
2
y (0 < y 1)
如图,过y轴正半轴上任意一点
(0,y0) (0< y0 ≤1)作x轴的平行
线,与函数
x
1 5730
y=( )
( x 0)
2
y
1
y0
( x0,y0 )
O
的图象有且只有一个交点(x0 , y0) .
这说明,对于任意一个y∈(0 , 1],通过对应关系
x=loga y(a>0且a≠1),
x也是y的函数. 通常,我们用x表示自变量,y
表示函数.
为此,将x=loga y(a>0且a≠1)中的字母x和y
对调,写成
y=loga x (a>0且a≠1).
定义:一般地,形如 y log a x(a 0, 且a 1) 的函数
叫做对数函数,其中x是自变量,
所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1m/s.
3.大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以
1
2
表示为函数 = 3
,单位是/,是表示鱼的耗氧量的单位数.
100
(2)某条鲑鱼想把游速提高1/,那么它的耗氧量的单位数是本来的多少倍?
。
①底数a为大于0且不等于1的常数.
②自变量x在真数的位置上,且x的系数是1.
③logax系数是1.
1. 对数函数的定义域
典例
例1.求下列函数的定义域:
(1)y log 3 x 2
(2)y log a (4 x) (a 0, 且a 1).
解:
(1) x 2 0 x 0
( x 0)得到
2
x = log
5730
1
2
y (0 < y 1)
如图,过y轴正半轴上任意一点
(0,y0) (0< y0 ≤1)作x轴的平行
线,与函数
x
1 5730
y=( )
( x 0)
2
y
1
y0
( x0,y0 )
O
的图象有且只有一个交点(x0 , y0) .
这说明,对于任意一个y∈(0 , 1],通过对应关系
x=loga y(a>0且a≠1),
x也是y的函数. 通常,我们用x表示自变量,y
表示函数.
为此,将x=loga y(a>0且a≠1)中的字母x和y
对调,写成
y=loga x (a>0且a≠1).
定义:一般地,形如 y log a x(a 0, 且a 1) 的函数
叫做对数函数,其中x是自变量,
所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1m/s.
3.大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以
1
2
表示为函数 = 3
,单位是/,是表示鱼的耗氧量的单位数.
100
(2)某条鲑鱼想把游速提高1/,那么它的耗氧量的单位数是本来的多少倍?
对数函数PPT课件
习
2
2.作出下列函数的图像并判断它们在 (0,) 内的单调性.
(1) y log3 x ;
(2) y log1 x .
3
智利的复活节岛上矗立着600多尊巨人石像,石像一般高7—10米, 重达30—90吨,都是由整块的暗红色火成岩雕凿而成的.美国科学家在 科考中使用的是“放射性碳年代鉴定法”进行考察与研究。
2
演示
1.函数图像都在 y 轴的 ,
2.函数图像都经过点
;
3.函数 y log2 x 的图像自左至右呈
函数 y log1 x 的图像自左至右呈
2
趋势; 趋势.
整体建构 理论升华
对数函数 y loga x a<0且a 1 具有下列性质:
1 函数的定义域是 (0, ) .值域为, ;
2
函数图像经过点(1,0);
. .
运用知识 强化练习
练习4.4.1
1.选择题
(1)若函数 y loga x 的图像经过点 2, 1 ,则底 a =( ).
练
A 2 B −2
C1 2
D 1 2
(2) 下列对数函数在区间(0,+ )内为减函数的是( ).
A y lg x B y log1 x C y ln x D y log2 x
设该物质最初的质量为 1,衰变 x 年后,该物质残留一半,则
0.84x 1 , 2
于是
x
log
0.84
1 2
≈4(年).
即该物质的半衰期为 4 年.
巩固知识 典型例题
例 碳-14的半衰期为5730年,古董市场有一幅达·芬奇的 绘画,测得其碳-14的含量为原来的94.1%,根据这个信息, 请你从时间上判断这幅画是不是赝品.
4.4 对数函数(教学课件)——高中数学人教A版(2019)必修第一册(共38张PPT)
解:
(1)根据对数的运算性质,有
pH
lg[H
]
lg[H
] 1
lg
1 [H
]
.在
(0,
)
上,随着
[H
]
的增大,
1 [H
]
减小,相应地,
lg
1 [H
]
也减小,即
pH
减小.所以,随着[H
]
的
增大,pH 减小,即溶液中氢离子的浓度越大,溶液的酸性就越强.
(2)当[H] 10 7 时, pH lg10 7 7 .所以,纯净水的 pH 是 7.
对数函数的图像和性质
0 a 1
a 1
图象
定义域 值域
单调性 过定点
(0, )
R
减函数
增函数
过定点 (1,0) ,即 x 1 时, y 0
例 3 比较下列各题中两个值的大小: (1) log2 3.4 , log2 8.5 ; (2) log0.3 1.8 , log0.3 2.7 ; (3) loga 5.1 , loga 5.9 (a 0 ,且 a 1) .
例 2 假设某地初始物价为 1,每年以5% 的增长率递增,经过 t 年后的物价为 w .
(1)该地的物价经过几年后会翻一番? (2)填写下表,并根据表中的数据,说明该地物价的变化规律.
物价 w
1 2 3 4 5 6 7 8 9 10
年数 t
0
解:
(1)由题意可知,经过 t 年后物价 w 为 w (1 5%)t ,即 w 1.05t (t [0, )) .由对
4.4 对数函数
学习目标
1.了解对数函数的概念 2.了解对数函数的单调性和特殊点 3.了解指数函数和对数函数互为反函数
对数函数的图象和性质PPT教学课件
上单调递减。
函数值 若a>1, x>1则y>0
变化
若a>1, 0<x<1则 y<0
若0<a<1, 0<x<1则y>0 若0<a<1, x>1则y<0
四.例题
例1 求下列函数的定义域。
(1.)y loga x2 (2.)y loga (4 x)
问题一:
在同一直角坐标系中,指数函数y=ax 和对数函数y=logax的图像在底数
2、整理相关资料,编写历史专刊。 3、在班级、年级或全校的橱窗中展示活动成 果。电子版可以发布在校园网或互联网上。
1.下列青铜器中,不属于“三星堆文化”的是 A A.司母戊鼎 B.大型青铜立人像 C.青铜神树 D.青铜面具
2.商朝是我国青铜艺术的鼎盛时期,那时的青 铜器的代表是 AC A.司母戊鼎 B.妇好墓出土的象牙杯 C.四羊方尊 D.湖北随州出土的编钟
0<a<1的条件下是否相交?
在同一直问角题坐二标系中,指数函数
y=ax和对数函数y=logax在底数a > 1的
条件下是否相交?
下课后总结好指数函数与对数函数的图象特征
小结
• 掌握对数函数的概念 • 理解,还要会应用对数函数的
图象和性质 • 要培养数形结合的意识
第2单元 国家的产生和社会的变革
2
列表:
y=log 1 x = - log 2 x
2
x
…. ½ 1
2
4
8 ….
log x2 … -1 0 1 2 3 …..
log 1
x …
1
0
2
-1 -2
-3 ….
第6讲 对数与对数函数 课件(共82张PPT)
解析 由 alog34=2 可得 log34a=2,所以 4a=9,所以 4-a=19,故选 B.
解析 答案
2.已知 a>0,a≠1,函数 y=ax 与 y=loga(-x)的图象可能是( )
解析 若 a>1,则 y=ax 是增函数,y=loga(-x)是减函数;若 0<a<1, 则 y=ax 是减函数,y=loga(-x)是增函数,故选 B.
且 a≠1)互为反函数,它们的图象关于直线 10 ___y_=__x___对称.
1.对数的性质(a>0 且 a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.换底公式及其推论 (1)logab=llooggccba(a,c 均大于 0 且不等于 1,b>0); (2)logab·logba=1,即 logab=log1ba(a,b 均大于 0 且不等于 1); (3)logambn=mn logab; (4)logab·logbc·logcd=logad.
增区间.
∵当 x∈(4,+∞)时,函数 t=x2-2x-8 为增函数,
∴函数 f(x)的单调递增区间为(4,+∞).故选 D.
解析 答案
6.计算:log23×log34+( 3)log34=________. 答案 4 解析 log23×log34+( 3)log34 =llgg 32×2llgg32+3 log34=2+3log32=2+2=4.
8 5
<lg152·lg
3+lg 2
82=
lg
3+lg 2lg 5
82=llgg
22452<1,∴a<b.由
b=log85,得
8b=5,由
55<84,得
85b
<84,∴5b<4,可得 b<45.由 c=log138,得 13c=8,由 134<85,得 134<135c,
对数课件(共18张PPT)
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
对数函数课件(共19张PPT)
即约经过4年,该放射性物质的剩留量是原来的一 半.
在②式中,对应任意一个“剩留量y”,都可求出 唯一的“经过的年数x",如果以“剩留量”作为自变量, 则依函数的定义,“经过的年数”与“剩留量”之间具 有函数关系.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
情感目标 通过本节课学习,使学生,提升学生数学的直观想象、数学抽象、数学运算、 数学建模的核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
通常我们用x表示自变量,用y表示因变量,于是上 述的函数关系,可表示为
x=log0.84y· 一般地,函数
y=logax(a>0,且a≠1,x>0). 称为对数函数.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
一般地,对数函数 y=logax(a>0,且a≠1)
具有下列性质: (1)定义域是(0,+∞),值域是R; (2)当x=1时,y=0,即函数的图象都经过点(1,0); (3)在其定义域内,当a>1时这个函数是增函数,
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.4 对数函数
人民教育出版社
第四章 指数函数与对数函数 4.2.4 对数函数
在②式中,对应任意一个“剩留量y”,都可求出 唯一的“经过的年数x",如果以“剩留量”作为自变量, 则依函数的定义,“经过的年数”与“剩留量”之间具 有函数关系.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
情感目标 通过本节课学习,使学生,提升学生数学的直观想象、数学抽象、数学运算、 数学建模的核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
通常我们用x表示自变量,用y表示因变量,于是上 述的函数关系,可表示为
x=log0.84y· 一般地,函数
y=logax(a>0,且a≠1,x>0). 称为对数函数.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
一般地,对数函数 y=logax(a>0,且a≠1)
具有下列性质: (1)定义域是(0,+∞),值域是R; (2)当x=1时,y=0,即函数的图象都经过点(1,0); (3)在其定义域内,当a>1时这个函数是增函数,
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.4 对数函数
人民教育出版社
第四章 指数函数与对数函数 4.2.4 对数函数
对数函数概念课件
ln(e)
由于e的底数等于e,所以ln(e) = 1。
logₐ(b)
当a > 1且b > 0时,logₐ(b)是 正数。具体数值取决于a和b的值
。
答案及解析
2. 下列各式中正确的是
log₂(4) = 2 和 log₂(8) = 3 是正确的。其他两 个是错误的。因为2的平方是4,而3次方是8。 但2的四次方是16,不是16。同样,32也不是2 的5次方。
对于每个函数,定义域是使函数内部大于0的x值范围。例如,对于y = log₂(x - 2),需 要x - 2 > 0,即x > 2。对于其他函数也有类似的要求。
6. 下列各式中,对数式正确的是
根据对数的定义和性质来判断。例如,2^(log₂(x))确实等于x,因为如果log₂(x)是y, 那么2的y次方就是x。其他选项可以通过类似的逻辑来判断是否正确。
logₐ(a^b) = b (a > 1) 若 ln x = n,则 x = _______.
答案及解析
01Байду номын сангаас
基础练习题答案及解析
02
1. 计算下列函数值
03
log₂(4): 由于2的平方等于4,所以log₂(4) = 2。
答案及解析
log₁₀(0.001)
由于10的负三次方等于0.001, 所以log₁₀(0.001) = -3。
有应用。
05
对数函数的图像和 性质
对数函数的图像
总结词
对数函数的图像是单调递增或递减的,取决于底数的大小。
详细描述
对数函数的图像通常在第一象限和第四象限内。当底数大于1时,函数图像是单调递增的;当底数在0 到1之间时,函数图像是单调递减的。对数函数的图像还可以通过绘制对数函数图来观察其变化趋势 和特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37
3画侧棱.过A,B,C,D,各点分别作z轴的平行线,并在这些平行线
上分别截取2cm长的线段AA,BB,CC,DD.
Z
D
C y
A
B
M D O Q NC x
AP B
38
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
Z
D
C y
A
B
M D O Q NC x
例1:求下列函数的定义域:
①y=logax2 ②y=loga(4-x) ③y=loga(9-x2) 分析:此题主要利用对数函数y=logax的定义域 为(0,+∞)求解。
解:①因为x2 >0,即x≠0,
所以函数y=logax2 的定义域是{x│x≠0} ②因为4-x>0,即x<4,
所以函数y=loga(4-x)的定义域是{x│x<4} ③因为9-x2>0,即-3<x<3,
2以O为中心,在X上取AD=AD,在y轴上取
MN= 1 MN.以点N为中心,画BC平行于x轴, 2
并且等于BC;再以M为中心,画EF平行于x轴,
并且等y于EF.
ME
A
O Dx
y
F M E
A
O
D x
B N C
B NC 29
例1.用斜二测画法画水平放置的六边形 的直观图
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
xOz 90 .
Z
y
O
x
36
2画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在
轴上取线段PQ,使PQ=1.5cm;分别过点M 和N作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
D QC
MO N x
AP B
22
3、 说出下面的三视图表示的几何体的结 构特征.
23
4、根据几何体的三视图,还原成几何体。
24
对于柱体、锥体、台体及简单的组合 体,在平面上应怎样作图才具有强烈的 立体感?这涉及空间几何体的直观图的 画法问题.
25
1.2空间几何体的直观图
26
知识探究
探究1、画一个水平放置的平面图形的直 观图.
y
D
C
y′ C′
D′
A
Bx
A′
B′ x′
27
例1.用斜二测画法画水平放置的六边形的 直观图。
1 在六边形ABCDEF中,取AD所在的直线为X轴,
对称轴MN所在直线为Y轴,两轴交于点O。画相应
的X轴和Y轴,两轴相交于点O,使xOy=45
y
y
F ME
A
O Dx
O
x
B NC
28
例1用斜二测画法画水平放置的六边形的直观图
a>1
0<a<1
图
象 当0<x<1时,y<0
当0<x<1时,y>0
当x=1时,y=0
当x=1时,y=0
当x>1时,y>0
当x>1时,y<0
性 ⑴定义域(: 0,+∞)
⑵值域:R
质 ⑶过特殊点:过点(1,0),即x=1时y=0 ⑷单调性 :在(0,+∞)上是增函数 ⑷单调性:在(0,+∞)上是减函数
五、应用举例:
2001年10月23日
学习目标:
1、理解对数函数的概念; 2、掌握对数函数的图象和性质; 3、数形结合意识的继续加强。
重点、难点:
重点是对数函数的图象和性质; 难点是对数函数与指数函数的联系。
一、前提诊测:
1、对数的定义:
一般地,若ab=N(a>0,a≠1),则数b就叫 做以a为底N的对数,记做logaN=b
1 1 3x
的定义域为{x∣x<
1
3}
⑷因为x>0且 log3 x ≥0
所以函数 y log3 x 的定义域为{x∣x≥1}
通过本节课的学习,大家应逐 步掌握对数函数的图象和性质, 并能利用对数函数的性质解决 一些简单问题,如求对数形式 的复合函数的定义域问题。
1预习内容: 预习提纲:①同底数的两个对数如 何比较大小?
y (1)x
y
2
y=x
先画 y (1 )x 的图象
2
x
y=log x
对数函数y=log x的图象
y (1)x
y
2
y=x
x
y=log x
y=logax(a>1)的图象
y=logax(0<a<1)的图象
一般地,对数函数y=logax在a>1及0<a<1这两种情 况下的图象和性质如下表所示:
练习:已知一个几何体的三视图如下, 这个几何体的结构特征如何?试用斜二 测画法画出它的直观图.
正视图 侧视图 俯视图
z
y′
A′
B′
o′
x′
y
A
oB x
42
练习:如图,一个平面图形的水平放置 的斜二测直观图是一个等腰梯形,它的 底角为45°,两腰和上底边长均为1, 求这个平面图形的面积.
D
C
D
C
A
(2)已知图形中平行于x轴或y轴的线段,在直观图中
分别画成平行于x′轴或y′轴的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持
原长度不变;平行于y轴的线段,长度取半.
31
斜二测画法的基本步骤: (1)建坐标系,定水平面; (2)与坐标轴平行的线段保持平行; (3)水平线段等长,竖直线段减半.
三、对数函数的定义:
函数y=logax(a>0,a≠1)叫做对数函数
需注意的几点:
①对数函数y=logax和指数函数y=ax互为反函数 ②对数函数的解析式可由指数函数求反函数得到
③对数函数的定义域、值域也就是指数函数的 值域、定义域
想一想:对数函数的定义域和值域分别是什么?
因为指数函数的定义域是R
相同性质:都位于y轴右方,都经过点(1,0), 这说明这两个函数的定义域都是(0,+∞), 且x=1时y=0
不同性质:y=log3x的图象是上升的曲线, y=log x的图象是下降的曲线,这说明前者在 (0,+∞)是增函数,后者在(0,+∞)是减 函数。
2、求下列函数的定义域:
⑴ y log5(1 x) ⑵ y
32
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
y
CEG
A O B
x
DFH
33
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
34
知识探究(二):空间几何体的直观图的画法
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体的直观图.
35
1画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
值域是(0,+∞)
所以对数函数的定义域是(0,+∞) 值域是R
四、对数函数的图象和性质 对数函数y=log2x的图象
y y 2x y=x
y log2 x
x
先画y=2x的图象
对数函数y=log2x的图象
y y 2x
y=x
y log2 x
x
四、对数函数的图象和性质
对数函数y=log x的图象
B
A
B
S 2 2
43
作业:
P19练习:2,3(做书上); P21习题1.2A组:4,5.
44
问题2:某种细胞分裂时,由1个分裂为2个,2个分 裂为4个……如果要求这种细胞经过多少次分裂,大约 可以得到1万个,10万个……细胞,那么分裂次数x就 是要得到的细胞个数y的函数。由对数的定义,这个
函数可以写成:X=log2y
变化过程:Y=2x
X=log2y
Y=log2x
结论:函数y=log2x和指数函数y=2x互为反函数
2、求函数y=2x+1的反函数。
y 2x 1
x y 1 2
y x 1 2
3、互为反函数的两个函数的图象有什么 关系?
关于直线y=x对称
二、对数函数的引入:
问题1:某种细胞分裂时,由1个分裂为2个,2个 分裂为4个……1个这样的细胞分裂x次后,得到的
细胞个数设为y,则y与x的函数关系式为:Y=2x
所以函数y=loga(9-x2)的定义域是{x│-3<x<3}
六、课堂练习: 1、画出函数y=log3x及y=log x的图象,并且 说明这两个函数的相同性质和不同性质。
y=log3x
y=log x
yx
y=log3x
yx
y=log x
六、课堂练习: 1、画出函数y=log3x及y=log x的图象,并且 说明这两个函数的相同性质和不同性质。
AP B
39
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
A
D
A
C
B
C
B
40
练习:怎样画底面是正三角形,且顶点 在底面上的投影是底面中心的三棱锥?
C
A
B
zS
y C
M
A
o B xA
S C B
画轴 → 画底面 → 画侧棱 → 成图
41
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F ME
A
O Dx
3画侧棱.过A,B,C,D,各点分别作z轴的平行线,并在这些平行线
上分别截取2cm长的线段AA,BB,CC,DD.
Z
D
C y
A
B
M D O Q NC x
AP B
38
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
Z
D
C y
A
B
M D O Q NC x
例1:求下列函数的定义域:
①y=logax2 ②y=loga(4-x) ③y=loga(9-x2) 分析:此题主要利用对数函数y=logax的定义域 为(0,+∞)求解。
解:①因为x2 >0,即x≠0,
所以函数y=logax2 的定义域是{x│x≠0} ②因为4-x>0,即x<4,
所以函数y=loga(4-x)的定义域是{x│x<4} ③因为9-x2>0,即-3<x<3,
2以O为中心,在X上取AD=AD,在y轴上取
MN= 1 MN.以点N为中心,画BC平行于x轴, 2
并且等于BC;再以M为中心,画EF平行于x轴,
并且等y于EF.
ME
A
O Dx
y
F M E
A
O
D x
B N C
B NC 29
例1.用斜二测画法画水平放置的六边形 的直观图
3 连接AB,CD,EF,FA,并擦去辅助线x轴和y轴,
xOz 90 .
Z
y
O
x
36
2画底面.以O为中心,在x轴上取线段MN,使MN= 4 cm;在
轴上取线段PQ,使PQ=1.5cm;分别过点M 和N作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
Z
y
D QC
MO N x
AP B
22
3、 说出下面的三视图表示的几何体的结 构特征.
23
4、根据几何体的三视图,还原成几何体。
24
对于柱体、锥体、台体及简单的组合 体,在平面上应怎样作图才具有强烈的 立体感?这涉及空间几何体的直观图的 画法问题.
25
1.2空间几何体的直观图
26
知识探究
探究1、画一个水平放置的平面图形的直 观图.
y
D
C
y′ C′
D′
A
Bx
A′
B′ x′
27
例1.用斜二测画法画水平放置的六边形的 直观图。
1 在六边形ABCDEF中,取AD所在的直线为X轴,
对称轴MN所在直线为Y轴,两轴交于点O。画相应
的X轴和Y轴,两轴相交于点O,使xOy=45
y
y
F ME
A
O Dx
O
x
B NC
28
例1用斜二测画法画水平放置的六边形的直观图
a>1
0<a<1
图
象 当0<x<1时,y<0
当0<x<1时,y>0
当x=1时,y=0
当x=1时,y=0
当x>1时,y>0
当x>1时,y<0
性 ⑴定义域(: 0,+∞)
⑵值域:R
质 ⑶过特殊点:过点(1,0),即x=1时y=0 ⑷单调性 :在(0,+∞)上是增函数 ⑷单调性:在(0,+∞)上是减函数
五、应用举例:
2001年10月23日
学习目标:
1、理解对数函数的概念; 2、掌握对数函数的图象和性质; 3、数形结合意识的继续加强。
重点、难点:
重点是对数函数的图象和性质; 难点是对数函数与指数函数的联系。
一、前提诊测:
1、对数的定义:
一般地,若ab=N(a>0,a≠1),则数b就叫 做以a为底N的对数,记做logaN=b
1 1 3x
的定义域为{x∣x<
1
3}
⑷因为x>0且 log3 x ≥0
所以函数 y log3 x 的定义域为{x∣x≥1}
通过本节课的学习,大家应逐 步掌握对数函数的图象和性质, 并能利用对数函数的性质解决 一些简单问题,如求对数形式 的复合函数的定义域问题。
1预习内容: 预习提纲:①同底数的两个对数如 何比较大小?
y (1)x
y
2
y=x
先画 y (1 )x 的图象
2
x
y=log x
对数函数y=log x的图象
y (1)x
y
2
y=x
x
y=log x
y=logax(a>1)的图象
y=logax(0<a<1)的图象
一般地,对数函数y=logax在a>1及0<a<1这两种情 况下的图象和性质如下表所示:
练习:已知一个几何体的三视图如下, 这个几何体的结构特征如何?试用斜二 测画法画出它的直观图.
正视图 侧视图 俯视图
z
y′
A′
B′
o′
x′
y
A
oB x
42
练习:如图,一个平面图形的水平放置 的斜二测直观图是一个等腰梯形,它的 底角为45°,两腰和上底边长均为1, 求这个平面图形的面积.
D
C
D
C
A
(2)已知图形中平行于x轴或y轴的线段,在直观图中
分别画成平行于x′轴或y′轴的线段.
(3)已知图形中平行于x轴的线段,在直观图中保持
原长度不变;平行于y轴的线段,长度取半.
31
斜二测画法的基本步骤: (1)建坐标系,定水平面; (2)与坐标轴平行的线段保持平行; (3)水平线段等长,竖直线段减半.
三、对数函数的定义:
函数y=logax(a>0,a≠1)叫做对数函数
需注意的几点:
①对数函数y=logax和指数函数y=ax互为反函数 ②对数函数的解析式可由指数函数求反函数得到
③对数函数的定义域、值域也就是指数函数的 值域、定义域
想一想:对数函数的定义域和值域分别是什么?
因为指数函数的定义域是R
相同性质:都位于y轴右方,都经过点(1,0), 这说明这两个函数的定义域都是(0,+∞), 且x=1时y=0
不同性质:y=log3x的图象是上升的曲线, y=log x的图象是下降的曲线,这说明前者在 (0,+∞)是增函数,后者在(0,+∞)是减 函数。
2、求下列函数的定义域:
⑴ y log5(1 x) ⑵ y
32
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
y
CEG
A O B
x
DFH
33
例2.用斜二测法画水平放置的圆的直观图
y
C EG
A OBx
D FH
34
知识探究(二):空间几何体的直观图的画法
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体的直观图.
35
1画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
值域是(0,+∞)
所以对数函数的定义域是(0,+∞) 值域是R
四、对数函数的图象和性质 对数函数y=log2x的图象
y y 2x y=x
y log2 x
x
先画y=2x的图象
对数函数y=log2x的图象
y y 2x
y=x
y log2 x
x
四、对数函数的图象和性质
对数函数y=log x的图象
B
A
B
S 2 2
43
作业:
P19练习:2,3(做书上); P21习题1.2A组:4,5.
44
问题2:某种细胞分裂时,由1个分裂为2个,2个分 裂为4个……如果要求这种细胞经过多少次分裂,大约 可以得到1万个,10万个……细胞,那么分裂次数x就 是要得到的细胞个数y的函数。由对数的定义,这个
函数可以写成:X=log2y
变化过程:Y=2x
X=log2y
Y=log2x
结论:函数y=log2x和指数函数y=2x互为反函数
2、求函数y=2x+1的反函数。
y 2x 1
x y 1 2
y x 1 2
3、互为反函数的两个函数的图象有什么 关系?
关于直线y=x对称
二、对数函数的引入:
问题1:某种细胞分裂时,由1个分裂为2个,2个 分裂为4个……1个这样的细胞分裂x次后,得到的
细胞个数设为y,则y与x的函数关系式为:Y=2x
所以函数y=loga(9-x2)的定义域是{x│-3<x<3}
六、课堂练习: 1、画出函数y=log3x及y=log x的图象,并且 说明这两个函数的相同性质和不同性质。
y=log3x
y=log x
yx
y=log3x
yx
y=log x
六、课堂练习: 1、画出函数y=log3x及y=log x的图象,并且 说明这两个函数的相同性质和不同性质。
AP B
39
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
A
D
A
C
B
C
B
40
练习:怎样画底面是正三角形,且顶点 在底面上的投影是底面中心的三棱锥?
C
A
B
zS
y C
M
A
o B xA
S C B
画轴 → 画底面 → 画侧棱 → 成图
41
便获得正六边形ABCDEF水平放置的直观图ABCDEF
y
F ME
A
O Dx