如何打造高中数学高效课堂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何打造高中数学高效课堂
中图分类号:g633.6 文献标识码:b 文章编号:1672-1578(2013)06-0183-01
高中新课程的热潮向我们滚滚而来,通读课程标准后,发现新旧标准都有一个不变的主题:”课堂教学是师生之间、学生之间交往互动与共同发展的过程。课堂教学是学生在校期间学习科学文化知识的主阵地,是学生获得知识与技能的主要途径。而数学课堂教学除上述作用外,还有一个更为重要的作用是数学的学习可以锻炼学生的思维能力。”同时,高中数学新课程标准指出:丰富学生的学习方式、改进学生的学习方法是高中数学新课程追求的基本理念;独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。新课程改革,改的中心问题是课堂改革,引导学生高效学习、打造高效课堂已成为新课标下的热点课题。
下面谈谈我在新课标下高中数学课教学中的几点做法:
1.创设生活化问题情境,努力激发学生的学习兴趣
良好的开端是成功的一半。教师作为一节好课的幕后策划者,其主要任务之一便是创设富有吸引力的学习情境,让每位学习者身临其中,触景生情,因为它关系到学生是否集中精力听课以及本堂课能否顺利进行。
比如我在讲授”异面直线”概念的教学中,先让学生在长方体模型和图形中找出两条既不平行又不相交的直线,告诉学生像这样的两条直线就叫做异面直线,接着提出”什么是异面直线”的问题,
让学生相互讨论、尝试叙述,经过反复修改补充后,得出简明、准确、严谨的定义:”我们把不同在任何一个平面上的两条直线叫做异面直线。”在此基础上,再让学生找出教室或长方体中的异面直线,最后以平面作衬托画出异面直线的图形。学生经过以上过程对异面直线的概念有了明确的认识,同时也经历了概念发生发展过程的体验。还比如我在讲授”二分法”概念的教学中,设计了中央电视台幸运52栏目的电视节目”手机估价问题”,具体是这样设计的:首先给定手机价格的大致范围500至1000元,接着让学生根据生活经验猜价。学生回答750元;我说高了,那么价格就会在500~750元;学生回答625元,我又说高了,那么价格就会在500~650元……经过这样几次折中并逐渐逼近的方法学生得到了手机的近
似价格,顺水推舟,我说数学上把这种方法叫二分法,然后让学生尝试叙述,得出简明、准确、严谨的定义。试想这样的问题情境,怎能不激发学生的好奇心,怎能不激发学生的求知欲呢?学生可以结合自己的生活经验来进行判断,在充满愉快的学习过程中,锻炼了学生的思维能力。
好的问题情境是沟通教师、教材和学生三者联系的”铺路石”,是点燃学生思维的”火种”。因此,每节课的导语是组织好一堂课、调动学生积极性的关键。而我们却往往忽略了这一点,这样势必影响学生及早进入学习的状态。
2.问题是数学课堂教学的灵魂
2.1 在关键处发问处点拨。也就是说问问题的目的是让学生说出
他们的思维过程,换句话说是看学生思维背后的东西。切忌华而不实的提问,如”是不是”、”有没有”,听起来热闹,实际上学生并没怎么思维,达不到学习数学的真正目的。
如函数概念的学习,我们的复习回顾一般有两种提问方式:一种是提问学生”我们学过的函数有哪些”,另一种是提问学生”生活中的函数有哪些?举例说明”。显然,第一种比较肤浅,学生不需怎么思维;要想回答第二种,学生得进行大量思维,考虑举的例子是否是函数,进而达到理解函数实质的目的。
2.2 提问还得注意以下几点:(1)提出问题,要给学生留一定的思考时间。(2)问题的提出要简明、准确、循序渐进。(3)问题要有启发性。
数学课堂提问还有许多具体的方式、方法,有待于教师在教学实践中去探讨、运用。好的提问,能激发学生探究数学问题的兴趣,激活学生的思维;好的提问,需要我们教师要做有心人,问题要设在重点处、关键处、疑难处。这样,就能充分调动学生思维的每一根神经,就能极大地提高数学课堂的教学效率。
3.运用变式训练的教学方法,提高学生对知识的吸收率
在解题教学中,教师可利用变式来改变题目的条件或结论,结论与条件对调等,揭示条件、目标间的联系,解题思路中方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。
在解题教学的思维训练中,变式是一种很有效的方法。通过变式
训练,可以从不同角度去改变题目,通过解题后的反思,归纳出同一类问题的解题思维形成过程与方法的采用;通过改变条件,可以让学生对满足不同条件的情况作出正确的分析;通过改变结论等,可培养学生推理、探索的思维能力,进而提高学生对知识的吸收率。解题的变式分为解题方法的变式与题型的变式。解题方法的变式有时称为”一题多解”,在此以题型的变式为例举例说明。《椭圆和它的标准方程》的例3:”已知一个圆的圆心为坐标原点,半径为2,从这个圆上任一点p向x轴作垂线段pp1,求线段pp1中点m的轨迹。”可将此题目变为:
变式1.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任一点p向y轴作垂线段pp1,求线段pp1中点m的轨迹。
变式2.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任一点p向坐标轴作垂线段pp1,求线段pp1中点m的轨迹方程。
变式3.已知一个椭圆的方程,从这个椭圆上任一点p向x轴作垂线段pp1,求线段pp1中点m的轨迹。
变式4.已知一个椭圆的方程,从这个椭圆上任一点p向坐标轴作垂线段pp1,求线段pp1中点m的轨迹方程。
变式1是对例题的模仿,目的是让学生熟悉利用中间变量法求轨迹的过程;变式2的目的是让学生进一步熟悉利用中间变量法求轨迹的方法,并要进行分步讨论;四个变式的目的都是让学生掌握利用中间变量法求轨迹的方法。
通过变式训练,把看似枯燥的性质、定理通过层层解剖,把本质
展现出来,把一个问题通过对结论进行联想、分析、探索,最终把隐含的有意义的结论一一推导了出来。通过改变条件,发现由不同条件可以得出相同的结论,找出不同知识之间的联系与规律;也可以通过结论与条件的互换理解原命题与逆命题之间的关系,加深对命题真假的辨析能力;更重要的是通过变式教学,培养学生敢于思考、敢于联想、敢于怀疑的品质,培养学生的自主探究能力与创新精神。通过变式教学,可以让我们的学生在无穷的变化中领略数学的魅力,在曼妙的演变中体会数学的快乐,让学生利用有限的时间创造无限的效益。