6讲(基本放大电路概念及工作原理)
电工电子教程
24
据此可得小信号模型(如图2.3.13所示 )
h11e
h12e
h21e h22e
图2.3.13 晶体管的H参数模型
• h 参数都是小信号参数,即微变参数或交流参数。 • h 参数与工作点有关,在放大区基本不变。 • h 参数都是微变参数,所以只适合对交流信号的分析。
+VCC
Rc
+ C2
+ VT
RL
uo
克服了原理电路的缺点, 比较实用。
-
-
阻容绍了以下基本内容: ➢ 放大的基本概念:放大的对象是动态信号(变化量)、放大 的本质是能量的控制与转换、其特征是功率放大、放大的前提 是不失真、放大的必备元件是有源器件(晶体管) ➢ 放大电路的组成原则:合适的静态工作点;工作在放大区 ➢ 放大电路的主要性能指标:放大倍数、输入电阻、输出电阻 ;最大不失真输出电压;非线性失真系数;上、下限截止频率 和通频带;最大输出功率和效率等 。
曲线上的点(UCEQ,ICQ),称之为静态工作点Q。
(2)设置静态工作点的必要性 放大的对象是动态信号,但前提是不失真。若去掉直
流偏置,根据图(b)所示动态工作情况,在ui负半周以及ui 正半周其幅值小于晶体管发射结的导通电压时,晶体管截 止,输出电压不变,即动态电压为0,所以造成了严重的 失真,从这个意义上讲,设置静态工作点是十分必要的。 此外,静态工作点的设置,还影响到其它动态参数,必须 合理设置静态工作点。
12 3. 图解法的步骤
(一)画输出回路的直流负载线 (二)估算 IBQ,确定Q 点,得到 ICQ和 UCEQ (三)画交流负载线 (四)求电压放大倍数
(完整word版)放大电路的工作原理和三种基本放大组态
放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。
共射放大电路如图所示。
V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。
R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。
V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。
如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。
同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。
电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。
这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。
由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。
如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。
电路中各点的电流、电压波形如图所示。
放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。
第2章 基本放大电路(1)2.1放大的概念和放大电路的主要性能指标2.2基本放大电路的工作原理
18 33 25 2 - 1 - 35
2.2.4 放大电路的组成原则(P82~P83) 放大电路的组成原则(
一、放大电路的组成原则
1. 晶体管必须偏置在放大区: 晶体管必须偏置在放大区: ——发射结正偏,集电结反偏。 发射结正偏,集电结反偏。 发射结正偏 2. 正确设置静态工作点,使整个波形处于放大区。 正确设置静态工作点,使整个波形处于放大区。 3. 输入信号能通过输入回路作用于放大管。 输入信号能通过输入回路作用于放大管。 4. 输出回路将变化的电流作用于负载。 输出回路将变化的电流作用于负载。
IC IE
( 略 小 IB) 忽 微 量
**3、输出特性三个区域的特点 、输出特性三个区域的特点:
(1) 放大区:发射结正偏,集电结反偏。 放大区:发射结正偏,集电结反偏。 即: IC=βIB , 且 ∆IC = β ∆ IB
c b N P N e
UC>UB >UE
c b P N P e
UC<UB <UE
V BB − U BEQ + u i iB = Rb
= I BQ
= I BQ
ui + Rb + ib
2 - 1 - 30
iC = β i B
= β ( I BQ + i b ) = I CQ + i c
2 - 1 - 31
u CE = V CC − i C R c
= V CC − ( I CQ + i c ) R c
Ri越大,Ii 就越小,ui就越接近 S 越大, 就越小, 就越接近u
2 - 1 - 12
RO
表征放大电路带负载能力的。 表征放大电路带负载能力的 三、输出电阻 ------表征放大电路带负载能力的。 断开负载后, 断开负载后,向放大电路输出端看进去的等效内 定义为输出电压有效值与输出电流有效值之比 输出电压有效值与输出电流有效值之比。 阻,定义为输出电压有效值与输出电流有效值之比。
模拟电子技术第二章
电压放大电路可以用有输入口和输出口的四端网络表 示,如图:
ui
Au
uo
放大电路放大的本质是能量的控制和转换。
放大的前提是不失真,即只有在不失真的情况下 放大才有意义。
2021/4/11
3
2.1.2.放大电路的性能指标
放大电路示意图
图2.1.2放大电路示意图
2021/4/11
4
一、放大倍数
表示放大器的放大能力
VCC
U BEQ Rb
(12 0.7 )mA 40 μA 280
做直流负载线,确定 Q 点
根据 UCEQ = VCC – ICQ Rc iC = 0,uCE = 12 V ; uCE = 0,iC = 4 mA .
2021/4/11
T
22
iC /mA
4 3 2 1 0
80 µA
60 µA
静态工作点 40 µA
U i →△uBE →△iB
→△iC(b△iB)
VBB
→△uCE(-△iC×Rc)
UI
→
•
Uo
+VCC ( +12V)
RC
IC +△IC
IB
B Rb 1
+△I B
3C ET2
U CE
U BE +△UBE
+△U CE
+
UO
-
电压放大倍数:
•
•
Au
Uo
•
Ui
2021/4/11
13
+VCC (+12V)
iC / mA
4
交流负载线 80
60
IC
Q
iC 2
2、基本放大电路
15
2.2.1 放大电路的组成
(1) 直流通路 直流通路:是指静态(ui=0)时,电路 中只有直流量流过的通路。 画直流通路有两个要点: ①电容视为开路 ②电感视为短路 估算电路的静态工作点Q时必须依据直 流通路。
16
2.2.1 放大电路的组成
共射电路直流通路
17
2.2.1 放大电路的组成
45
2.2.3 分压式共发射极放大电路
2、分压式共发射极放大电路分析
B点的电流方程为:
I1 = I 2 + I B
46
为了稳定Q点,通常选择合适的电阻Rb1、Rb2,使 I1>>IB,I1≈I2。
2.2.3 分压式共发射极放大电路
B点的电位
UB ≈
Rb2 VCC Rb1 + Rb2
基极电位UB仅由Rb1、Rb2和VCC决定,与环境温度无关,即当温 度升高时,UB基本不变。
41
2.2.2 放大电路的分析方法
②输入电阻Ri ③输出电阻Ro
将信号源短路,负载开路,在输出端加入测试电压u,产生电流 i,由于ib =0, ibβ =0,u=iRc,则输出电阻
ui ii ( Rb // rbe ) Ri = = = Rb // rbe ii ii
u Ro = = Rc i
42
27
2.2.2 放大电路的分析方法
交流负载线如下图所示
28
2.2.2 放大电路的分析方法
总结: 交流负载线与直流负载线相交于Q点 当负载开路时,交流负载线与直流负载线 重合。 带负载后的电压放大倍数会减小
29
2.2.2 放大电路的分析方法
(3) 静态工作点的选择 三极管是一个非线性器件,有截止区、放 大区、饱和区三个工作区,如果信号在放 大的过程中,放大器的工作范围超出了特 性曲线的线性放大区域,进入了截止区或 饱和区,集电极电流ic与基极电流ib 不再成 线性比例的关系,则会导致输出信号出现 非线性失真。 非线性失真有两类:截止失真和饱和失真
放大电路的基本原理
放大电路的基本原理
放大电路的基本原理是利用电子元件的特性,将输入信号放大到更高的幅度。
常见的放大电路有共射放大电路、共基放大电路和共集放大电路。
共射放大电路是最常见的一种放大电路,它由晶体管、电阻和电源组成。
在共射放大电路中,输入信号通过电容联结的耦合电容进入基极,经过晶体管的放大作用后,输出信号通过负载电阻形成。
共基放大电路和共射放大电路类似,但是输入信号是通过基极注入的,经过晶体管的放大作用后,输出信号通过电容联结的耦合电容输出。
共集放大电路又称为电压跟随器,其输入信号通过电阻和电容形成的偏置网络输入到基极,经过晶体管的放大作用后,将信号输出到负载电阻上。
共集放大电路具有输入阻抗高、输出阻抗低的特点。
放大电路的基本原理是利用晶体管的放大作用实现信号的放大。
当输入信号通过晶体管时,晶体管内部的电流和电压发生变化,从而使得输出信号的幅度增大。
此外,放大电路中的电阻和电容组成的偏置网络可以对晶体管进行偏置,使其工作在合适的工作点上,从而保证放大电路的稳定性和线性度。
通过合理的设计和匹配,可以实现不同的放大倍数和频率响应。
综上所述,放大电路利用晶体管的放大作用,通过合适的电阻、
电容组成的偏置网络对晶体管进行偏置,实现输入信号的放大。
不同的放大电路具有不同的特点和适用范围,可以根据实际需求选择合适的放大电路。
《基本放大电路》教案
《基本放大电路》教案教案:《基本放大电路》教学目标:1.了解基本放大电路的定义和分类。
2.掌握基本放大电路的组成和工作原理。
3.学会计算基本放大电路的放大倍数和频率响应。
4.能够在实际应用中设计和调试基本放大电路。
教学准备:1.教学PPT2.示波器、函数发生器等实验设备3.相关实验器材和元器件教学过程:一、导入(10分钟)1.展示一张基本放大电路的图片,引导学生观察,激发学生对基本放大电路的兴趣。
2.提问:你们在日常生活中见过哪些应用基本放大电路的设备?请举例说明。
3.结合学生的回答,介绍基本放大电路在电子设备中的应用和重要性。
二、知识讲解(30分钟)1.定义和分类a.什么是基本放大电路?基本放大电路是由电子器件和元器件组成的电路,可以将输入信号放大到更大的幅度。
b.基本放大电路根据输入和输出信号的性质,可以分为功率放大电路和线性放大电路。
2.常见的基本放大电路a.共射放大电路b.共基放大电路c.共集放大电路d.差分放大电路三、实验演示(20分钟)1.将一台示波器和一个函数发生器与基本放大电路连接,演示基本放大电路的原理和工作过程。
2.调节函数发生器的频率和幅度,观察示波器上的波形变化。
3.让学生亲自操作实验设备,体验基本放大电路的放大效果。
四、知识巩固(30分钟)1.基本放大电路的计算a.放大倍数的计算方法b.频率响应的计算方法2.给学生一些基本放大电路的计算题目,让学生计算放大倍数和频率响应。
3.教师解答学生的问题,指导学生进行计算。
五、拓展应用(20分钟)1.分组讨论:请学生自由组合,讨论基本放大电路的其他应用领域,并汇报自己的思考结果。
2.学生汇报讨论结果,教师提供反馈和补充。
3.示范一些基本放大电路的实际应用案例,如功放、音频放大等。
六、总结和评价(10分钟)1.总结:请学生总结今天学到的关于基本放大电路的重要知识点。
2.评价:教师根据学生的参与度和学习情况进行评价,并给予鼓励和指导。
第09章放大电路基础及分析
168169新授课 )传感器(麦克风),将声音转换成相应的电压信号。
)放大器,将麦克风输出的微弱电压信号放大到所需要的值。
)再生器(扬声器),将放大后的电信号还原成声音。
)电源,提供放大器工作所需要的直流电压。
.什么是放大电路同时满足以下两个条件的电路:)输出信号的功率大于输入信号的功率。
)输出信号波形与输入信号波形相同(不失真)。
用框图表示:输入端:加入需要放大的信号。
输出端:得到放大的输出信号。
组成:一个放大电路必须含有晶体管(或电子管)这样的器件,同时还包含电阻、电感、变压器等元器件。
.放大器的分类)按放大器的频率高低分⎪⎩⎪⎨⎧高频放大器低频放大器直流放大器)按被放大信号的类型分⎪⎩⎪⎨⎧功率放大器电压放大器电流放大器170(a )双电源供电;(b )单电源供电;(c )是(b )图的习惯画法(不画出集电极电源)。
各元器件的作用: ① 晶体管V :工作在放大状态,起电流、电压放大作用。
② 基极偏置电阻b R :它使电源U E 给晶体管提供一个合适的基极电流B I (又称偏流),保证晶体管工作在合适的状态。
取值范围在几十千欧到几百千欧。
③ 集电极负载电阻c R :作用是把晶体管的电流放大转换为电压放大。
它的取值范围一般在几千到几十千欧。
④ 耦合电容1C 和2C :起隔直流通交流的作用。
交流信号从1C 输入经过放大从2C 输出,同时1C 把晶体管的输入端与信号源之间,2C 把输出端和负载之间的直流通路隔断。
一般选用电解电容,使用时注意极性的区分。
⑤ 集电极电源U E :作用一是给晶体管一个合适的工作状态(保证发射结正偏,集电结反偏),二是为放大电路提供能源。
2.静态工作点的建立171这时晶体管的直流电压:CE BE U U 、和对应的直流电流B I 、C I 统称为静态工作点CEQ Q BE U U 、、BQ I 、CQ I 。
如上图(b )所示是放大电路的直流通路,由于耦合电容的作用,直流只在直流通路内流动,所以将耦合电容1C 、2C 看作断路的部分去掉,剩下的即为直流通路。
第6讲 放大电路的分析方法
得: vCE = VCEQ+ ICQR L
图解分析 法
2.
通过图解分析,可得如下结论: 动态工作情况分析 1. vi vBE iB iC vCE |-vo| 2. vo与vi相位相反; 输入交流信号时的图解分析 3. 可以测量出放大电路的电压放大倍数; 4. 可以确定最大不失真输出幅度。
理想二极管
利用估算法求解静态工作点,实质上利用了直流模型。
2. 晶体管的h参数等效模型(交流等效模型)
• 在交流通路中可将晶体管看成 为一个二端口网络,输入回路、 输出回路各为一个端口。
u u BE f (iB, CE ) u iC f (iB, CE )
BJT的小信号建模
建立小信号模型的意义
在小信号情况下,对上两式取全微分得
dvBE diC vBE iB
VCE
diB
vBE vCE
IB
dvCE
i C i B
VCE
diB
i C vCE
IB
dvCE
用小信号交流分量表示 vbe= hieib+ hrevce
ic= hfeib+ hoevce
BJT的小 信号建模
解:(1)
IB VCC VBE 12V 40uA Rb 300k
共射极放大电路
I C I B 80 40uA 3.2mA
VCE VCC Rc I C 12V - 2k 3.2mA 5.6V
静态工作点为Q(40uA,3.2mA,5.6V),BJT工作在放大区。 V 12V I B CC 120uA I C I B 80 120uA 9.6mA (2)当Rb=100k时, Rb 100k
放大电路的工作原理
放大电路的工作原理
放大电路是电子设备中常见的一种电路,它可以将输入信号放大到所需的幅度,从而实现信号的增强和处理。
放大电路的工作原理主要包括放大器的基本结构、放大器的工作原理和放大器的分类。
首先,放大电路的基本结构包括输入端、输出端和放大器。
输入端接收输入信号,输出端输出放大后的信号,而放大器则是实现信号放大的关键部件。
放大器通常由电子元件如晶体管、电阻、电容等组成,通过这些元件的协同作用,实现对输入信号的放大。
其次,放大电路的工作原理是利用放大器对输入信号进行放大。
当输入信号进
入放大器后,放大器会根据其内部的电路结构和工作原理,对输入信号进行放大处理,从而得到放大后的输出信号。
放大器通常会根据信号的不同特性,采用不同的放大方式,如电压放大、电流放大、功率放大等。
最后,放大电路根据其工作原理和放大方式,可以分为多种不同类型的放大器,如电压放大器、功率放大器、运放放大器等。
每种放大器都有其特定的应用场景和工作特性,可以根据实际需求选择合适的放大器类型。
总的来说,放大电路的工作原理是通过放大器对输入信号进行放大处理,从而
得到所需的输出信号。
放大电路在电子设备中有着广泛的应用,是实现信号处理和增强的重要组成部分。
通过对放大电路的工作原理和分类的了解,可以更好地理解其在电子设备中的作用和应用。
三极管放大电路
IC 4 40 I B 0.1
二、 饱和状态: uCE u BE 两个结正偏 特点:IC IB 三、截止状态: IB 0 IC = ICEO 0 uCB = uCE u BE 0
两个结反偏
总结:
放大状态电流分配关系确定
IC IB
C B I C E I B有电流放大作用
-
(1) U1 = 2.5V 解:
U2 = 6V
U3 = 1.8V
(1) 由于U13 = U1- U3= 0.7V,故该管为硅管,且1、 3管脚中一个是e极,一个是b极,则2脚为c极。又因
为2脚电位最高,故该管为NPN型,从而得出1脚为b
极,3脚为e极。 (2) 由于∣U23∣= 0.3V,故该管为锗管,且2、3 管脚中一个是e极,一个是b极,则1脚为c极。又因为 1脚电位最低,故该管为PNP型,从而得出2脚为b极, 3脚为e极。
iC f ( uCE ) i
当IB取值不同 时,就有一条 不同的输出特 性曲线
IC
B常数
IB增加
IB =60µ A
IB =40µ A IB 减小
IB = 20µ A O
UCE
当IB取值 不同时, 就有一条 不同的输 出特性曲 线,如图 2.6所示。
4 3 2 1
iC / mA
50 µ A 40 µ A 30 µ A 20 µ A 10 µ A IB = 0
解:
(1)图2.4(a)中①、②管
脚的电流均为流入,则③管 脚的电流必为流出,且大小
为0.1+4=4.1(mA),如图
2.4(b)所示。 (2)由于③管脚的电流最大,①管脚的电流最 小,因此①管脚为b极,②管脚为c极,③管脚为e 极。又由于③管脚的发射极电流为流出,故该管 为NPN型管。 (3)由于IB = 0.1mA,IC = 4mA,故:
放大电路的工作原理和波形
放大电路的工作原理和波形一、放大电路简介放大电路是电子电路中的一种基本电路,主要用于放大输入信号的幅度。
它将输入信号的能量转换成电流或电压,以产生一个幅度更大的输出信号。
放大电路广泛应用于各种电子设备和系统中,如音频放大器、视频处理器、通信系统等。
二、工作原理1.输入信号的处理放大电路的输入信号通常是由信号源提供的微弱信号,如声音、光、温度等。
这些信号被转换为电信号,通过放大电路的输入端进入。
2.电压放大放大电路的核心是电压放大器。
电压放大器通过利用晶体管的放大作用,将输入信号的电压幅度进行放大。
在电压放大阶段,放大器将输入信号的电压变化转换成更大的输出电压。
3.输出信号的处理经过电压放大后,输出信号的幅度会变得很大。
为了使输出信号能够满足实际应用的需要,需要进行必要的处理,如滤波、稳压等。
三、波形1.正弦波正弦波是一种常见的输入信号波形,用于模拟音频、视频等信号。
在放大电路中,正弦波经过放大后,其幅度会得到显著增大,但波形仍保持基本不变。
2.方波方波是一种常见的数字信号波形,常用于数字通信和数字电路中。
在放大电路中,方波经过放大后,其幅度和边缘锐度会得到增强。
3.三角波三角波是一种介于正弦波和方波之间的波形,常用于各种控制和调节电路中。
在放大电路中,三角波经过放大后,其幅度会得到增大,同时波形会变得更加光滑。
4.脉冲波脉冲波是一种短暂的高幅度信号,常用于控制和触发各种电子设备。
在放大电路中,脉冲波经过放大后,其幅度会得到显著增大,同时保持清晰的脉冲形状。
四、放大电路的应用放大电路的应用非常广泛,主要包括音频放大、视频处理、通信系统、传感器信号处理等。
在这些应用中,放大电路起到至关重要的作用,能够将微弱的信号转换成可用的输出信号,以满足实际需求。
五、总结放大电路是电子设备和系统中的重要组成部分,用于放大输入信号的幅度。
其工作原理包括输入信号的处理、电压放大和输出信号的处理等环节。
根据不同应用需求,放大电路可以处理各种波形,如正弦波、方波、三角波和脉冲波等。
基本放大电路
IB
IC
IB
Q
IC
UBE
UBE
Q IB
UCE
UCE
直流负载线
VCC
UCE=VCC–ICRC
IC
RC
静态IC
Q IB
UCE
静态UCE VCC
由估算法求出IB, IB对应的输出特
性与直流负载 线的交点就是 工作点Q
三、电路参数对静态工作点的影响
1. 改变 RB,其他参数不变
iB
iC
VBB
R B iB Q 趋近截止区;
晶体管放大电路的组成 及其工作原理
共射基本放大电路的组成 及其工作原理
共射基本放大电路的组成及其工作原理
一.放大原理
三极管工作在放大区:
发射结正偏,
集电结反偏。
放大原理:
VBB
UI
•
Ui
→△UBE
→△IB →△IC(b△IB
)
•
→△UCE(-△IC×Rc)→ Uo
电压放大倍数:
•
•
Au =
Uo
•
当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可 以把三极管这个非线性器件所组成的电路当作线性电 路来处理。
小信号模型如下:
iB b
c iC
vBE
vCE
e
BJT双口
网络
• b ib 是受控源 ,且为电流
控制电流源(CCCS)。
(RL= RC // RL)
选择工作点的原则: 当 ui 较小时,为减少功耗和噪声,“Q”可设得 低一些;
为提高电压放大倍数,“Q”可以设得高一些;
为获得最大输出,“Q” 可设在交流负载线中点。
放大电路的工作原理
放大电路的工作原理
首先,放大器的基本原理是利用电子器件(如晶体管、场效应管等)的非线性
特性,将输入信号的能量转换为输出信号的能量,实现信号的放大。
通过控制输入信号和电源电压的大小,以及调节放大器的工作状态,可以实现对信号的放大和处理。
其次,放大器根据其工作方式和放大器的特性可以分为很多种类,如按照信号
类型可以分为模拟放大器和数字放大器;按照放大器的工作方式可以分为A类放
大器、B类放大器、C类放大器等;按照放大器的频率范围可以分为低频放大器、
中频放大器、高频放大器等。
不同类型的放大器在实际应用中有着不同的特点和适用范围。
接下来,放大电路的组成一般包括输入端、放大器、输出端和电源等部分。
其中,输入端接收待放大的信号,放大器对输入信号进行放大处理,输出端输出放大后的信号,电源为放大器提供工作所需的电能。
通过这些部分的协调配合,放大电路能够实现对信号的放大和处理。
最后,放大电路的工作过程是输入信号经过输入端进入放大器,在放大器内部
进行放大处理,最终通过输出端输出放大后的信号。
在这个过程中,放大器需要根据输入信号的大小和特性,调节自身的工作状态,以实现对信号的合理放大和处理。
总的来说,放大电路是一种重要的电子电路,它通过放大器的工作原理和放大
器的分类,实现对输入信号的放大和处理。
在实际应用中,放大电路有着广泛的应用,如音频放大器、射频放大器、微波放大器等,为各种电子设备和系统提供信号放大和处理的功能。
通过对放大电路的工作原理和组成的深入理解,可以更好地应用和设计放大电路,满足不同应用场景的需求。
(最新整理)第6讲放大电路的分析方法wang
RC IB IC
+UCC +
IC IB 3 7 .5 0 .0 4 m A 1 .5 m A U+B–ETU–CE
UC EUC CICRC
121.54V6V
注意:电路中IB 和 IC 的数量级不同
例2:用估算法计算图示电路的静态工作点。
+UCC 由KVL可得:
RB
RC IB IC
+
U C CIB R B U B EIE R E
适,晶体管进入截
• 截止失真
止区或饱和区工作, 将造成非线性失真。
Q'
Q设置过低,
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。
• 饱和失真
若Q设置过高
晶体管进入饱 和区工作,造成 饱和失真。
饱和失真产生于晶体管的输出回路!
消除饱和失真的方法
Rc↓或VCC↑
5. 放大电路输出电阻的计算
放大电路对负载(或对后级放大电路)来说,是一个信
号源,可以将它进行戴维南等效,等效电源的内阻即为放
大电路的输出电阻。
RS
E
+ S_
Au 放大 电路
+
RL _U o
输出电阻是 动态电阻,与 负载无关。
ro
定义:
输 出 电 阻 Ro :UIoo
E
+
o_
+
RL _U o
输出电阻是表明放大电路带负载能力的参数。电路
rbe
60
4. 放大电路输入电阻的计算
放大电路对信号源(或对前级放大电路)来说,是一个负载, 可用一个电阻来等效代替。这个电阻是信号源的负载电阻,也 就是放大电路的输入电阻。
第02章基本放大电路
iB
Ec/Rb
B
- 1/Rb
Q
放大电路的输入和输出直流负载线
确定静态工作点 I
UBE Ec uBE
(1)由输入特性曲线和输入直流负载线求IBQ、UBEQ
EC
UBE=EC- IBRb → 直流负载线
IB IC UCE
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IB、UBE
1.估算法 (1) 首先画出直流通路
EC
(2)求静态值 求解顺序是先求IB→IC→UCE
Si管:UBE=0.6V~0.7V
IB UBE IC UCE
Ge管:UBE=0.2V~0.3V
IB
E C U BE Rb
E C 0 .7 Rb
IC β IB
UCE=EC-ICRC
2. 图解法
三极管的输入和输出特性曲线
EC Ii Uo Ui Ib
Ic Uo
Ui
2. 放大电路的工作过程
当有交流信号ui加到放大器的输入端时,晶体管各点
的电压和电流将在静态值基础上叠加一交流分量,
此时电路中的信号即有直流,又有交流。
各点波形
iC
+EC
RC RB C1 iB
ui
t iB ui t
iC C2
t
uC u C uo
t
uo t
US ~
Ui
Au
ri
Ui Ii
(2-3)
三、输出电阻ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南 等效电路的内阻就是输出电阻。
US ~
Au
ro
US' ~
第2章 基本放大电路
VBB = 0 → 仅可放大ui 的 正半周→ 严重失真
ui=0时,放大电路的状态。
静态工作点Q:
ui=0 时,晶体管的 IB 、 IC 、 UBE 、 UCE ,记为: IBQ、ICQ、UBEQ、UCEQ。在近似分析中,认为UBEQ 为常量。Si:0.7V;Ge:0.2V。
I BQ
26
VBB U BEQ Rb
对信号源来说,放大电路是负载,这个负载的 大小可以用输入电阻来表示。 Ii
US ~ Ui
放大 电路
Io
Uo
Ui Ri Ii
输入电阻是动态电阻,它是衡量放大电路从信 号源索取电流大小的参数。一般希望得到较大的输 入电阻。因 Ri 越大,Ii 就越小,Ui 就越接近US 。
9
3. 输出电阻:反映电路相互连接时的影响
I CQ β I BQ
U CEQ VCC -I CQ RC
为什么要设置一个静态工作点? +UCC RC
C1
+
C2 T
RL
ui
-
只有在输 入电压的整 个周期内, 晶体管都工 + 作在放大状 uo 态,输出电 压才不会产 生失真
(15-27)
+UCC RB C1
+ Ui
RC
C2
T
RL
+ Uo -
47
1. 利用图解法求解静态工作点 ΔuI = 0
IB=IBQ
uBE=VBB - iBRb
48
uCE=VCC - iCRc
2. 利用图解法分析电压放大倍数
uBE=VBB + △uI –iBRb
uCE=VCC-iCRc ΔuO ΔuI Δi B ΔiC ΔuCE ( ΔuO ) Au ΔuI
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放大电路的基本概念 是什么?放大电路中 能量的控制与变换关
系如何?
说明共发射极电压放大器 输入电压与输出电压的相位 关系如何?
放大电路中各电 压、电流的符号 有何规定?
基本放大电路的组 成原则是什么?
你会做吗?
如果共发射极电压 放大器中没有集电极 电阻RC,能产生电压
放大吗?
首页
集电极电阻
放大电路的核心元 件——三极管 耦合电容
C1+
基极电阻 基极电源
RB UBB
RC
+ C2
T
耦合电容
UCC
集电极电源
上图所示为双电源组成的共发射极基本放大电路。
首页
实际应用中,共射放大电路通常采用单电源供电,各部
分的作用分别如下:
基极偏置电阻 的作用是为放大
RC的作用是将放大的集电极电流转换成 晶体管的输出电压。(几千欧)
RB
C1 +
+ Rs us+ ui --
RC
-UCC C2
+
V
+
RL uo
-
图(a)
首页
RB
C1 +
+ Rs us+ ui --
RC
+UCC C2
+
V
+
RL uo
-
图(b)
RB
C1 +
+
Rs
us+
ui
--
+UCC
C2 +
V
+
RL uo
-
C1 +
+
Rs
us+
ui
--
RC
+UCC C2
+
V
+
RL uo
晶体管放大电路一般有三种组态:
e
c
c+
b +
u0
b +
ui
-
e-
ui
-
e+
+
u0
ui
c-
-
+ b
u0
-
共发射极放大电路 共集电极放大电路 共基极放大电路
无论放大电路的组态如何,其目的都是让输入的微弱小信 号通过放大电路后,输出时其信号幅度显著增强。
首页
2. 共射放大电路的组成及各部分作用
共发射极放大电路是电子技术中应用最为广泛的放大电 路形式,其电路组成的一般形式为:
为
放
输入信号源ຫໍສະໝຸດ 扬声器负载大 器提
话筒送来的微 弱音频信号
RS
放大电路 + i0
+
u0
-US
-
供 能 量 的 直 流
电
源
扩音器中放大电路的组成
首页
放大电路的放大作用,实质是把直流电源UCC的能量转移 给输出信号。
ui
微弱输入 小信号ui
放
大 电
u0
路
幅度大大增强 的输出信号u0
放大电路的核心元件是晶体管,因此,放大电路若要实现
课前复习
三极管的内部结构 三极管的电流分配和电流放大作用 三极管的输入特性曲线和输出特性曲线 三极管的三个工作区
首页
第6讲 基本放大电路的概念及工作原理
放大电路是电子技术中应用十分广泛的一种单元电路。
所谓“放大”,是指将一个微弱的电信号,通过某种装置 ,得到一个波形与该微弱信号相同、但幅值却大很多的信号 输出。这个装置就是晶体管放大电路。
-
图(c)
图(d)
练习2:书P66,2.1
首页
3. 共射放大电路的工作原理 iC 反相! uCE
基极固定偏置电流
IC
ICRC
输入交流信号电流
iB
0
t
0
t
+UCC
IB
IB
放大后的集电极电流
0
t
信号电流和基极 固定偏流的叠加
ui
C1+ ib
RB iB
RC
c iC +C2
b
T uCE
0
t ui
e
iCu通0 过RC将放大的 电流转换为放大的 晶体管电压输出。
需放大的信号电压 ui通过C1转换为放大电路的输入电流, 与基极偏流叠加后加到晶体管的基极,基极电流iB的变化通 过晶体管的以小控大作用引起集电极电流 iC变化;iC通过RC 使电流的变化转换为电压的变化,即: uCE=UCC- iCRC
由上式可看出:当 iC增大时,uCE就减小,所以 uCE的变化 正好与 iC相反,这就是它们反相的原因。uCE经过C2滤掉了 直流成分,耦合到输出端的交流成分即为输出电压 u0。若电 路参数选取适当,u0的幅度将比 ui 幅度大很多,亦即输入的 微弱小信号 ui 被放大了,这就是放大电路的工作原理。
+UCC
电路提供合适的
静态工作点。 (几百千欧)
RB
C1+
有极性电解电
RC
+ C2
T
向放大电路提供能 量,并保证晶体管 工作在放大区
容的作用是隔
离直流和让输
入交流信号顺
利通过。
有极性电解电容的作
晶体管在放大电路 中起以小控大的能
量控制作用
用是隔离直流和让放 大的交流信号顺利输 出。
首页
练习1:试分析下图所示电路是否能够放大正弦交流信号, 简述理由。
0
t
u0
输入信号电压
uCE经C2滤掉了直流 成分后的输出电压
显然,放大电路内部各电流、电压都是交直流共存的。
首页
共射放大电路工作原理
放大电路内部各电压、电流都是交直流共存的。其直流分 量及其注脚均采用大写英文字母;交流分量及其注脚均采用 小写英文字母;叠加后的总量用英文小写字母,但其注脚采 用大写英文字母。例如:基极电流的直流分量用IB表示;交 流分量用ib表示;总量用iB表示。
对输入小信号的放大作用,必须首先保证晶体管工作在放大 区。
晶体管工作在放大区的外部偏置条件是?
首页
1. 放大电路的组成原则
对放大电路的基本要求: (1) 核心元件晶体管必须发射结正偏,集电结反偏;即要 保证将输入信号能放大 (2) 不允许被传输小信号放大后出现失真。
首页
三种基本组态的晶体管放大电路