精细化工反应安全风险评价导则-应急管理部

合集下载

精细化工反应安全风险评价导则-应急管理部

精细化工反应安全风险评价导则-应急管理部

附件精细化工反应安全风险评估导则1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

2 术语和定义规范性引用文件界定的术语和定语,以及下列术语和定语适用于本标准。

2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形可以视为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为最大反应速率到达时间,可以通俗的理解为致爆时间。

失控反应最大反应速率到达时间是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,反应体系近似处于绝热状态,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情况。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重.绝热温升是反应风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度.2。

3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全的确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按着常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

国家应急部安监司文件 18项化学反应安全评价

国家应急部安监司文件 18项化学反应安全评价

国家应急部安监司18项化学反应安全评价为加强精细化工企业(以下简称企业)安全生产管理,进一步落实企业安全生产主体责任,强化安全风险辨识和管控,提升本质安全水平,提高企业安全生产保障能力,有效防范事故,现就加强精细化工反应安全风险评估工作提出如下指导意见:
一、充分认识开展精细化工反应安全风险评估的意义
精细化工生产中反应失控是发生事故的重要原因,开展精细化工反应安全风险评估、确定风险等级并采取有效管控措施,对于保障企业安全生产意义重大。

开展反应安全风险评估也是企业获取安全生产信息,实施化工过程安全管理的基础工作,加强企业安全生产管理的必然要求。

当前精细化工生产多以间歇和半间歇操作为主,工艺复杂多变,自动化控制水平低,现场操作人员多,部分企业对反应安全风险认识不足,对工艺控制要点不掌握或认识不科学,容易因反应失控导致火灾、爆炸、中毒事故,造成群死群伤。

通过开展精细化工反应安全风险评估,确定反应工艺危险度,以此改进安全设施设计,完善风险控制措施,能提升企业本质安全水平,有效防范事故发生。

二、准确把握精细化工反应安全风险评估范围和内容
企业中涉及重点监管危险化工工艺和金属有机物合成反应(包括格氏
反应)的间歇和半间歇反应,有以下情形之一的,要开展反应安全风
险评估:
1.国内首次使用的新工艺、新配方投入工业化生产的以及国外首次引进的新工艺且未进行过反应安全,风险评估的;
2.现有的工艺路线、工艺参数或装置能力发生变更,且没有反应安全风险评估报告的;。

精细化工反应安全风险评价导则

精细化工反应安全风险评价导则

精细化工反应安全风险评价导则前言精细化工生产具有高效节能、绿色环保等诸多优势,被广泛应用于医药、农药、颜料、染料、合成树脂等行业中。

但与此同时,由于生产流程及反应物质的特殊性,其中涉及的一些反应存在着安全风险,一旦出现事故往往会造成严重的财产损失和人员伤亡。

因此,对精细化工反应的安全风险进行评估,制定相应的安全防范措施,是防范意外事故的重要措施之一。

本文基于多年的实践经验,梳理出了精细化工反应安全风险评价的导则,希望对相关从业人员有所帮助。

精细化工反应安全风险评价导则1. 反应危险性评估精细化工反应的危险性评估是评价安全风险的重要环节。

评估主要考虑以下几个方面:(1) 反应物性质反应物的物理、化学性质是评估反应危险性的基础信息。

其基本信息包括有:物质的密度、熔点、沸点、闪点、自燃点、爆炸极限、易燃性等,它们直接影响着反应物的使用、保存、运输和操作。

(2) 反应条件相比较反应物,反应条件对反应的危险性更为重要。

达到多种化合物的反应条件各不相同,往往需要对反应条件进行深入研究,在检测一些极端条件的发生风险时,应尤其注意。

同时考虑到热量的释放效应,我们还需加入反应的热力学计算。

(3) 反应过程此处指得是反应物在反应过程中可能产生的中间体、分解物及其他反应产物,这些产物均有可能对反应产生副作用,这部分信息也需要纳入反应危险性评估的考虑范围。

(4) 安全评价此环节主要以化合物的安全评价为目标,为反应危险性评估提供基础资料。

2. 环境安全评估环境安全评估是对化工反应过程对环境影响程度的评估。

主要包括以下内容:(1) 废气处理废气是精细化工反应过程中产生的重要污染源之一。

废气处理方法包括物理方法、化学方法或两者相结合的方法。

(2) 废水处理废水是精细化工反应过程中产生的另一个重要污染源。

废水处理的主要方法包括物理处理、化学处理或两者相结合的方法。

(3) 固体废物处理固体废物是化工反应加工过程中产生的重要污染源之一。

国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见安监总管三〔2017〕1号

国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见安监总管三〔2017〕1号

国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见安监总管三〔2017〕1号各省、自治区、直辖市及新疆生产建设兵团安全生产监督管理局,有关中央企业:为加强精细化工企业(以下简称企业)安全生产管理,进一步落实企业安全生产主体责任,强化安全风险辨识和管控,提升本质安全水平,提高企业安全生产保障能力,有效防范事故,现就加强精细化工反应安全风险评估工作提出如下指导意见:一、充分认识开展精细化工反应安全风险评估的意义精细化工生产中反应失控是发生事故的重要原因,开展精细化工反应安全风险评估、确定风险等级并采取有效管控措施,对于保障企业安全生产意义重大。

开展反应安全风险评估也是企业获取安全生产信息,实施化工过程安全管理的基础工作,加强企业安全生产管理的必然要求。

当前精细化工生产多以间歇和半间歇操作为主,工艺复杂多变,自动化控制水平低,现场操作人员多,部分企业对反应安全风险认识不足,对工艺控制要点不掌握或认识不科学,容易因反应失控导致火灾、爆炸、中毒事故,造成群死群伤。

通过开展精细化工反应安全风险评估,确定反应工艺危险度,以此改进安全设施设计,完善风险控制措施,能提升企业本质安全水平,有效防范事故发生。

二、准确把握精细化工反应安全风险评估范围和内容(一)企业中涉及重点监管危险化工工艺和金属有机物合成反应(包括格氏反应)的间歇和半间歇反应,有以下情形之一的,要开展反应安全风险评估:1.国内首次使用的新工艺、新配方投入工业化生产的以及国外首次引进的新工艺且未进行过反应安全风险评估的;2.现有的工艺路线、工艺参数或装置能力发生变更,且没有反应安全风险评估报告的;3.因反应工艺问题,发生过生产安全事故的。

(二)精细化工生产的主要安全风险来自于工艺反应的热风险。

开展精细化工反应安全风险评估,要根据《精细化工反应安全风险评估导则(试行)》(见附件)的要求,对反应中涉及的原料、中间物料、产品等化学品进行热稳定测试,对化学反应过程开展热力学和动力学分析。

安全风险评估导则

安全风险评估导则

附件精细化工反应安全风险评估导则(试行)1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见

国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见

施和安全仪 表系统 :反应工 艺危险度被确定为 4级及 以上的 . 在全面开展过程危险分析 ( 如危险与可操作性 分析 ) 基础 上 , 通过风险分析 ( 如保护层分析 ) 确定安全 仪表的安全 完整性 等级 .并依据要求配置安全仪表系
统: 对于反应工艺 危险度被确定 为 5 级 的. 相关装置应 设置在 由防爆墙 隔离的独立空 间中 .并设计超压泄爆
( 一) 企业 中涉及重点监管危险化工工艺和金属有 机物合成 反应( 包括格 氏反 应 ) 的间歇 和半 间歇 反应 . 有 以下情形之一的 . 要 开展反应安全风险评估 : 1 . 国内首次使用 的新 工艺 、 新 配方 投入工 业化生
产 的以及 国外 首次引进的新工艺且未进行过反应安全
( 二) 精细化工生产的主要 安全风 险来 自于T艺 反 应 的热风险 开展精细化工反应安全风险评估 . 要根据
理, 进一步落实企业 安全生 产主体责任 . 强化安 全风险 辨识和管控 . 提升本 质安全水平 . 提高企业安 全生产保 障能力 . 有效防范事故 . 现就加强精细化 工反应 安全风
证制售假劣农资 的黑窝点 二是加大案件查 处 . 提高执 法震慑力 加大农资监督抽查结果和行政处罚 案件 信 息公开 . 研究制定案件移送 的具体程序和标准 三是创

意 义
精 细 化T生 产 中反应失 控是 发生 事故 的 重要原 因, 开展精细化 丁反应安全风险评估 、 确定风险等级并
采取有效管控措施 . 对于保障企业安全生产意义重大 开展反应安全风 险评 估也是 企业获取 安全生产 信息 . 实施化 工过程安全管理 的基础工作 .加强企业安全生
风险评估的 : 2 . 现有 的工艺 路线 、 工艺参 数或装 置能力 发生变 更. 且没有反应安全风险评估报告 的 : 3 . 因反应工艺 问题 . 发生过生产安全事故的

应急管理部《化工园区和危险化学品企业安全风险排查治理导则》详解

应急管理部《化工园区和危险化学品企业安全风险排查治理导则》详解

应急管理部《化工园区和危险化学品企业安全风险排查治理导则》详解《化工园区和危险化学品企业安全风险排查治理导则》是由应急管理部制定的一项重要文件,旨在指导化工园区和危险化学品企业进行安全风险排查治理工作。

下面将对该导则进行详细解读。

该导则首先明确了化工园区和危险化学品企业安全风险排查治理的目的和原则。

目的是为了发现和排查化工园区和企业存在的安全隐患和风险问题,以及加强安全管理措施,防范和化解各类安全事故的发生。

原则是坚持风险与安全、动态与静态相结合的原则,注重科学性、可操作性、协调性和整体性。

然后,导则详细说明了化工园区和危险化学品企业安全风险排查治理的程序和要求。

其中,包括制定风险排查治理计划,开展风险排查与评估,建立和完善安全管理制度和机制,加强安全宣教培训,以及建立健全应急救援机制等。

这些要求旨在确保化工园区和企业能够全面、系统地开展安全风险排查与治理工作,落实各项措施和要求。

导则还特别强调了安全风险排查治理工作的重要性和必要性。

化工园区和危险化学品企业在生产经营过程中,存在着多种安全风险,如火灾、爆炸、泄漏等,一旦发生事故将会给人民群众的生命财产安全造成严重威胁。

因此,要加强对危险源的控制和管理,优化资源配置,提高安全管理水平,不断提升安全风险排查治理工作的质量和效果。

最后,导则还提出了风险排查治理工作的督导和评估机制。

相关部门要加强对化工园区和企业的监督指导,对风险排查治理工作进行定期和不定期的督导检查,及时发现问题和不足,采取相应措施加以整改。

同时,还要开展风险评估报告的编制和评估工作,对化工园区和企业的风险管理水平进行综合评价,为制定改进措施提供参考依据。

综上所述,《化工园区和危险化学品企业安全风险排查治理导则》是一项重要的管理制度,对于保障化工园区和企业的安全生产,防范和应对安全风险具有重要意义。

通过严格按照导则的要求,化工园区和企业能够全面了解自身存在的安全隐患和风险问题,及时采取有效的措施进行排查和治理,确保人民群众的生命财产安全。

精细化工反应安全风险评价导则

精细化工反应安全风险评价导则

精细化工反应安全风险评价导则本文旨在构建一套全面的精细化工反应安全风险评价导则,帮忙从事精细化工反应的企业和科研单位,全面评估和管理该领域存在的各种安全风险,有效保障生产和研发的安全、稳定和可持续性。

一、反应安全风险范围确定首先需要确定反应安全风险的范围,包括反应物、催化剂、溶剂、反应条件、产物等诸多因素。

对于不同性质的反应,需要分别列出相关的风险因素,订立相应的风险评价标准。

常见风险因素包括:爆炸风险、自燃风险、毒性风险、冲击风险、火灾风险等。

二、反应物性质评估反应物的性质是影响反应安全的紧要因素。

需要对反应物的燃烧性质、毒性、易爆性、自身稳定性、热和化学稳定性等特性进行评估,确定反应物的安全使用范围。

实在评估方法可以采纳安全数据表、相关文献和试验讨论等多种手段。

三、催化剂性质评估催化剂在反应中起到关键作用,其性质对反应的稳定性、选择性和产物质量有侧紧要的影响。

需要对催化剂的稳定性、活性、选择性、中毒性、毒性等性质进行评估,并且需要对与催化剂有关的反应条件进行合理掌控。

四、反应条件评估反应条件是反应过程中另一个紧要的安全因素。

需要将反应温度、反应压力、反应时间等因素纳入评估范围。

确定反应条件的安全范围,避开反应过程中显现异常情况。

此外,还需要对反应掌控方案和反应过程中可能影响到安全的因素进行全面、系统、科学地评估和管理。

五、产品质量与安全评估反应的产物质量和安全性对于生产和使用都有侧紧要的影响。

需要对产物的质量和安全性进行评估,避开可能存在的毒性、致癌等危害人体健康的物质。

六、反应安全风险评价方法反应的安全风险评价是全面评估反应安全的紧要环节。

可以采纳定性和定量评价方法,包括风险矩阵、安全指数、复合评估等多种评价方法。

在实在实施时,综合考虑各种因素,订立出相应的评价标准和措施。

七、管理和掌控措施依据反应安全风险评价结果,可以订立出一系列管理和掌控措施,包括安全管理体制、标准操作程序、应急预案、援救方案等。

精细化工反应安全风险评估导则解读

精细化工反应安全风险评估导则解读

附件精细化工反应安全风险评估导则(试行)2017年一月1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

安全风险评估导则

安全风险评估导则

附件精细化工反应安全风险评估导则(试行)1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

精细化工反应安全风险评估导则(试行)[精品文档]

精细化工反应安全风险评估导则(试行)[精品文档]

附件精细化工反应安全风险评估导则(试行)1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

精细化工反应安全风险评估导则解读

精细化工反应安全风险评估导则解读

附件精细化工反应安全风险评估导则(试行)2017年一月1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

精细化工反应安全风险评估导则知识讲解

精细化工反应安全风险评估导则知识讲解

精细化工反应安全风险评估导则知识讲解目录一、基本概念 (2)1.1 精细化工定义 (2)1.2 反应安全风险评估重要性 (3)二、精细化工反应安全风险评估导则 (4)2.1 风险评估目的 (6)2.2 风险评估范围 (7)2.3 风险评估方法 (8)三、风险评估前准备 (9)3.1 了解化学品特性 (10)3.2 收集相关资料 (11)3.3 制定评估计划 (13)四、风险评估实施 (14)4.1 反应过程分析 (15)4.2 潜在危险识别 (15)4.3 风险量化 (16)五、风险评估报告编写 (18)5.1 报告结构 (19)5.2 报告内容 (20)六、风险评估结果应用 (21)6.1 安全防护措施制定 (23)6.2 操作规程优化 (24)6.3 应急预案制定 (25)七、风险管理持续改进 (26)7.1 定期审查 (28)7.2 教育培训 (29)7.3 修订评估导则 (30)一、基本概念精细化工反应安全风险评估:指在精细化工生产过程中,对可能存在的化学品反应产生的安全风险进行系统性、全面性的分析和评估,以便采取有效的预防措施,降低事故发生的可能性和影响。

精细化工:是指在化学原料的制备、加工、产品的应用等方面具有较高技术水平和附加值的化学工业。

这类化学工业通常涉及复杂的化学反应过程,对安全生产要求较高。

反应安全风险:是指在精细化工生产过程中,由于化学反应的不稳定性、可燃性、毒性等特性,可能导致的人身伤害、财产损失等安全事故的风险。

风险评估:是指通过对精细化工反应安全风险进行系统的识别、分析和评价,确定风险等级和影响范围,为制定相应的安全措施提供依据的过程。

导则:是指为了规范某一领域的操作和管理,制定的具体操作规程和标准。

本文档所介绍的精细化工反应安全风险评估导则是针对这一领域的一种操作规程和标准。

1.1 精细化工定义精细化工是指在基础化学工业提供的原料和产品基础上,通过一系列先进的工艺技术和设备,制造更为精细、高纯度、高质量和高附加值的化学品的行业。

精细化工反应安全风险评价导则

精细化工反应安全风险评价导则

精细化工反应安全风险评价导则在精细化工生产中,反应安全风险评价是非常重要的一项工作。

针对精细化工反应的特殊性质和情况,制定符合本行业特点的反应安全风险评价导则具有重要的意义。

本文将介绍精细化工反应安全风险评价导则的制定依据、具体步骤及实施流程。

制定依据精细化工反应安全风险评价导则的制定应有以下依据:1.国家和行业相关法律法规,如《化学品安全技术标准》、《精细化工企业安全生产管理规程》等2.精细化工反应的特殊性质和危险性,包括高压、高温、高毒等特点3.实际经验和相关行业标准、技术规范和标准操作程序的有关要求具体步骤根据制定依据,精细化工反应安全风险评价导则的具体步骤为:第一步:确定评价范围确定评价范围是评价导则制定的第一步,评价范围涉及到反应的物质、反应的条件、反应的设备和反应的环境等方面。

第二步:确定评价对象根据评价范围确定评价对象,评价对象包括反应危险等级、反应物质的物化性质、反应设备的结构和材料、反应条件的参数等。

第三步:识别反应危险因素根据评价对象,识别反应危险因素。

反应危险因素包括化学品危险性、反应条件的安全风险、反应设备的安全风险、反应环境的安全风险等。

第四步:评估反应危险性根据反应危险因素,评估反应危险性。

评估反应危险性包括热力学评估、化学反应路径评估、可燃性评估、爆炸性评估等。

第五步:制定反应安全管理策略根据反应危险性评估结果,制定反应安全管理策略。

反应安全管理策略可以包括工艺设计、设备选型及安装、工艺控制、人员培训等措施。

第六步:实施反应安全风险评价实施反应安全风险评价包括实施前的准备工作、实施评价活动、评价结果的分析和总结等。

实施流程实施精细化工反应安全风险评价的具体流程为:1.确定评价范围和对象2.识别反应危险因素3.评估反应危险性4.制定反应安全管理策略5.实施反应安全风险评价6.对评价结果进行分析和总结结论制定和实施精细化工反应安全风险评价导则对于降低反应事故频率、减少损失具有十分重要的作用。

安全风险评估导则

安全风险评估导则

附件精细化工反应安全风险评估导则(试行)1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例.本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险.开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2。

1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad 是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短.2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形.对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2。

3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度.2。

4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高.在物料累积最大时,体系能够达到的最高温度称为失控体系能达到的最高温度。

精细化工反应安全风险评估导则解读

精细化工反应安全风险评估导则解读

附件精细化工反应安全风险评估导则(试行)2017年一月1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

精细化工反应安全风险评估导则解读

精细化工反应安全风险评估导则解读

附件精细化工反应安全风险评估导则(试行)2017年一月1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

精细化工反应安全风险评估导则试行

精细化工反应安全风险评估导则试行

附件精细化工反应安全风险评估导则(试行)1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

精细化工生产的主要安全风险来自工艺反应的热风险。

开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。

TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附件精细化工反应安全风险评估导则1 范围本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。

2 术语和定义规范性引用文件界定的术语和定语,以及下列术语和定语适用于本标准。

2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形可以视为绝热条件。

在绝热条件下,失控反应到达最大反应速率所需要的时间,称为最大反应速率到达时间,可以通俗的理解为致爆时间。

失控反应最大反应速率到达时间是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad在冷却失效等失控条件下,反应体系近似处于绝热状态,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情况。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。

绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。

绝热温升是反应风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全的确定工艺操作温度。

2.4 技术最高温度MTT技术最高温度可以按着常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。

在物料累积最大时,体系能够达到的最高温度称为热失控条件下反应能达到的最高温度。

MTSR与反应物料的累积程度相关,反应物料的累积程度越大,反应发生失控后,体系能达到的最高温度MTSR越高。

3 反应安全风险研究3.1 工艺信息工艺信息包括特定工艺路线的工艺技术信息,例如物料配比、反应温度控制范围、压力控制范围、反应时间、加料方式与加料速度等工艺操作条件,并包含必要的定性和定量控制分析方法。

3.2 实验测试仪器反应安全风险研究需要的设备种类较多,除了闪点测试仪、爆炸极限测试仪等常规测试仪以外,必要的设备还包括差热扫描量热仪、热稳定性筛选量热仪、绝热加速度量热仪、低热绝热加速度量热仪、微量热仪、常压反应量热仪、高压反应量热仪、最小点火能测试仪等;配备水分测试仪、液相色谱仪、气相色谱仪等分析仪器设备;具备动力学研究手段和技术能力。

反应安全风险研究并不局限于上述设备。

3.3 实验能力反应安全风险研究单位需要具备必要的工艺技术、工程技术、热安全和热动力学技术团队和实验能力,具备中国合格评定国家认可实验室(CNAS认可实验室)资质,具备省部级及以上反应安全风险研究重点实验室/工程研究中心资质,保证相关设备和测试方法及时得到校验和比对,保证测试数据的准确性。

4 反应安全风险评估方法4.1依据反应热、失控体系绝热温升、最大反应速率到达时间进行单因素反应安全风险评估。

4.2 以最大反应速率到达时间作为风险发生的可能性,失控体系绝热温升作为风险导致的严重程度,进行混合叠加因素反应安全风险评估。

4.3 依据四个温度参数,工艺温度、技术最高温度、最大反应速率到达时间为24 小时对应的温度,以及失控体系能达到的最高温度,进行反应危险度评估。

4.4对精细化工反应安全风险进行定性或半定量的评估,针对存在的风险,要建立相应的控制措施。

化工反应安全风险评估具有多目标、多属性的特点,单一的评估方法不能全面反映化学工艺的特征和危险程度,因此,应根据不同的评估对象,进行多样化的评估。

5 反应安全风险评估流程5.1 物料热稳定性风险评估对所需评估的物料进行热稳定性测试,获取热稳定性评估所需要的技术数据。

主要数据包括物料热分解起始分解温度、分解热、绝热条件下最大反应速率到达时间为24时对应的温度。

对比工艺温度和物料稳定性温度,如果工艺温度大于绝热条件下最大反应速率到达时间为24小时对应的温度,物料在工艺条件下不稳定,需要优化已有工艺条件,或者采取一定的技术控制措施,保证物料在工艺过程中的安全和稳定。

根据物质分解放出的热量大小,对物料潜在的燃爆危险性进行评估,分析分解导致的危险性情况,对物料在使用过程中需要避免受热或超温,引发危险事故的发生提出要求。

5.2 目标反应安全风险发生可能性和导致的严重程度评估实验测试获取反应过程绝热温升、体系热失控情况下工艺反应可能达到的最高温度,以及失控体系达到最高温度对应的最大反应速率到达时间等数据。

考虑工艺过程的热累积度为100%,利用失控体系绝热温升,按着分级标准,对失控反应可能导致的严重程度进行反应安全风险评估;利用最大反应速率到达时间,对失控反应触发二次分解反应的可能性进行反应安全风险评估。

综合失控体系绝热温升和最大反应速率到达时间,对失控反应进行复合叠加因素的矩阵评估,判定失控过程风险可接受程度。

如果为可接受风险,说明工艺潜在的热危险性是可以接受的;如果为有条件接受风险,则需要采取一定的技术控制措施,降低反应安全风险等级;如果为不可接受风险,说明常规的技术控制措施不能奏效,已有工艺不具备工程放大条件,需要重新进行工艺研究、工艺优化或工艺设计,保障化工过程的安全。

5.3 目标反应危险度评估实验测试获取包括目标工艺温度、失控后体系能够达到的最高温度、失控体系最大反应速率到达时间为24 小时对应的温度、技术最高温度等数据。

在反应冷却失效后,四个温度数值大小排序不同,根据分级原则,对失控反应进行反应危险度评估,形成不同的危险度等级;根据危险度等级,有针对性的建立控制措施。

应急冷却、减压等安全措施,均可以作为系统安全的有效保护措施。

对于反应危险度较高的反应,需要对工艺进行优化或者采取有效的控制措施,降低反应危险度等级。

常规控制措施不能有效时,需要重新进行工艺研究或工艺优化,改变工艺路线或优化反应条件,减少反应失控后物料的累积程度,实现化工过程安全。

6 评估标准6.1 物质分解热评估对物质进行测试,获得物质的分解放热情况,开展风险评估,评估准则见表1所示。

表1 分解热评估分解放热量代表了物质分解而释放能量的高低,分解放热量大的物质,绝热温升高,潜在较高的燃爆危险性。

实际应用过程中,要通过风险研究和风险评估,界定物料的安全操作温度,要避免超过规定温度,引发爆炸事故的发生。

6.2 严重度评估严重度是指失控反应在不受控的情况下能量释放可能造成破坏的程度。

由于精细化工行业的大多数反应是放热反应,反应失控的后果与释放的能量有关。

反应释放出的热量越大,失控后反应体系温度的升高情况越显著,容易导致反应体系中温度超过某些组分的热分解温度,发生分解反应以及二次分解反应,产生气体或者是某些物料本身的汽化,而导致体系压力的增加。

在体系的压力增大的情况下,可能致使反应容器的破裂以及爆炸事故的发生,造成企业财产的损失、人员伤害。

失控反应体系温度的升高情况越显著,造成后果的严重程度越高。

反应的绝热温升是一个非常重要的指标,绝热温升不仅仅是影响温度水平的重要因素,同时还是失控反应动力学的重要影响因素。

绝热温升与反应热成正比,可以利用绝热温升来评估放热反应失控后的严重度。

当绝热温升达到200K或200K以上时,反应物料的多少对反应速率的影响不是主要因素,温升导致反应速率的升高占居主导地位,一旦反应失控,体系温度会在短时间内发生剧烈的变化,并导致严重的后果。

而当绝热温升为50K或更小时,温度随时间的变化曲线比较平缓,体现的是一种体系自加热现象,而反应物料的增加或减少对反应速率产生主要影响,在没有溶解气体导致压力增长带来的危险时,这种情况的严重度低。

利用严重度评估失控反应的危险性,可以将危险性分为四个等级,失控反应严重度评估准则如表2所示。

表2 失控反应严重度评估绝热条件下,温升达到或超过200 K,将会导致剧烈的反应和严重的后果;绝热温升为50 K或更小的情形,不会导致热爆炸,此时,如果没有压力增长带来的危险,危险等级较低。

6.3 可能性评估可能性是指由于工艺反应本身导致危险事故发生的可能概率大小。

利用时间尺度可以对事故发生的可能性进行反应安全风险评估,可以设定最危险情况的报警时间,便于在失控情况发生时,在一定的时间限度内,及时采取相应的补救措施,降低风险或者强制疏散,最大限度的避免爆炸等恶性事故发生的目的,保证化工生产安全。

对于工业生产规模的化学反应来说,如果在绝热条件下失控反应最大反应速率到达时间≥24小时,人为处置失控反应有足够的时间,导致事故发生的概率较低。

如果最大反应速率到达时间≤8 小时,人为处置失控反应的时间不足,导致事故发生的概率升高。

采用上述的时间尺度进行评估,还取决于其它许多因素,例如化工生产自动化程度的高低、操作人员的操作水平和培训情况、生产保障系统的故障频率等,工艺安全管理也非常重要。

利用失控反应最大反应速率到达时间TMR ad为时间尺度,对反应失控发生的可能性进行评估。

评估标准参见表3。

表3 失控反应发生可能性评估2 8-24 偶尔发生3 1-8 很可能发生4 <1 频繁发生6.4 矩阵评估风险矩阵是以失控反应发生后果严重度和相应的发生概率进行组合,得到不同的风险类型,从而对失控反应的反应安全风险进行评价,并按照可接受风险、有条件接受风险和不可接受风险,分别用不同的区域表示,具有良好的辨识性。

以工艺过程的绝热温升作为反应安全风险的严重度;以失控反应最大反应速率到达时间为时间尺度,通过组合不同的严重度和可能性等级,对化工反应失控风险进行评估。

风险评估矩阵见图1。

图1风险评估矩阵失控反应安全风险的危险程度由风险发生的可能性和风险带来后果的严重度两个方面决定,风险分级原则如下:III级风险为不可接受风险:应当通过工艺优化、技术路线的改变,工程和/或管理上的控制措施,降低风险等级,或者采取必要的隔离方式,全面实现自动控制。

II级风险为有条件接受风险:在控制措施落实的条件下,可以通过工艺优化、工程和/或管理上的控制措施,降低风险等级。

I级风险是可接受风险:可以采取常规的控制措施,并适当提高安全管理和装备水平。

6.5 反应危险度评估反应危险度评估是精细化工反应安全风险评估的重要评估内容。

反应危险度指的是工艺反应本身的危险程度,危险度越大的反应,反应失控后造成事故的严重程度就越大。

相关文档
最新文档