金融时序分析ARMA模型实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平稳性判断:
(1)时序图:该序列的时序图都表现出围绕其水平均值不断波动的过程,没有明
显的趋势或周期性,粗略估计是平稳时间序列。
(2)序列相关图:自相关系数快速衰减到0,在虚线范围内波动,没有明显的波动、发散,判断为平稳序列。
(3)ADF检验:
模型3与模型2的伴随概率为0,拒绝有单位根的原假设,说明序列是平稳的。但模型3的时间趋势项的伴随概率为0.6437,不显著,故不选用。而模型2的常数项的伴随概率为0,在显著性水平0.05情况下显著,因此模型2是最合适的模型,有常数项。
模型1的t检验的伴随概率为0.6128,不能拒绝有单位根的原假设,不选用。
综上所述,该序列是平稳的。
二、随机性检验
观察自相关图最后两列可以看到,Q检验的伴随概率均小于0.05,拒绝没有自相关性的原假设,因此该序列不是白噪声序列,没有把信息都提取出来。观察其AC,虽落入虚线内后没有再到虚线外,但不是由非0骤降到0,判断为拖尾。观察PAC,结果与AC类似,因此AC、PAC都是拖尾,初步判断使用ARMA模型。接下来将尝试使用AR(1)、AR(2)、MA(1)、MA(2)、ARMA(1,3)、ARMA(1,2)模型进行拟合。
三、模型估计与白噪声检验
(1)AR(1):
该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,拒绝没有自相关性的原假设,不是白噪声序列。
(2)AR(2):
该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,阶数较小时拒绝没有自相关性的原假设,不是白噪声序列。
(3)MA(1):
该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列。
(4)MA(2):
该模型MA(2)项不显著,不选用。
(5)ARMA(1,3):
该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列。
(6)ARMA(1,2):
该模型多项不显著,不选用。
对比以上MA(1)与ARMA(1,3)的AIC与SC,前者分别为4.84、4.89,后者分别为4.84、4.94,经检验最优模型为MA(1).