初中数学知识点精讲精析 轴对称与轴对称图形

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 轴对称与轴对称图形

学习目标

1.能够认识轴对称和轴对称图形,并能找出对称轴.

2.知道轴对称与轴对称图形的区别与联系.

3.经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念.

知识详解

1. 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。这时,我们也说这个图形关于这条直线(成轴)对称。

2. 轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

3.轴对称和轴对称图形的区别和联系:

区别:①轴对称图形说的是一个具有特殊形状的图形;轴对称说的是两个图形的一种特殊位置关系。②轴对称是对两个图形说的,而轴对称图形是对一个图形说的。

联系:①都沿某条直线对折,图形重合。②如把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形;反过来,把轴对称图形的两部分分别看作两个图形,那么这两个图形成轴对称。

【典型例题】

例1. 下列交通标志图案是轴对称图形的是()

A.

B.

C.

D.

【答案】B

【解析】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.

例2. 下列图形中是轴对称图形的是()

A.

B.

C.

D.

【答案】C

【解析】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.

例3. 下列图形中,不是轴对称图形的是()

A.

B.

C.

D.

【答案】C

【解析】A、B、D都是轴对称图形,C不是。

【误区警示】

易错点1:理解轴对称图形

1.小华将一张如图所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是轴对称图形的是()

A.

B.

C.

D.

【答案】A

【解析】A、只是中心对称图形,不是轴对称图形,B、C、D都轴对称.

易错点2:理解图象关于对角线所在的直线对称

2.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()

A.

B.

C.

D.

【答案】D

【解析】A、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故符合要求;B、图象关于对角线所在的直线对称,两条对角线都是其对称轴;故符合要求;C、图象关于对角线所在的直线对称,有一条对称轴;故符合要求;D、图象关于对角线所在的直线不对称;故不符合要求。

【综合提升】

针对训练

1. 在下列几何图形中,一定是轴对称图形的有()

A.1个

B.2个

C.3个

D.4个

2. 下列几何图形:①角;②平行四边形;③扇形;④正方形,其中轴对称图形是()A.①②③

B.②③④

C.①③④

D.①②③④

3. 图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()

A.

B.

C.

D.

1.【答案】C

【解析】扇形是轴对称图形,符合题意;等腰梯形是轴对称图形,符合题意;菱形是轴对称图形,符合题意;直角三角形不一定是轴对称图形,故不符合题意.共3个轴对称图形.2.【答案】C

【解析】①角是轴对称图形,其对称轴是角的平分线所在的直线;②平行四边形不是轴对称图形;③扇形是轴对称图形,过圆心和弧中点的直线是其对称轴;④正方形是轴对称图形,过对边中点或对角线的直线是其对称轴.

3.【答案】C

【解析】A、B、D都是轴对称图形,而C不是轴对称图形.

课外拓展

数学与力学开始结合

数学同力学的有机结合,是十八世纪数学的另一个鲜明特征。这种结合,其紧密的程度为数学史上任何时期所不能比拟。几乎所有的数学家都以巨大的热情,致力于运用微积分新工具去解决各种物理、力学问题。

欧拉的名字同流体力学和刚体运动的基本方程联系着;拉格朗日最享盛名的著作《分析力学》,“将力学变成了分析的一个分支”;拉普拉斯则把数学看作是研究力学天文学的工具,他的许多重要数学成果正是包含在他的五大卷《天体力学》中。

这种广泛的应用成为新的数学思想的源泉,而使数学本身的发展大大受惠。一系列新的数学分支在十八世纪成长起来。

达朗贝尔关于弦振动的著名研究,导出了弦振动方程及其最早的解,成为偏微分方程论的发端。另一类重要的偏微分方程──位势方程,主要通过对引力问题的进一步探讨而获得。与偏微分方程相联系的一些较为深入的理论问题也开始受到注意。

拉格朗日发展了解一阶偏微分方程的一般理论;对不同类型的二阶方程的研究还促使欧拉、达朗贝尔等具备了将函数展为三角级数的概念。

常微分方程的研究进展更为迅速。三体问题、摆的运动及弹性理论等的数学描述,引出了一系列的常微分方程,其中以三体问题最为重要,二阶常微分方程在其中扮演了中心角色。

数学家起先是采用各种特殊的技巧对付不同的方程,但渐渐地开始寻找带普遍性的方法。这样,欧拉推广了约翰第一·伯努利的积分因子和常数变易法;黎卡提在以他的名字命名的

相关文档
最新文档